12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741 |
- """ This module contains various functions that are special cases
- of incomplete gamma functions. It should probably be renamed. """
- from sympy.core import EulerGamma # Must be imported from core, not core.numbers
- from sympy.core.add import Add
- from sympy.core.cache import cacheit
- from sympy.core.function import Function, ArgumentIndexError, expand_mul
- from sympy.core.numbers import I, pi, Rational
- from sympy.core.relational import is_eq
- from sympy.core.power import Pow
- from sympy.core.singleton import S
- from sympy.core.symbol import Symbol
- from sympy.core.sympify import sympify
- from sympy.functions.combinatorial.factorials import factorial, factorial2, RisingFactorial
- from sympy.functions.elementary.complexes import polar_lift, re, unpolarify
- from sympy.functions.elementary.integers import ceiling, floor
- from sympy.functions.elementary.miscellaneous import sqrt, root
- from sympy.functions.elementary.exponential import exp, log, exp_polar
- from sympy.functions.elementary.hyperbolic import cosh, sinh
- from sympy.functions.elementary.trigonometric import cos, sin, sinc
- from sympy.functions.special.hyper import hyper, meijerg
- # TODO series expansions
- # TODO see the "Note:" in Ei
- # Helper function
- def real_to_real_as_real_imag(self, deep=True, **hints):
- if self.args[0].is_extended_real:
- if deep:
- hints['complex'] = False
- return (self.expand(deep, **hints), S.Zero)
- else:
- return (self, S.Zero)
- if deep:
- x, y = self.args[0].expand(deep, **hints).as_real_imag()
- else:
- x, y = self.args[0].as_real_imag()
- re = (self.func(x + I*y) + self.func(x - I*y))/2
- im = (self.func(x + I*y) - self.func(x - I*y))/(2*I)
- return (re, im)
- ###############################################################################
- ################################ ERROR FUNCTION ###############################
- ###############################################################################
- class erf(Function):
- r"""
- The Gauss error function.
- Explanation
- ===========
- This function is defined as:
- .. math ::
- \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.
- Examples
- ========
- >>> from sympy import I, oo, erf
- >>> from sympy.abc import z
- Several special values are known:
- >>> erf(0)
- 0
- >>> erf(oo)
- 1
- >>> erf(-oo)
- -1
- >>> erf(I*oo)
- oo*I
- >>> erf(-I*oo)
- -oo*I
- In general one can pull out factors of -1 and $I$ from the argument:
- >>> erf(-z)
- -erf(z)
- The error function obeys the mirror symmetry:
- >>> from sympy import conjugate
- >>> conjugate(erf(z))
- erf(conjugate(z))
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(erf(z), z)
- 2*exp(-z**2)/sqrt(pi)
- We can numerically evaluate the error function to arbitrary precision
- on the whole complex plane:
- >>> erf(4).evalf(30)
- 0.999999984582742099719981147840
- >>> erf(-4*I).evalf(30)
- -1296959.73071763923152794095062*I
- See Also
- ========
- erfc: Complementary error function.
- erfi: Imaginary error function.
- erf2: Two-argument error function.
- erfinv: Inverse error function.
- erfcinv: Inverse Complementary error function.
- erf2inv: Inverse two-argument error function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Error_function
- .. [2] https://dlmf.nist.gov/7
- .. [3] https://mathworld.wolfram.com/Erf.html
- .. [4] https://functions.wolfram.com/GammaBetaErf/Erf
- """
- unbranched = True
- def fdiff(self, argindex=1):
- if argindex == 1:
- return 2*exp(-self.args[0]**2)/sqrt(pi)
- else:
- raise ArgumentIndexError(self, argindex)
- def inverse(self, argindex=1):
- """
- Returns the inverse of this function.
- """
- return erfinv
- @classmethod
- def eval(cls, arg):
- if arg.is_Number:
- if arg is S.NaN:
- return S.NaN
- elif arg is S.Infinity:
- return S.One
- elif arg is S.NegativeInfinity:
- return S.NegativeOne
- elif arg.is_zero:
- return S.Zero
- if isinstance(arg, erfinv):
- return arg.args[0]
- if isinstance(arg, erfcinv):
- return S.One - arg.args[0]
- if arg.is_zero:
- return S.Zero
- # Only happens with unevaluated erf2inv
- if isinstance(arg, erf2inv) and arg.args[0].is_zero:
- return arg.args[1]
- # Try to pull out factors of I
- t = arg.extract_multiplicatively(I)
- if t in (S.Infinity, S.NegativeInfinity):
- return arg
- # Try to pull out factors of -1
- if arg.could_extract_minus_sign():
- return -cls(-arg)
- @staticmethod
- @cacheit
- def taylor_term(n, x, *previous_terms):
- if n < 0 or n % 2 == 0:
- return S.Zero
- else:
- x = sympify(x)
- k = floor((n - 1)/S(2))
- if len(previous_terms) > 2:
- return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
- else:
- return 2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi))
- def _eval_conjugate(self):
- return self.func(self.args[0].conjugate())
- def _eval_is_real(self):
- return self.args[0].is_extended_real
- def _eval_is_finite(self):
- if self.args[0].is_finite:
- return True
- else:
- return self.args[0].is_extended_real
- def _eval_is_zero(self):
- return self.args[0].is_zero
- def _eval_rewrite_as_uppergamma(self, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi))
- def _eval_rewrite_as_fresnels(self, z, **kwargs):
- arg = (S.One - I)*z/sqrt(pi)
- return (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
- def _eval_rewrite_as_fresnelc(self, z, **kwargs):
- arg = (S.One - I)*z/sqrt(pi)
- return (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
- def _eval_rewrite_as_meijerg(self, z, **kwargs):
- return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)
