123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344 |
- from math import prod
- from sympy.core import Add, S, Dummy, expand_func
- from sympy.core.expr import Expr
- from sympy.core.function import Function, ArgumentIndexError, PoleError
- from sympy.core.logic import fuzzy_and, fuzzy_not
- from sympy.core.numbers import Rational, pi, oo, I
- from sympy.core.power import Pow
- from sympy.functions.special.zeta_functions import zeta
- from sympy.functions.special.error_functions import erf, erfc, Ei
- from sympy.functions.elementary.complexes import re, unpolarify
- from sympy.functions.elementary.exponential import exp, log
- from sympy.functions.elementary.integers import ceiling, floor
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import sin, cos, cot
- from sympy.functions.combinatorial.numbers import bernoulli, harmonic
- from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial
- from sympy.utilities.misc import as_int
- from mpmath import mp, workprec
- from mpmath.libmp.libmpf import prec_to_dps
- def intlike(n):
- try:
- as_int(n, strict=False)
- return True
- except ValueError:
- return False
- ###############################################################################
- ############################ COMPLETE GAMMA FUNCTION ##########################
- ###############################################################################
- class gamma(Function):
- r"""
- The gamma function
- .. math::
- \Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.
- Explanation
- ===========
- The ``gamma`` function implements the function which passes through the
- values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$ when n is
- an integer). More generally, $\Gamma(z)$ is defined in the whole complex
- plane except at the negative integers where there are simple poles.
- Examples
- ========
- >>> from sympy import S, I, pi, gamma
- >>> from sympy.abc import x
- Several special values are known:
- >>> gamma(1)
- 1
- >>> gamma(4)
- 6
- >>> gamma(S(3)/2)
- sqrt(pi)/2
- The ``gamma`` function obeys the mirror symmetry:
- >>> from sympy import conjugate
- >>> conjugate(gamma(x))
- gamma(conjugate(x))
- Differentiation with respect to $x$ is supported:
- >>> from sympy import diff
- >>> diff(gamma(x), x)
- gamma(x)*polygamma(0, x)
- Series expansion is also supported:
- >>> from sympy import series
- >>> series(gamma(x), x, 0, 3)
- 1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 - zeta(3)/3 - EulerGamma**3/6) + O(x**3)
- We can numerically evaluate the ``gamma`` function to arbitrary precision
- on the whole complex plane:
- >>> gamma(pi).evalf(40)
- 2.288037795340032417959588909060233922890
- >>> gamma(1+I).evalf(20)
- 0.49801566811835604271 - 0.15494982830181068512*I
- See Also
- ========
- lowergamma: Lower incomplete gamma function.
- uppergamma: Upper incomplete gamma function.
- polygamma: Polygamma function.
- loggamma: Log Gamma function.
- digamma: Digamma function.
- trigamma: Trigamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Gamma_function
- .. [2] https://dlmf.nist.gov/5
- .. [3] https://mathworld.wolfram.com/GammaFunction.html
- .. [4] https://functions.wolfram.com/GammaBetaErf/Gamma/
- """
- unbranched = True
- _singularities = (S.ComplexInfinity,)
- def fdiff(self, argindex=1):
- if argindex == 1:
- return self.func(self.args[0])*polygamma(0, self.args[0])
- else:
- raise ArgumentIndexError(self, argindex)
- @classmethod
- def eval(cls, arg):
- if arg.is_Number:
- if arg is S.NaN:
- return S.NaN
- elif arg is oo:
- return oo
- elif intlike(arg):
- if arg.is_positive:
- return factorial(arg - 1)
- else:
- return S.ComplexInfinity
- elif arg.is_Rational:
- if arg.q == 2:
- n = abs(arg.p) // arg.q
- if arg.is_positive:
- k, coeff = n, S.One
- else:
- n = k = n + 1
- if n & 1 == 0:
- coeff = S.One
- else:
- coeff = S.NegativeOne
- coeff *= prod(range(3, 2*k, 2))
- if arg.is_positive:
- return coeff*sqrt(pi) / 2**n
- else:
- return 2**n*sqrt(pi) / coeff
- def _eval_expand_func(self, **hints):
- arg = self.args[0]
- if arg.is_Rational:
- if abs(arg.p) > arg.q:
- x = Dummy('x')
- n = arg.p // arg.q
- p = arg.p - n*arg.q
- return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))
- if arg.is_Add:
- coeff, tail = arg.as_coeff_add()
- if coeff and coeff.q != 1:
- intpart = floor(coeff)
- tail = (coeff - intpart,) + tail
- coeff = intpart
- tail = arg._new_rawargs(*tail, reeval=False)
- return self.func(tail)*RisingFactorial(tail, coeff)
- return self.func(*self.args)
- def _eval_conjugate(self):
- return self.func(self.args[0].conjugate())
- def _eval_is_real(self):
- x = self.args[0]
- if x.is_nonpositive and x.is_integer:
- return False
- if intlike(x) and x <= 0:
- return False
- if x.is_positive or x.is_noninteger:
- return True
- def _eval_is_positive(self):
- x = self.args[0]
- if x.is_positive:
- return True
- elif x.is_noninteger:
- return floor(x).is_even
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- return exp(loggamma(z))
- def _eval_rewrite_as_factorial(self, z, **kwargs):
- return factorial(z - 1)
- def _eval_nseries(self, x, n, logx, cdir=0):
- x0 = self.args[0].limit(x, 0)
- if not (x0.is_Integer and x0 <= 0):
- return super()._eval_nseries(x, n, logx)
- t = self.args[0] - x0
- return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0]
- x0 = arg.subs(x, 0)
- if x0.is_integer and x0.is_nonpositive:
- n = -x0
- res = S.NegativeOne**n/self.func(n + 1)
- return res/(arg + n).as_leading_term(x)
- elif not x0.is_infinite:
- return self.func(x0)
- raise PoleError()
- ###############################################################################
- ################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
- ###############################################################################
- class lowergamma(Function):
- r"""
- The lower incomplete gamma function.