- def _eval_rewrite_as_hyper(self, z, **kwargs):
- return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
- def _eval_rewrite_as_expint(self, z, **kwargs):
- return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(pi)
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- from sympy.series.limits import limit
- if limitvar:
- lim = limit(z, limitvar, S.Infinity)
- if lim is S.NegativeInfinity:
- return S.NegativeOne + _erfs(-z)*exp(-z**2)
- return S.One - _erfs(z)*exp(-z**2)
- def _eval_rewrite_as_erfc(self, z, **kwargs):
- return S.One - erfc(z)
- def _eval_rewrite_as_erfi(self, z, **kwargs):
- return -I*erfi(I*z)
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if arg0 is S.ComplexInfinity:
- arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+')
- if x in arg.free_symbols and arg0.is_zero:
- return 2*arg/sqrt(pi)
- else:
- return self.func(arg0)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- if point in [S.Infinity, S.NegativeInfinity]:
- z = self.args[0]
- try:
- _, ex = z.leadterm(x)
- except (ValueError, NotImplementedError):
- return self
- ex = -ex # as x->1/x for aseries
- if ex.is_positive:
- newn = ceiling(n/ex)
- s = [S.NegativeOne**k * factorial2(2*k - 1) / (z**(2*k + 1) * 2**k)
- for k in range(newn)] + [Order(1/z**newn, x)]
- return S.One - (exp(-z**2)/sqrt(pi)) * Add(*s)
- return super(erf, self)._eval_aseries(n, args0, x, logx)
- as_real_imag = real_to_real_as_real_imag
- class erfc(Function):
- r"""
- Complementary Error Function.
- Explanation
- ===========
- The function is defined as:
- .. math ::
- \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t
- Examples
- ========
- >>> from sympy import I, oo, erfc
- >>> from sympy.abc import z
- Several special values are known:
- >>> erfc(0)
- 1
- >>> erfc(oo)
- 0
- >>> erfc(-oo)
- 2
- >>> erfc(I*oo)
- -oo*I
- >>> erfc(-I*oo)
- oo*I
- The error function obeys the mirror symmetry:
- >>> from sympy import conjugate
- >>> conjugate(erfc(z))
- erfc(conjugate(z))
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(erfc(z), z)
- -2*exp(-z**2)/sqrt(pi)
- It also follows
- >>> erfc(-z)
- 2 - erfc(z)
- We can numerically evaluate the complementary error function to arbitrary
- precision on the whole complex plane:
- >>> erfc(4).evalf(30)
- 0.0000000154172579002800188521596734869
- >>> erfc(4*I).evalf(30)
- 1.0 - 1296959.73071763923152794095062*I
- See Also
- ========
- erf: Gaussian error function.
- erfi: Imaginary error function.
- erf2: Two-argument error function.
- erfinv: Inverse error function.
- erfcinv: Inverse Complementary error function.
- erf2inv: Inverse two-argument error function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Error_function
- .. [2] https://dlmf.nist.gov/7
- .. [3] https://mathworld.wolfram.com/Erfc.html
- .. [4] https://functions.wolfram.com/GammaBetaErf/Erfc
- """
- unbranched = True
- def fdiff(self, argindex=1):
- if argindex == 1:
- return -2*exp(-self.args[0]**2)/sqrt(pi)
- else:
- raise ArgumentIndexError(self, argindex)
- def inverse(self, argindex=1):
- """
- Returns the inverse of this function.
- """
- return erfcinv
- @classmethod
- def eval(cls, arg):
- if arg.is_Number:
- if arg is S.NaN:
- return S.NaN
- elif arg is S.Infinity:
- return S.Zero
- elif arg.is_zero:
- return S.One
- if isinstance(arg, erfinv):
- return S.One - arg.args[0]
- if isinstance(arg, erfcinv):
- return arg.args[0]
- if arg.is_zero:
- return S.One
- # Try to pull out factors of I
- t = arg.extract_multiplicatively(I)
- if t in (S.Infinity, S.NegativeInfinity):
- return -arg
- # Try to pull out factors of -1
- if arg.could_extract_minus_sign():
- return 2 - cls(-arg)
- @staticmethod
- @cacheit
- def taylor_term(n, x, *previous_terms):
- if n == 0:
- return S.One
- elif n < 0 or n % 2 == 0:
- return S.Zero
- else:
- x = sympify(x)
- k = floor((n - 1)/S(2))
- if len(previous_terms) > 2:
- return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
- else:
- return -2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi))
- def _eval_conjugate(self):
- return self.func(self.args[0].conjugate())
- def _eval_is_real(self):
- return self.args[0].is_extended_real
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar)
- def _eval_rewrite_as_erf(self, z, **kwargs):
- return S.One - erf(z)
- def _eval_rewrite_as_erfi(self, z, **kwargs):
- return S.One + I*erfi(I*z)
- def _eval_rewrite_as_fresnels(self, z, **kwargs):
- arg = (S.One - I)*z/sqrt(pi)
- return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
- def _eval_rewrite_as_fresnelc(self, z, **kwargs):
- arg = (S.One-I)*z/sqrt(pi)
- return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
- def _eval_rewrite_as_meijerg(self, z, **kwargs):
- return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)
- def _eval_rewrite_as_hyper(self, z, **kwargs):
- return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
- def _eval_rewrite_as_uppergamma(self, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi))
- def _eval_rewrite_as_expint(self, z, **kwargs):
- return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(pi)
- def _eval_expand_func(self, **hints):
- return self.rewrite(erf)
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if arg0 is S.ComplexInfinity:
- arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+')
- if arg0.is_zero:
- return S.One
- else:
- return self.func(arg0)
- as_real_imag = real_to_real_as_real_imag
- def _eval_aseries(self, n, args0, x, logx):
- return S.One - erf(*self.args)._eval_aseries(n, args0, x, logx)
- class erfi(Function):
- r"""
- Imaginary error function.
- Explanation
- ===========
- The function erfi is defined as:
- .. math ::
- \mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t
- Examples
- ========
- >>> from sympy import I, oo, erfi
- >>> from sympy.abc import z
- Several special values are known:
- >>> erfi(0)
- 0
- >>> erfi(oo)
- oo
- >>> erfi(-oo)
- -oo
- >>> erfi(I*oo)
- I
- >>> erfi(-I*oo)
- -I
- In general one can pull out factors of -1 and $I$ from the argument:
- >>> erfi(-z)
- -erfi(z)
- >>> from sympy import conjugate
- >>> conjugate(erfi(z))
- erfi(conjugate(z))
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(erfi(z), z)
- 2*exp(z**2)/sqrt(pi)
- We can numerically evaluate the imaginary error function to arbitrary
- precision on the whole complex plane:
- >>> erfi(2).evalf(30)
- 18.5648024145755525987042919132
- >>> erfi(-2*I).evalf(30)
- -0.995322265018952734162069256367*I
- See Also
- ========
- erf: Gaussian error function.
- erfc: Complementary error function.
- erf2: Two-argument error function.
- erfinv: Inverse error function.
- erfcinv: Inverse Complementary error function.
- erf2inv: Inverse two-argument error function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Error_function
- .. [2] https://mathworld.wolfram.com/Erfi.html
- .. [3] https://functions.wolfram.com/GammaBetaErf/Erfi
- """
- unbranched = True
- def fdiff(self, argindex=1):
- if argindex == 1:
- return 2*exp(self.args[0]**2)/sqrt(pi)
- else:
- raise ArgumentIndexError(self, argindex)
- @classmethod
- def eval(cls, z):
- if z.is_Number:
- if z is S.NaN:
- return S.NaN
- elif z.is_zero:
- return S.Zero
- elif z is S.Infinity:
- return S.Infinity
- if z.is_zero:
- return S.Zero
- # Try to pull out factors of -1
- if z.could_extract_minus_sign():
- return -cls(-z)
- # Try to pull out factors of I
- nz = z.extract_multiplicatively(I)
- if nz is not None:
- if nz is S.Infinity:
- return I
- if isinstance(nz, erfinv):
- return I*nz.args[0]
- if isinstance(nz, erfcinv):
- return I*(S.One - nz.args[0])
- # Only happens with unevaluated erf2inv
- if isinstance(nz, erf2inv) and nz.args[0].is_zero:
- return I*nz.args[1]
- @staticmethod
- @cacheit
- def taylor_term(n, x, *previous_terms):
- if n < 0 or n % 2 == 0:
- return S.Zero
- else:
- x = sympify(x)
- k = floor((n - 1)/S(2))
- if len(previous_terms) > 2:
- return previous_terms[-2] * x**2 * (n - 2)/(n*k)
- else:
- return 2 * x**n/(n*factorial(k)*sqrt(pi))
- def _eval_conjugate(self):
- return self.func(self.args[0].conjugate())
- def _eval_is_extended_real(self):
- return self.args[0].is_extended_real
- def _eval_is_zero(self):
- return self.args[0].is_zero
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar)
- def _eval_rewrite_as_erf(self, z, **kwargs):
- return -I*erf(I*z)
- def _eval_rewrite_as_erfc(self, z, **kwargs):
- return I*erfc(I*z) - I
- def _eval_rewrite_as_fresnels(self, z, **kwargs):
- arg = (S.One + I)*z/sqrt(pi)
- return (S.One - I)*(fresnelc(arg) - I*fresnels(arg))
- def _eval_rewrite_as_fresnelc(self, z, **kwargs):
- arg = (S.One + I)*z/sqrt(pi)
- return (S.One - I)*(fresnelc(arg) - I*fresnels(arg))
- def _eval_rewrite_as_meijerg(self, z, **kwargs):
- return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2)
- def _eval_rewrite_as_hyper(self, z, **kwargs):
- return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2)
- def _eval_rewrite_as_uppergamma(self, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(pi) - S.One)
- def _eval_rewrite_as_expint(self, z, **kwargs):
- return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(pi)
- def _eval_expand_func(self, **hints):
- return self.rewrite(erf)
- as_real_imag = real_to_real_as_real_imag
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if x in arg.free_symbols and arg0.is_zero:
- return 2*arg/sqrt(pi)
- elif arg0.is_finite:
- return self.func(arg0)
- return self.func(arg)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- if point is S.Infinity:
- z = self.args[0]
- s = [factorial2(2*k - 1) / (2**k * z**(2*k + 1))
- for k in range(n)] + [Order(1/z**n, x)]
- return -I + (exp(z**2)/sqrt(pi)) * Add(*s)
- return super(erfi, self)._eval_aseries(n, args0, x, logx)
- class erf2(Function):
- r"""
- Two-argument error function.