- Explanation
- ===========
- It can be defined as the meromorphic continuation of
- .. math::
- \gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).
- This can be shown to be the same as
- .. math::
- \gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
- where ${}_1F_1$ is the (confluent) hypergeometric function.
- Examples
- ========
- >>> from sympy import lowergamma, S
- >>> from sympy.abc import s, x
- >>> lowergamma(s, x)
- lowergamma(s, x)
- >>> lowergamma(3, x)
- -2*(x**2/2 + x + 1)*exp(-x) + 2
- >>> lowergamma(-S(1)/2, x)
- -2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
- See Also
- ========
- gamma: Gamma function.
- uppergamma: Upper incomplete gamma function.
- polygamma: Polygamma function.
- loggamma: Log Gamma function.
- digamma: Digamma function.
- trigamma: Trigamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_gamma_function
- .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
- Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
- and Mathematical Tables
- .. [3] https://dlmf.nist.gov/8
- .. [4] https://functions.wolfram.com/GammaBetaErf/Gamma2/
- .. [5] https://functions.wolfram.com/GammaBetaErf/Gamma3/
- """
- def fdiff(self, argindex=2):
- from sympy.functions.special.hyper import meijerg
- if argindex == 2:
- a, z = self.args
- return exp(-unpolarify(z))*z**(a - 1)
- elif argindex == 1:
- a, z = self.args
- return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- - meijerg([], [1, 1], [0, 0, a], [], z)
- else:
- raise ArgumentIndexError(self, argindex)
- @classmethod
- def eval(cls, a, x):
- # For lack of a better place, we use this one to extract branching
- # information. The following can be
- # found in the literature (c/f references given above), albeit scattered:
- # 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
- # 2) For fixed positive integers s, lowergamma(s, x) is an entire
- # function of x.
- # 3) For fixed non-positive integers s,
- # lowergamma(s, exp(I*2*pi*n)*x) =
- # 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
- # (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
- # 4) For fixed non-integral s,
- # lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
- # where lowergamma_unbranched(s, x) is an entire function (in fact
- # of both s and x), i.e.
- # lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
- if x is S.Zero:
- return S.Zero
- nx, n = x.extract_branch_factor()
- if a.is_integer and a.is_positive:
- nx = unpolarify(x)
- if nx != x:
- return lowergamma(a, nx)
- elif a.is_integer and a.is_nonpositive:
- if n != 0:
- return 2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + lowergamma(a, nx)
- elif n != 0:
- return exp(2*pi*I*n*a)*lowergamma(a, nx)
- # Special values.
- if a.is_Number:
- if a is S.One:
- return S.One - exp(-x)
- elif a is S.Half:
- return sqrt(pi)*erf(sqrt(x))
- elif a.is_Integer or (2*a).is_Integer:
- b = a - 1
- if b.is_positive:
- if a.is_integer:
- return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)])
- else:
- return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)]))
- if not a.is_Integer:
- return S.NegativeOne**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)])
- if x.is_zero:
- return S.Zero
- def _eval_evalf(self, prec):
- if all(x.is_number for x in self.args):
- a = self.args[0]._to_mpmath(prec)
- z = self.args[1]._to_mpmath(prec)
- with workprec(prec):
- res = mp.gammainc(a, 0, z)
- return Expr._from_mpmath(res, prec)
- else:
- return self
- def _eval_conjugate(self):
- x = self.args[1]
- if x not in (S.Zero, S.NegativeInfinity):
- return self.func(self.args[0].conjugate(), x.conjugate())
- def _eval_is_meromorphic(self, x, a):
- # By https://en.wikipedia.org/wiki/Incomplete_gamma_function#Holomorphic_extension,
- # lowergamma(s, z) = z**s*gamma(s)*gammastar(s, z),
- # where gammastar(s, z) is holomorphic for all s and z.