- Explanation
- ===========
- This function is defined as:
- .. math ::
- \mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t
- Examples
- ========
- >>> from sympy import oo, erf2
- >>> from sympy.abc import x, y
- Several special values are known:
- >>> erf2(0, 0)
- 0
- >>> erf2(x, x)
- 0
- >>> erf2(x, oo)
- 1 - erf(x)
- >>> erf2(x, -oo)
- -erf(x) - 1
- >>> erf2(oo, y)
- erf(y) - 1
- >>> erf2(-oo, y)
- erf(y) + 1
- In general one can pull out factors of -1:
- >>> erf2(-x, -y)
- -erf2(x, y)
- The error function obeys the mirror symmetry:
- >>> from sympy import conjugate
- >>> conjugate(erf2(x, y))
- erf2(conjugate(x), conjugate(y))
- Differentiation with respect to $x$, $y$ is supported:
- >>> from sympy import diff
- >>> diff(erf2(x, y), x)
- -2*exp(-x**2)/sqrt(pi)
- >>> diff(erf2(x, y), y)
- 2*exp(-y**2)/sqrt(pi)
- See Also
- ========
- erf: Gaussian error function.
- erfc: Complementary error function.
- erfi: Imaginary error function.
- erfinv: Inverse error function.
- erfcinv: Inverse Complementary error function.
- erf2inv: Inverse two-argument error function.
- References
- ==========
- .. [1] https://functions.wolfram.com/GammaBetaErf/Erf2/
- """
- def fdiff(self, argindex):
- x, y = self.args
- if argindex == 1:
- return -2*exp(-x**2)/sqrt(pi)
- elif argindex == 2:
- return 2*exp(-y**2)/sqrt(pi)
- else:
- raise ArgumentIndexError(self, argindex)
- @classmethod
- def eval(cls, x, y):
- chk = (S.Infinity, S.NegativeInfinity, S.Zero)
- if x is S.NaN or y is S.NaN:
- return S.NaN
- elif x == y:
- return S.Zero
- elif x in chk or y in chk:
- return erf(y) - erf(x)
- if isinstance(y, erf2inv) and y.args[0] == x:
- return y.args[1]
- if x.is_zero or y.is_zero or x.is_extended_real and x.is_infinite or \
- y.is_extended_real and y.is_infinite:
- return erf(y) - erf(x)
- #Try to pull out -1 factor
- sign_x = x.could_extract_minus_sign()
- sign_y = y.could_extract_minus_sign()
- if (sign_x and sign_y):
- return -cls(-x, -y)
- elif (sign_x or sign_y):
- return erf(y)-erf(x)
- def _eval_conjugate(self):
- return self.func(self.args[0].conjugate(), self.args[1].conjugate())
- def _eval_is_extended_real(self):
- return self.args[0].is_extended_real and self.args[1].is_extended_real
- def _eval_rewrite_as_erf(self, x, y, **kwargs):
- return erf(y) - erf(x)
- def _eval_rewrite_as_erfc(self, x, y, **kwargs):
- return erfc(x) - erfc(y)
- def _eval_rewrite_as_erfi(self, x, y, **kwargs):
- return I*(erfi(I*x)-erfi(I*y))
- def _eval_rewrite_as_fresnels(self, x, y, **kwargs):
- return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels)
- def _eval_rewrite_as_fresnelc(self, x, y, **kwargs):
- return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc)
- def _eval_rewrite_as_meijerg(self, x, y, **kwargs):
- return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg)
- def _eval_rewrite_as_hyper(self, x, y, **kwargs):
- return erf(y).rewrite(hyper) - erf(x).rewrite(hyper)
- def _eval_rewrite_as_uppergamma(self, x, y, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(pi)) -
- sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(pi)))
- def _eval_rewrite_as_expint(self, x, y, **kwargs):
- return erf(y).rewrite(expint) - erf(x).rewrite(expint)
- def _eval_expand_func(self, **hints):
- return self.rewrite(erf)
- def _eval_is_zero(self):
- return is_eq(*self.args)
- class erfinv(Function):
- r"""
- Inverse Error Function. The erfinv function is defined as:
- .. math ::
- \mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x
- Examples
- ========
- >>> from sympy import erfinv
- >>> from sympy.abc import x
- Several special values are known:
- >>> erfinv(0)
- 0
- >>> erfinv(1)
- oo
- Differentiation with respect to $x$ is supported:
- >>> from sympy import diff
- >>> diff(erfinv(x), x)
- sqrt(pi)*exp(erfinv(x)**2)/2
- We can numerically evaluate the inverse error function to arbitrary
- precision on [-1, 1]:
- >>> erfinv(0.2).evalf(30)
- 0.179143454621291692285822705344
- See Also
- ========
- erf: Gaussian error function.
- erfc: Complementary error function.
- erfi: Imaginary error function.
- erf2: Two-argument error function.
- erfcinv: Inverse Complementary error function.
- erf2inv: Inverse two-argument error function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
- .. [2] https://functions.wolfram.com/GammaBetaErf/InverseErf/
- """
- def fdiff(self, argindex =1):
- if argindex == 1:
- return sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half
- else :
- raise ArgumentIndexError(self, argindex)
- def inverse(self, argindex=1):
- """
- Returns the inverse of this function.
- """
- return erf
- @classmethod
- def eval(cls, z):
- if z is S.NaN:
- return S.NaN
- elif z is S.NegativeOne:
- return S.NegativeInfinity
- elif z.is_zero:
- return S.Zero
- elif z is S.One:
- return S.Infinity
- if isinstance(z, erf) and z.args[0].is_extended_real:
- return z.args[0]
- if z.is_zero:
- return S.Zero
- # Try to pull out factors of -1
- nz = z.extract_multiplicatively(-1)
- if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_extended_real):
- return -nz.args[0]
- def _eval_rewrite_as_erfcinv(self, z, **kwargs):
- return erfcinv(1-z)
- def _eval_is_zero(self):
- return self.args[0].is_zero
- class erfcinv (Function):
- r"""
- Inverse Complementary Error Function. The erfcinv function is defined as:
- .. math ::
- \mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x
- Examples
- ========
- >>> from sympy import erfcinv
- >>> from sympy.abc import x
- Several special values are known:
- >>> erfcinv(1)
- 0
- >>> erfcinv(0)
- oo
- Differentiation with respect to $x$ is supported:
- >>> from sympy import diff
- >>> diff(erfcinv(x), x)
- -sqrt(pi)*exp(erfcinv(x)**2)/2
- See Also
- ========
- erf: Gaussian error function.
- erfc: Complementary error function.
- erfi: Imaginary error function.
- erf2: Two-argument error function.
- erfinv: Inverse error function.
- erf2inv: Inverse two-argument error function.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
- .. [2] https://functions.wolfram.com/GammaBetaErf/InverseErfc/
- """
- def fdiff(self, argindex =1):
- if argindex == 1:
- return -sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half
- else:
- raise ArgumentIndexError(self, argindex)
- def inverse(self, argindex=1):
- """
- Returns the inverse of this function.
- """
- return erfc
- @classmethod
- def eval(cls, z):
- if z is S.NaN:
- return S.NaN
- elif z.is_zero:
- return S.Infinity
- elif z is S.One:
- return S.Zero
- elif z == 2:
- return S.NegativeInfinity
- if z.is_zero:
- return S.Infinity
- def _eval_rewrite_as_erfinv(self, z, **kwargs):
- return erfinv(1-z)
- def _eval_is_zero(self):
- return (self.args[0] - 1).is_zero
- def _eval_is_infinite(self):
- return self.args[0].is_zero
- class erf2inv(Function):
- r"""
- Two-argument Inverse error function. The erf2inv function is defined as:
- .. math ::
- \mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w
- Examples
- ========
- >>> from sympy import erf2inv, oo
- >>> from sympy.abc import x, y
- Several special values are known:
- >>> erf2inv(0, 0)
- 0
- >>> erf2inv(1, 0)
- 1
- >>> erf2inv(0, 1)
- oo
- >>> erf2inv(0, y)
- erfinv(y)
- >>> erf2inv(oo, y)
- erfcinv(-y)
- Differentiation with respect to $x$ and $y$ is supported:
- >>> from sympy import diff
- >>> diff(erf2inv(x, y), x)
- exp(-x**2 + erf2inv(x, y)**2)
- >>> diff(erf2inv(x, y), y)
- sqrt(pi)*exp(erf2inv(x, y)**2)/2
- See Also
- ========
- erf: Gaussian error function.
- erfc: Complementary error function.
- erfi: Imaginary error function.
- erf2: Two-argument error function.
- erfinv: Inverse error function.
- erfcinv: Inverse complementary error function.
- References
- ==========
- .. [1] https://functions.wolfram.com/GammaBetaErf/InverseErf2/
- """
- def fdiff(self, argindex):
- x, y = self.args
- if argindex == 1:
- return exp(self.func(x,y)**2-x**2)
- elif argindex == 2:
- return sqrt(pi)*S.Half*exp(self.func(x,y)**2)
- else:
- raise ArgumentIndexError(self, argindex)
- @classmethod
- def eval(cls, x, y):
- if x is S.NaN or y is S.NaN:
- return S.NaN
- elif x.is_zero and y.is_zero:
- return S.Zero
- elif x.is_zero and y is S.One:
- return S.Infinity
- elif x is S.One and y.is_zero:
- return S.One
- elif x.is_zero:
- return erfinv(y)
- elif x is S.Infinity:
- return erfcinv(-y)
- elif y.is_zero:
- return x
- elif y is S.Infinity:
- return erfinv(x)
- if x.is_zero:
- if y.is_zero:
- return S.Zero
- else:
- return erfinv(y)
- if y.is_zero:
- return x
- def _eval_is_zero(self):
- x, y = self.args
- if x.is_zero and y.is_zero:
- return True
- ###############################################################################
- #################### EXPONENTIAL INTEGRALS ####################################
- ###############################################################################
- class Ei(Function):
- r"""
- The classical exponential integral.
- Explanation
- ===========
- For use in SymPy, this function is defined as
- .. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!}
- + \log(x) + \gamma,
- where $\gamma$ is the Euler-Mascheroni constant.