- # Hence the singularities of lowergamma are z = 0 (branch
- # point) and nonpositive integer values of s (poles of gamma(s)).
- s, z = self.args
- args_merom = fuzzy_and([z._eval_is_meromorphic(x, a),
- s._eval_is_meromorphic(x, a)])
- if not args_merom:
- return args_merom
- z0 = z.subs(x, a)
- if s.is_integer:
- return fuzzy_and([s.is_positive, z0.is_finite])
- s0 = s.subs(x, a)
- return fuzzy_and([s0.is_finite, z0.is_finite, fuzzy_not(z0.is_zero)])
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import O
- s, z = self.args
- if args0[0] is oo and not z.has(x):
- coeff = z**s*exp(-z)
- sum_expr = sum(z**k/rf(s, k + 1) for k in range(n - 1))
- o = O(z**s*s**(-n))
- return coeff*sum_expr + o
- return super()._eval_aseries(n, args0, x, logx)
- def _eval_rewrite_as_uppergamma(self, s, x, **kwargs):
- return gamma(s) - uppergamma(s, x)
- def _eval_rewrite_as_expint(self, s, x, **kwargs):
- from sympy.functions.special.error_functions import expint
- if s.is_integer and s.is_nonpositive:
- return self
- return self.rewrite(uppergamma).rewrite(expint)
- def _eval_is_zero(self):
- x = self.args[1]
- if x.is_zero:
- return True
- class uppergamma(Function):
- r"""
- The upper incomplete gamma function.
- Explanation
- ===========
- It can be defined as the meromorphic continuation of
- .. math::
- \Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).
- where $\gamma(s, x)$ is the lower incomplete gamma function,
- :class:`lowergamma`. This can be shown to be the same as
- .. math::
- \Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
- where ${}_1F_1$ is the (confluent) hypergeometric function.
- The upper incomplete gamma function is also essentially equivalent to the
- generalized exponential integral:
- .. math::
- \operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).
- Examples
- ========
- >>> from sympy import uppergamma, S
- >>> from sympy.abc import s, x
- >>> uppergamma(s, x)
- uppergamma(s, x)
- >>> uppergamma(3, x)
- 2*(x**2/2 + x + 1)*exp(-x)
- >>> uppergamma(-S(1)/2, x)
- -2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
- >>> uppergamma(-2, x)
- expint(3, x)/x**2
- See Also
- ========
- gamma: Gamma function.
- lowergamma: Lower incomplete gamma function.
- polygamma: Polygamma function.
- loggamma: Log Gamma function.
- digamma: Digamma function.
- trigamma: Trigamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_gamma_function
- .. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
- Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
- and Mathematical Tables
- .. [3] https://dlmf.nist.gov/8
- .. [4] https://functions.wolfram.com/GammaBetaErf/Gamma2/
- .. [5] https://functions.wolfram.com/GammaBetaErf/Gamma3/
- .. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
- """
- def fdiff(self, argindex=2):
- from sympy.functions.special.hyper import meijerg
- if argindex == 2:
- a, z = self.args
- return -exp(-unpolarify(z))*z**(a - 1)
- elif argindex == 1:
- a, z = self.args
- return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_evalf(self, prec):
- if all(x.is_number for x in self.args):
- a = self.args[0]._to_mpmath(prec)
- z = self.args[1]._to_mpmath(prec)
- with workprec(prec):
- res = mp.gammainc(a, z, mp.inf)
- return Expr._from_mpmath(res, prec)
- return self
- @classmethod
- def eval(cls, a, z):
- from sympy.functions.special.error_functions import expint
- if z.is_Number:
- if z is S.NaN:
- return S.NaN
- elif z is oo:
- return S.Zero
- elif z.is_zero:
- if re(a).is_positive:
- return gamma(a)
- # We extract branching information here. C/f lowergamma.
- nx, n = z.extract_branch_factor()
- if a.is_integer and a.is_positive:
- nx = unpolarify(z)
- if z != nx:
- return uppergamma(a, nx)
- elif a.is_integer and a.is_nonpositive:
- if n != 0:
- return -2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + uppergamma(a, nx)
- elif n != 0:
- return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)
- # Special values.