- If $x$ is a polar number, this defines an analytic function on the
- Riemann surface of the logarithm. Otherwise this defines an analytic
- function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$.
- **Background**
- The name exponential integral comes from the following statement:
- .. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t
- If the integral is interpreted as a Cauchy principal value, this statement
- holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above.
- Examples
- ========
- >>> from sympy import Ei, polar_lift, exp_polar, I, pi
- >>> from sympy.abc import x
- >>> Ei(-1)
- Ei(-1)
- This yields a real value:
- >>> Ei(-1).n(chop=True)
- -0.219383934395520
- On the other hand the analytic continuation is not real:
- >>> Ei(polar_lift(-1)).n(chop=True)
- -0.21938393439552 + 3.14159265358979*I
- The exponential integral has a logarithmic branch point at the origin:
- >>> Ei(x*exp_polar(2*I*pi))
- Ei(x) + 2*I*pi
- Differentiation is supported:
- >>> Ei(x).diff(x)
- exp(x)/x
- The exponential integral is related to many other special functions.
- For example:
- >>> from sympy import expint, Shi
- >>> Ei(x).rewrite(expint)
- -expint(1, x*exp_polar(I*pi)) - I*pi
- >>> Ei(x).rewrite(Shi)
- Chi(x) + Shi(x)
- See Also
- ========
- expint: Generalised exponential integral.
- E1: Special case of the generalised exponential integral.
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- Si: Sine integral.
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- uppergamma: Upper incomplete gamma function.
- References
- ==========
- .. [1] https://dlmf.nist.gov/6.6
- .. [2] https://en.wikipedia.org/wiki/Exponential_integral
- .. [3] Abramowitz & Stegun, section 5: https://web.archive.org/web/20201128173312/http://people.math.sfu.ca/~cbm/aands/page_228.htm
- """
- @classmethod
- def eval(cls, z):
- if z.is_zero:
- return S.NegativeInfinity
- elif z is S.Infinity:
- return S.Infinity
- elif z is S.NegativeInfinity:
- return S.Zero
- if z.is_zero:
- return S.NegativeInfinity
- nz, n = z.extract_branch_factor()
- if n:
- return Ei(nz) + 2*I*pi*n
- def fdiff(self, argindex=1):
- arg = unpolarify(self.args[0])
- if argindex == 1:
- return exp(arg)/arg
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_evalf(self, prec):
- if (self.args[0]/polar_lift(-1)).is_positive:
- return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec)
- return Function._eval_evalf(self, prec)
- def _eval_rewrite_as_uppergamma(self, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- # XXX this does not currently work usefully because uppergamma
- # immediately turns into expint
- return -uppergamma(0, polar_lift(-1)*z) - I*pi
- def _eval_rewrite_as_expint(self, z, **kwargs):
- return -expint(1, polar_lift(-1)*z) - I*pi
- def _eval_rewrite_as_li(self, z, **kwargs):
- if isinstance(z, log):
- return li(z.args[0])
- # TODO:
- # Actually it only holds that:
- # Ei(z) = li(exp(z))
- # for -pi < imag(z) <= pi
- return li(exp(z))
- def _eval_rewrite_as_Si(self, z, **kwargs):
- if z.is_negative:
- return Shi(z) + Chi(z) - I*pi
- else:
- return Shi(z) + Chi(z)
- _eval_rewrite_as_Ci = _eval_rewrite_as_Si
- _eval_rewrite_as_Chi = _eval_rewrite_as_Si
- _eval_rewrite_as_Shi = _eval_rewrite_as_Si
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- return exp(z) * _eis(z)
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- from sympy import re
- x0 = self.args[0].limit(x, 0)
- arg = self.args[0].as_leading_term(x, cdir=cdir)
- cdir = arg.dir(x, cdir)
- if x0.is_zero:
- c, e = arg.as_coeff_exponent(x)
- logx = log(x) if logx is None else logx
- return log(c) + e*logx + EulerGamma - (
- I*pi if re(cdir).is_negative else S.Zero)
- return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
- def _eval_nseries(self, x, n, logx, cdir=0):
- x0 = self.args[0].limit(x, 0)
- if x0.is_zero:
- f = self._eval_rewrite_as_Si(*self.args)
- return f._eval_nseries(x, n, logx)
- return super()._eval_nseries(x, n, logx)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- if point is S.Infinity:
- z = self.args[0]
- s = [factorial(k) / (z)**k for k in range(n)] + \
- [Order(1/z**n, x)]
- return (exp(z)/z) * Add(*s)
- return super(Ei, self)._eval_aseries(n, args0, x, logx)
- class expint(Function):
- r"""
- Generalized exponential integral.
- Explanation
- ===========
- This function is defined as
- .. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),
- where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function
- (``uppergamma``).
- Hence for $z$ with positive real part we have
- .. math:: \operatorname{E}_\nu(z)
- = \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t,
- which explains the name.
- The representation as an incomplete gamma function provides an analytic
- continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a
- non-positive integer, the exponential integral is thus an unbranched
- function of $z$, otherwise there is a branch point at the origin.
- Refer to the incomplete gamma function documentation for details of the
- branching behavior.
- Examples
- ========
- >>> from sympy import expint, S
- >>> from sympy.abc import nu, z
- Differentiation is supported. Differentiation with respect to $z$ further
- explains the name: for integral orders, the exponential integral is an
- iterated integral of the exponential function.