- if a.is_Number:
- if a is S.Zero and z.is_positive:
- return -Ei(-z)
- elif a is S.One:
- return exp(-z)
- elif a is S.Half:
- return sqrt(pi)*erfc(sqrt(z))
- elif a.is_Integer or (2*a).is_Integer:
- b = a - 1
- if b.is_positive:
- if a.is_integer:
- return exp(-z) * factorial(b) * Add(*[z**k / factorial(k)
- for k in range(a)])
- else:
- return (gamma(a) * erfc(sqrt(z)) +
- S.NegativeOne**(a - S(3)/2) * exp(-z) * sqrt(z)
- * Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a)
- for k in range(a - S.Half)]))
- elif b.is_Integer:
- return expint(-b, z)*unpolarify(z)**(b + 1)
- if not a.is_Integer:
- return (S.NegativeOne**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a)
- - z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1)
- for k in range(S.Half - a)]))
- if a.is_zero and z.is_positive:
- return -Ei(-z)
- if z.is_zero and re(a).is_positive:
- return gamma(a)
- def _eval_conjugate(self):
- z = self.args[1]
- if z not in (S.Zero, S.NegativeInfinity):
- return self.func(self.args[0].conjugate(), z.conjugate())
- def _eval_is_meromorphic(self, x, a):
- return lowergamma._eval_is_meromorphic(self, x, a)
- def _eval_rewrite_as_lowergamma(self, s, x, **kwargs):
- return gamma(s) - lowergamma(s, x)
- def _eval_rewrite_as_tractable(self, s, x, **kwargs):
- return exp(loggamma(s)) - lowergamma(s, x)
- def _eval_rewrite_as_expint(self, s, x, **kwargs):
- from sympy.functions.special.error_functions import expint
- return expint(1 - s, x)*x**s
- ###############################################################################
- ###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
- ###############################################################################
- class polygamma(Function):
- r"""
- The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``.
- Explanation
- ===========
- It is a meromorphic function on $\mathbb{C}$ and defined as the $(n+1)$-th
- derivative of the logarithm of the gamma function:
- .. math::
- \psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).
- For `n` not a nonnegative integer the generalization by Espinosa and Moll [5]_
- is used:
- .. math:: \psi(s,z) = \frac{\zeta'(s+1, z) + (\gamma + \psi(-s)) \zeta(s+1, z)}
- {\Gamma(-s)}
- Examples
- ========
- Several special values are known:
- >>> from sympy import S, polygamma
- >>> polygamma(0, 1)
- -EulerGamma
- >>> polygamma(0, 1/S(2))
- -2*log(2) - EulerGamma
- >>> polygamma(0, 1/S(3))
- -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
- >>> polygamma(0, 1/S(4))
- -pi/2 - log(4) - log(2) - EulerGamma
- >>> polygamma(0, 2)
- 1 - EulerGamma
- >>> polygamma(0, 23)
- 19093197/5173168 - EulerGamma
- >>> from sympy import oo, I
- >>> polygamma(0, oo)
- oo
- >>> polygamma(0, -oo)
- oo
- >>> polygamma(0, I*oo)
- oo
- >>> polygamma(0, -I*oo)
- oo
- Differentiation with respect to $x$ is supported:
- >>> from sympy import Symbol, diff
- >>> x = Symbol("x")
- >>> diff(polygamma(0, x), x)
- polygamma(1, x)
- >>> diff(polygamma(0, x), x, 2)
- polygamma(2, x)
- >>> diff(polygamma(0, x), x, 3)
- polygamma(3, x)
- >>> diff(polygamma(1, x), x)
- polygamma(2, x)
- >>> diff(polygamma(1, x), x, 2)
- polygamma(3, x)
- >>> diff(polygamma(2, x), x)
- polygamma(3, x)
- >>> diff(polygamma(2, x), x, 2)
- polygamma(4, x)
- >>> n = Symbol("n")
- >>> diff(polygamma(n, x), x)
- polygamma(n + 1, x)
- >>> diff(polygamma(n, x), x, 2)
- polygamma(n + 2, x)
- We can rewrite ``polygamma`` functions in terms of harmonic numbers:
- >>> from sympy import harmonic
- >>> polygamma(0, x).rewrite(harmonic)
- harmonic(x - 1) - EulerGamma
- >>> polygamma(2, x).rewrite(harmonic)
- 2*harmonic(x - 1, 3) - 2*zeta(3)
- >>> ni = Symbol("n", integer=True)
- >>> polygamma(ni, x).rewrite(harmonic)
- (-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
- See Also
- ========
- gamma: Gamma function.
- lowergamma: Lower incomplete gamma function.
- uppergamma: Upper incomplete gamma function.
- loggamma: Log Gamma function.
- digamma: Digamma function.
- trigamma: Trigamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Polygamma_function
- .. [2] https://mathworld.wolfram.com/PolygammaFunction.html
- .. [3] https://functions.wolfram.com/GammaBetaErf/PolyGamma/
- .. [4] https://functions.wolfram.com/GammaBetaErf/PolyGamma2/
- .. [5] O. Espinosa and V. Moll, "A generalized polygamma function",
- *Integral Transforms and Special Functions* (2004), 101-115.
- """
- @classmethod
- def eval(cls, n, z):
- if n is S.NaN or z is S.NaN:
- return S.NaN
- elif z is oo:
- return oo if n.is_zero else S.Zero
- elif z.is_Integer and z.is_nonpositive:
- return S.ComplexInfinity
- elif n is S.NegativeOne:
- return loggamma(z) - log(2*pi) / 2
- elif n.is_zero:
- if z is -oo or z.extract_multiplicatively(I) in (oo, -oo):
- return oo
- elif z.is_Integer:
- return harmonic(z-1) - S.EulerGamma
- elif z.is_Rational:
- # TODO n == 1 also can do some rational z
- p, q = z.as_numer_denom()
- # only expand for small denominators to avoid creating long expressions
- if q <= 6:
- return expand_func(polygamma(S.Zero, z, evaluate=False))
- elif n.is_integer and n.is_nonnegative:
- nz = unpolarify(z)
- if z != nz:
- return polygamma(n, nz)
- if z.is_Integer:
- return S.NegativeOne**(n+1) * factorial(n) * zeta(n+1, z)
- elif z is S.Half:
- return S.NegativeOne**(n+1) * factorial(n) * (2**(n+1)-1) * zeta(n+1)
- def _eval_is_real(self):
- if self.args[0].is_positive and self.args[1].is_positive:
- return True
- def _eval_is_complex(self):
- z = self.args[1]
- is_negative_integer = fuzzy_and([z.is_negative, z.is_integer])
- return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)])
- def _eval_is_positive(self):
- n, z = self.args
- if n.is_positive:
- if n.is_odd and z.is_real:
- return True
- if n.is_even and z.is_positive:
- return False
- def _eval_is_negative(self):
- n, z = self.args
- if n.is_positive:
- if n.is_even and z.is_positive:
- return True
- if n.is_odd and z.is_real:
- return False
- def _eval_expand_func(self, **hints):
- n, z = self.args
- if n.is_Integer and n.is_nonnegative:
- if z.is_Add:
- coeff = z.args[0]
- if coeff.is_Integer:
- e = -(n + 1)
- if coeff > 0:
- tail = Add(*[Pow(
- z - i, e) for i in range(1, int(coeff) + 1)])
- else:
- tail = -Add(*[Pow(
- z + i, e) for i in range(int(-coeff))])
- return polygamma(n, z - coeff) + S.NegativeOne**n*factorial(n)*tail
- elif z.is_Mul:
- coeff, z = z.as_two_terms()
- if coeff.is_Integer and coeff.is_positive:
- tail = [polygamma(n, z + Rational(
- i, coeff)) for i in range(int(coeff))]
- if n == 0:
- return Add(*tail)/coeff + log(coeff)
- else:
- return Add(*tail)/coeff**(n + 1)
- z *= coeff
- if n == 0 and z.is_Rational:
- p, q = z.as_numer_denom()
- # Reference:
- # Values of the polygamma functions at rational arguments, J. Choi, 2007
- part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
- *[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])
- if z > 0:
- n = floor(z)
- z0 = z - n
- return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
- elif z < 0:
- n = floor(1 - z)
- z0 = z + n
- return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])
- if n == -1:
- return loggamma(z) - log(2*pi) / 2
- if n.is_integer is False or n.is_nonnegative is False:
- s = Dummy("s")
- dzt = zeta(s, z).diff(s).subs(s, n+1)
- return (dzt + (S.EulerGamma + digamma(-n)) * zeta(n+1, z)) / gamma(-n)
- return polygamma(n, z)
- def _eval_rewrite_as_zeta(self, n, z, **kwargs):
- if n.is_integer and n.is_positive:
- return S.NegativeOne**(n + 1)*factorial(n)*zeta(n + 1, z)
- def _eval_rewrite_as_harmonic(self, n, z, **kwargs):
- if n.is_integer:
- if n.is_zero:
- return harmonic(z - 1) - S.EulerGamma
- else:
- return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- from sympy.series.order import Order
- n, z = [a.as_leading_term(x) for a in self.args]
- o = Order(z, x)
- if n == 0 and o.contains(1/x):
- logx = log(x) if logx is None else logx
- return o.getn() * logx
- else:
- return self.func(n, z)
- def fdiff(self, argindex=2):
- if argindex == 2:
- n, z = self.args[:2]
- return polygamma(n + 1, z)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- if args0[1] != oo or not \
- (self.args[0].is_Integer and self.args[0].is_nonnegative):
- return super()._eval_aseries(n, args0, x, logx)
- z = self.args[1]
- N = self.args[0]
- if N == 0:
- # digamma function series
- # Abramowitz & Stegun, p. 259, 6.3.18
- r = log(z) - 1/(2*z)
- o = None
- if n < 2:
- o = Order(1/z, x)
- else:
- m = ceiling((n + 1)//2)
- l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
- r -= Add(*l)
- o = Order(1/z**n, x)
- return r._eval_nseries(x, n, logx) + o
- else:
- # proper polygamma function
- # Abramowitz & Stegun, p. 260, 6.4.10
- # We return terms to order higher than O(x**n) on purpose
- # -- otherwise we would not be able to return any terms for
- # quite a long time!