- >>> expint(nu, z).diff(z)
- -expint(nu - 1, z)
- Differentiation with respect to $\nu$ has no classical expression:
- >>> expint(nu, z).diff(nu)
- -z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)
- At non-postive integer orders, the exponential integral reduces to the
- exponential function:
- >>> expint(0, z)
- exp(-z)/z
- >>> expint(-1, z)
- exp(-z)/z + exp(-z)/z**2
- At half-integers it reduces to error functions:
- >>> expint(S(1)/2, z)
- sqrt(pi)*erfc(sqrt(z))/sqrt(z)
- At positive integer orders it can be rewritten in terms of exponentials
- and ``expint(1, z)``. Use ``expand_func()`` to do this:
- >>> from sympy import expand_func
- >>> expand_func(expint(5, z))
- z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
- The generalised exponential integral is essentially equivalent to the
- incomplete gamma function:
- >>> from sympy import uppergamma
- >>> expint(nu, z).rewrite(uppergamma)
- z**(nu - 1)*uppergamma(1 - nu, z)
- As such it is branched at the origin:
- >>> from sympy import exp_polar, pi, I
- >>> expint(4, z*exp_polar(2*pi*I))
- I*pi*z**3/3 + expint(4, z)
- >>> expint(nu, z*exp_polar(2*pi*I))
- z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)
- See Also
- ========
- Ei: Another related function called exponential integral.
- E1: The classical case, returns expint(1, z).
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- Si: Sine integral.
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- uppergamma
- References
- ==========
- .. [1] https://dlmf.nist.gov/8.19
- .. [2] https://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
- .. [3] https://en.wikipedia.org/wiki/Exponential_integral
- """
- @classmethod
- def eval(cls, nu, z):
- from sympy.functions.special.gamma_functions import (gamma, uppergamma)
- nu2 = unpolarify(nu)
- if nu != nu2:
- return expint(nu2, z)
- if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer):
- return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z)))
- # Extract branching information. This can be deduced from what is
- # explained in lowergamma.eval().
- z, n = z.extract_branch_factor()
- if n is S.Zero:
- return
- if nu.is_integer:
- if not nu > 0:
- return
- return expint(nu, z) \
- - 2*pi*I*n*S.NegativeOne**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1)
- else:
- return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z)
- def fdiff(self, argindex):
- nu, z = self.args
- if argindex == 1:
- return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z)
- elif argindex == 2:
- return -expint(nu - 1, z)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return z**(nu - 1)*uppergamma(1 - nu, z)
- def _eval_rewrite_as_Ei(self, nu, z, **kwargs):
- if nu == 1:
- return -Ei(z*exp_polar(-I*pi)) - I*pi
- elif nu.is_Integer and nu > 1:
- # DLMF, 8.19.7
- x = -unpolarify(z)
- return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \
- exp(x)/factorial(nu - 1) * \
- Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)])
- else:
- return self
- def _eval_expand_func(self, **hints):
- return self.rewrite(Ei).rewrite(expint, **hints)
- def _eval_rewrite_as_Si(self, nu, z, **kwargs):
- if nu != 1:
- return self
- return Shi(z) - Chi(z)
- _eval_rewrite_as_Ci = _eval_rewrite_as_Si
- _eval_rewrite_as_Chi = _eval_rewrite_as_Si
- _eval_rewrite_as_Shi = _eval_rewrite_as_Si
- def _eval_nseries(self, x, n, logx, cdir=0):
- if not self.args[0].has(x):
- nu = self.args[0]
- if nu == 1:
- f = self._eval_rewrite_as_Si(*self.args)
- return f._eval_nseries(x, n, logx)
- elif nu.is_Integer and nu > 1:
- f = self._eval_rewrite_as_Ei(*self.args)
- return f._eval_nseries(x, n, logx)
- return super()._eval_nseries(x, n, logx)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[1]
- nu = self.args[0]
- if point is S.Infinity:
- z = self.args[1]
- s = [S.NegativeOne**k * RisingFactorial(nu, k) / z**k for k in range(n)] + [Order(1/z**n, x)]
- return (exp(-z)/z) * Add(*s)
- return super(expint, self)._eval_aseries(n, args0, x, logx)
- def E1(z):
- """
- Classical case of the generalized exponential integral.
- Explanation
- ===========
- This is equivalent to ``expint(1, z)``.
- Examples
- ========
- >>> from sympy import E1
- >>> E1(0)
- expint(1, 0)
- >>> E1(5)
- expint(1, 5)
- See Also
- ========
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- Si: Sine integral.
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- """
- return expint(1, z)
- class li(Function):
- r"""
- The classical logarithmic integral.
- Explanation
- ===========
- For use in SymPy, this function is defined as
- .. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.