- fac = gamma(N)
- e0 = fac + N*fac/(2*z)
- m = ceiling((n + 1)//2)
- for k in range(1, m):
- fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
- e0 += bernoulli(2*k)*fac/z**(2*k)
- o = Order(1/z**(2*m), x)
- if n == 0:
- o = Order(1/z, x)
- elif n == 1:
- o = Order(1/z**2, x)
- r = e0._eval_nseries(z, n, logx) + o
- return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)
- def _eval_evalf(self, prec):
- if not all(i.is_number for i in self.args):
- return
- s = self.args[0]._to_mpmath(prec+12)
- z = self.args[1]._to_mpmath(prec+12)
- if mp.isint(z) and z <= 0:
- return S.ComplexInfinity
- with workprec(prec+12):
- if mp.isint(s) and s >= 0:
- res = mp.polygamma(s, z)
- else:
- zt = mp.zeta(s+1, z)
- dzt = mp.zeta(s+1, z, 1)
- res = (dzt + (mp.euler + mp.digamma(-s)) * zt) * mp.rgamma(-s)
- return Expr._from_mpmath(res, prec)
- class loggamma(Function):
- r"""
- The ``loggamma`` function implements the logarithm of the
- gamma function (i.e., $\log\Gamma(x)$).
- Examples
- ========
- Several special values are known. For numerical integral
- arguments we have:
- >>> from sympy import loggamma
- >>> loggamma(-2)
- oo
- >>> loggamma(0)
- oo
- >>> loggamma(1)
- 0
- >>> loggamma(2)
- 0
- >>> loggamma(3)
- log(2)
- And for symbolic values:
- >>> from sympy import Symbol
- >>> n = Symbol("n", integer=True, positive=True)
- >>> loggamma(n)
- log(gamma(n))
- >>> loggamma(-n)
- oo
- For half-integral values:
- >>> from sympy import S
- >>> loggamma(S(5)/2)
- log(3*sqrt(pi)/4)
- >>> loggamma(n/2)
- log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
- And general rational arguments:
- >>> from sympy import expand_func
- >>> L = loggamma(S(16)/3)
- >>> expand_func(L).doit()
- -5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
- >>> L = loggamma(S(19)/4)
- >>> expand_func(L).doit()
- -4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
- >>> L = loggamma(S(23)/7)
- >>> expand_func(L).doit()
- -3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
- The ``loggamma`` function has the following limits towards infinity:
- >>> from sympy import oo
- >>> loggamma(oo)
- oo
- >>> loggamma(-oo)
- zoo
- The ``loggamma`` function obeys the mirror symmetry
- if $x \in \mathbb{C} \setminus \{-\infty, 0\}$:
- >>> from sympy.abc import x
- >>> from sympy import conjugate
- >>> conjugate(loggamma(x))
- loggamma(conjugate(x))
- Differentiation with respect to $x$ is supported:
- >>> from sympy import diff
- >>> diff(loggamma(x), x)
- polygamma(0, x)
- Series expansion is also supported:
- >>> from sympy import series
- >>> series(loggamma(x), x, 0, 4).cancel()
- -log(x) - EulerGamma*x + pi**2*x**2/12 - x**3*zeta(3)/3 + O(x**4)
- We can numerically evaluate the ``loggamma`` function
- to arbitrary precision on the whole complex plane:
- >>> from sympy import I
- >>> loggamma(5).evalf(30)
- 3.17805383034794561964694160130
- >>> loggamma(I).evalf(20)
- -0.65092319930185633889 - 1.8724366472624298171*I
- See Also
- ========
- gamma: Gamma function.
- lowergamma: Lower incomplete gamma function.
- uppergamma: Upper incomplete gamma function.
- polygamma: Polygamma function.
- digamma: Digamma function.
- trigamma: Trigamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Gamma_function
- .. [2] https://dlmf.nist.gov/5
- .. [3] https://mathworld.wolfram.com/LogGammaFunction.html
- .. [4] https://functions.wolfram.com/GammaBetaErf/LogGamma/
- """
- @classmethod
- def eval(cls, z):
- if z.is_integer:
- if z.is_nonpositive:
- return oo
- elif z.is_positive:
- return log(gamma(z))
- elif z.is_rational:
- p, q = z.as_numer_denom()
- # Half-integral values:
- if p.is_positive and q == 2:
- return log(sqrt(pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))
- if z is oo:
- return oo
- elif abs(z) is oo:
- return S.ComplexInfinity
- if z is S.NaN:
- return S.NaN
- def _eval_expand_func(self, **hints):
- from sympy.concrete.summations import Sum
- z = self.args[0]
- if z.is_Rational:
- p, q = z.as_numer_denom()
- # General rational arguments (u + p/q)
- # Split z as n + p/q with p < q
- n = p // q
- p = p - n*q
- if p.is_positive and q.is_positive and p < q:
- k = Dummy("k")
- if n.is_positive:
- return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
- elif n.is_negative:
- return loggamma(p / q) - n*log(q) + pi*I*n - Sum(log(k*q - p), (k, 1, -n))
- elif n.is_zero:
- return loggamma(p / q)
- return self
- def _eval_nseries(self, x, n, logx=None, cdir=0):
- x0 = self.args[0].limit(x, 0)
- if x0.is_zero:
- f = self._eval_rewrite_as_intractable(*self.args)
- return f._eval_nseries(x, n, logx)
- return super()._eval_nseries(x, n, logx)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- if args0[0] != oo:
- return super()._eval_aseries(n, args0, x, logx)
- z = self.args[0]
- r = log(z)*(z - S.Half) - z + log(2*pi)/2
- l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, n)]
- o = None
- if n == 0:
- o = Order(1, x)
- else:
- o = Order(1/z**n, x)
- # It is very inefficient to first add the order and then do the nseries
- return (r + Add(*l))._eval_nseries(x, n, logx) + o
- def _eval_rewrite_as_intractable(self, z, **kwargs):
- return log(gamma(z))
- def _eval_is_real(self):
- z = self.args[0]
- if z.is_positive:
- return True
- elif z.is_nonpositive:
- return False
- def _eval_conjugate(self):
- z = self.args[0]
- if z not in (S.Zero, S.NegativeInfinity):
- return self.func(z.conjugate())
- def fdiff(self, argindex=1):
- if argindex == 1:
- return polygamma(0, self.args[0])
- else:
- raise ArgumentIndexError(self, argindex)
- class digamma(Function):
- r"""
- The ``digamma`` function is the first derivative of the ``loggamma``
- function
- .. math::
- \psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
- = \frac{\Gamma'(z)}{\Gamma(z) }.
- In this case, ``digamma(z) = polygamma(0, z)``.
- Examples
- ========
- >>> from sympy import digamma
- >>> digamma(0)
- zoo
- >>> from sympy import Symbol
- >>> z = Symbol('z')
- >>> digamma(z)
- polygamma(0, z)
- To retain ``digamma`` as it is:
- >>> digamma(0, evaluate=False)
- digamma(0)
- >>> digamma(z, evaluate=False)
- digamma(z)
- See Also
- ========
- gamma: Gamma function.
- lowergamma: Lower incomplete gamma function.
- uppergamma: Upper incomplete gamma function.
- polygamma: Polygamma function.
- loggamma: Log Gamma function.
- trigamma: Trigamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Digamma_function
- .. [2] https://mathworld.wolfram.com/DigammaFunction.html
- .. [3] https://functions.wolfram.com/GammaBetaErf/PolyGamma2/
- """
- def _eval_evalf(self, prec):
- z = self.args[0]
- nprec = prec_to_dps(prec)
- return polygamma(0, z).evalf(n=nprec)
- def fdiff(self, argindex=1):
- z = self.args[0]
- return polygamma(0, z).fdiff()
- def _eval_is_real(self):
- z = self.args[0]
- return polygamma(0, z).is_real
- def _eval_is_positive(self):
- z = self.args[0]
- return polygamma(0, z).is_positive
- def _eval_is_negative(self):
- z = self.args[0]
- return polygamma(0, z).is_negative
- def _eval_aseries(self, n, args0, x, logx):
- as_polygamma = self.rewrite(polygamma)
- args0 = [S.Zero,] + args0
- return as_polygamma._eval_aseries(n, args0, x, logx)
- @classmethod
- def eval(cls, z):
- return polygamma(0, z)
- def _eval_expand_func(self, **hints):
- z = self.args[0]
- return polygamma(0, z).expand(func=True)
- def _eval_rewrite_as_harmonic(self, z, **kwargs):
- return harmonic(z - 1) - S.EulerGamma
- def _eval_rewrite_as_polygamma(self, z, **kwargs):
- return polygamma(0, z)
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- z = self.args[0]
- return polygamma(0, z).as_leading_term(x)
- class trigamma(Function):
- r"""
- The ``trigamma`` function is the second derivative of the ``loggamma``
- function
- .. math::
- \psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).
- In this case, ``trigamma(z) = polygamma(1, z)``.
- Examples
- ========
- >>> from sympy import trigamma
- >>> trigamma(0)
- zoo
- >>> from sympy import Symbol
- >>> z = Symbol('z')
- >>> trigamma(z)
- polygamma(1, z)
- To retain ``trigamma`` as it is:
- >>> trigamma(0, evaluate=False)
- trigamma(0)
- >>> trigamma(z, evaluate=False)
- trigamma(z)
- See Also
- ========
- gamma: Gamma function.
- lowergamma: Lower incomplete gamma function.
- uppergamma: Upper incomplete gamma function.
- polygamma: Polygamma function.
- loggamma: Log Gamma function.
- digamma: Digamma function.
- beta: Euler Beta function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Trigamma_function
- .. [2] https://mathworld.wolfram.com/TrigammaFunction.html
- .. [3] https://functions.wolfram.com/GammaBetaErf/PolyGamma2/
- """
- def _eval_evalf(self, prec):
- z = self.args[0]
- nprec = prec_to_dps(prec)
- return polygamma(1, z).evalf(n=nprec)
- def fdiff(self, argindex=1):
- z = self.args[0]
- return polygamma(1, z).fdiff()
- def _eval_is_real(self):
- z = self.args[0]
- return polygamma(1, z).is_real
- def _eval_is_positive(self):
- z = self.args[0]
- return polygamma(1, z).is_positive
- def _eval_is_negative(self):
- z = self.args[0]
- return polygamma(1, z).is_negative
- def _eval_aseries(self, n, args0, x, logx):
- as_polygamma = self.rewrite(polygamma)
- args0 = [S.One,] + args0
- return as_polygamma._eval_aseries(n, args0, x, logx)
- @classmethod
- def eval(cls, z):
- return polygamma(1, z)
- def _eval_expand_func(self, **hints):
- z = self.args[0]
- return polygamma(1, z).expand(func=True)
- def _eval_rewrite_as_zeta(self, z, **kwargs):
- return zeta(2, z)
- def _eval_rewrite_as_polygamma(self, z, **kwargs):
- return polygamma(1, z)
- def _eval_rewrite_as_harmonic(self, z, **kwargs):
- return -harmonic(z - 1, 2) + pi**2 / 6
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- z = self.args[0]
- return polygamma(1, z).as_leading_term(x)
- ###############################################################################
- ##################### COMPLETE MULTIVARIATE GAMMA FUNCTION ####################
- ###############################################################################
- class multigamma(Function):
- r"""
- The multivariate gamma function is a generalization of the gamma function
- .. math::
- \Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2].
- In a special case, ``multigamma(x, 1) = gamma(x)``.
- Examples
- ========
- >>> from sympy import S, multigamma
- >>> from sympy import Symbol
- >>> x = Symbol('x')
- >>> p = Symbol('p', positive=True, integer=True)
- >>> multigamma(x, p)
- pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))
- Several special values are known:
- >>> multigamma(1, 1)
- 1
- >>> multigamma(4, 1)
- 6
- >>> multigamma(S(3)/2, 1)
- sqrt(pi)/2
- Writing ``multigamma`` in terms of the ``gamma`` function:
- >>> multigamma(x, 1)
- gamma(x)
- >>> multigamma(x, 2)
- sqrt(pi)*gamma(x)*gamma(x - 1/2)
- >>> multigamma(x, 3)
- pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
- Parameters
- ==========
- p : order or dimension of the multivariate gamma function
- See Also
- ========
- gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma,
- beta
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function
- """
- unbranched = True
- def fdiff(self, argindex=2):
- from sympy.concrete.summations import Sum
- if argindex == 2:
- x, p = self.args
- k = Dummy("k")
- return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p))
- else:
- raise ArgumentIndexError(self, argindex)
- @classmethod
- def eval(cls, x, p):
- from sympy.concrete.products import Product
- if p.is_positive is False or p.is_integer is False:
- raise ValueError('Order parameter p must be positive integer.')
- k = Dummy("k")
- return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2),
- (k, 1, p))).doit()
- def _eval_conjugate(self):
- x, p = self.args
- return self.func(x.conjugate(), p)
- def _eval_is_real(self):
- x, p = self.args
- y = 2*x
- if y.is_integer and (y <= (p - 1)) is True:
- return False
- if intlike(y) and (y <= (p - 1)):
- return False
- if y > (p - 1) or y.is_noninteger:
- return True
|