- Examples
- ========
- >>> from sympy import I, oo, li
- >>> from sympy.abc import z
- Several special values are known:
- >>> li(0)
- 0
- >>> li(1)
- -oo
- >>> li(oo)
- oo
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(li(z), z)
- 1/log(z)
- Defining the ``li`` function via an integral:
- >>> from sympy import integrate
- >>> integrate(li(z))
- z*li(z) - Ei(2*log(z))
- >>> integrate(li(z),z)
- z*li(z) - Ei(2*log(z))
- The logarithmic integral can also be defined in terms of ``Ei``:
- >>> from sympy import Ei
- >>> li(z).rewrite(Ei)
- Ei(log(z))
- >>> diff(li(z).rewrite(Ei), z)
- 1/log(z)
- We can numerically evaluate the logarithmic integral to arbitrary precision
- on the whole complex plane (except the singular points):
- >>> li(2).evalf(30)
- 1.04516378011749278484458888919
- >>> li(2*I).evalf(30)
- 1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
- We can even compute Soldner's constant by the help of mpmath:
- >>> from mpmath import findroot
- >>> findroot(li, 2)
- 1.45136923488338
- Further transformations include rewriting ``li`` in terms of
- the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``:
- >>> from sympy import Si, Ci, Shi, Chi
- >>> li(z).rewrite(Si)
- -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
- >>> li(z).rewrite(Ci)
- -log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
- >>> li(z).rewrite(Shi)
- -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
- >>> li(z).rewrite(Chi)
- -log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
- See Also
- ========
- Li: Offset logarithmic integral.
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- E1: Special case of the generalised exponential integral.
- Si: Sine integral.
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
- .. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
- .. [3] https://dlmf.nist.gov/6
- .. [4] https://mathworld.wolfram.com/SoldnersConstant.html
- """
- @classmethod
- def eval(cls, z):
- if z.is_zero:
- return S.Zero
- elif z is S.One:
- return S.NegativeInfinity
- elif z is S.Infinity:
- return S.Infinity
- if z.is_zero:
- return S.Zero
- def fdiff(self, argindex=1):
- arg = self.args[0]
- if argindex == 1:
- return S.One / log(arg)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_conjugate(self):
- z = self.args[0]
- # Exclude values on the branch cut (-oo, 0)
- if not z.is_extended_negative:
- return self.func(z.conjugate())
- def _eval_rewrite_as_Li(self, z, **kwargs):
- return Li(z) + li(2)
- def _eval_rewrite_as_Ei(self, z, **kwargs):
- return Ei(log(z))
- def _eval_rewrite_as_uppergamma(self, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return (-uppergamma(0, -log(z)) +
- S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z)))
- def _eval_rewrite_as_Si(self, z, **kwargs):
- return (Ci(I*log(z)) - I*Si(I*log(z)) -
- S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z)))
- _eval_rewrite_as_Ci = _eval_rewrite_as_Si
- def _eval_rewrite_as_Shi(self, z, **kwargs):
- return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))))
- _eval_rewrite_as_Chi = _eval_rewrite_as_Shi
- def _eval_rewrite_as_hyper(self, z, **kwargs):
- return (log(z)*hyper((1, 1), (2, 2), log(z)) +
- S.Half*(log(log(z)) - log(S.One/log(z))) + EulerGamma)
- def _eval_rewrite_as_meijerg(self, z, **kwargs):
- return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))
- - meijerg(((), (1,)), ((0, 0), ()), -log(z)))
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- return z * _eis(log(z))
- def _eval_nseries(self, x, n, logx, cdir=0):
- z = self.args[0]
- s = [(log(z))**k / (factorial(k) * k) for k in range(1, n)]
- return EulerGamma + log(log(z)) + Add(*s)
- def _eval_is_zero(self):
- z = self.args[0]
- if z.is_zero:
- return True
- class Li(Function):
- r"""
- The offset logarithmic integral.
- Explanation
- ===========
- For use in SymPy, this function is defined as
- .. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)
- Examples
- ========
- >>> from sympy import Li
- >>> from sympy.abc import z
- The following special value is known:
- >>> Li(2)
- 0
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(Li(z), z)
- 1/log(z)
- The shifted logarithmic integral can be written in terms of $li(z)$:
- >>> from sympy import li
- >>> Li(z).rewrite(li)
- li(z) - li(2)
- We can numerically evaluate the logarithmic integral to arbitrary precision
- on the whole complex plane (except the singular points):
- >>> Li(2).evalf(30)
- 0
- >>> Li(4).evalf(30)
- 1.92242131492155809316615998938
- See Also
- ========
- li: Logarithmic integral.
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- E1: Special case of the generalised exponential integral.
- Si: Sine integral.
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
- .. [2] https://mathworld.wolfram.com/LogarithmicIntegral.html
- .. [3] https://dlmf.nist.gov/6
- """
- @classmethod
- def eval(cls, z):
- if z is S.Infinity:
- return S.Infinity
- elif z == S(2):
- return S.Zero
- def fdiff(self, argindex=1):
- arg = self.args[0]
- if argindex == 1:
- return S.One / log(arg)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_evalf(self, prec):
- return self.rewrite(li).evalf(prec)
- def _eval_rewrite_as_li(self, z, **kwargs):
- return li(z) - li(2)
- def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
- return self.rewrite(li).rewrite("tractable", deep=True)
- def _eval_nseries(self, x, n, logx, cdir=0):
- f = self._eval_rewrite_as_li(*self.args)
- return f._eval_nseries(x, n, logx)
- ###############################################################################
- #################### TRIGONOMETRIC INTEGRALS ##################################
- ###############################################################################
- class TrigonometricIntegral(Function):
- """ Base class for trigonometric integrals. """
- @classmethod
- def eval(cls, z):
- if z is S.Zero:
- return cls._atzero
- elif z is S.Infinity:
- return cls._atinf()
- elif z is S.NegativeInfinity:
- return cls._atneginf()
- if z.is_zero:
- return cls._atzero
- nz = z.extract_multiplicatively(polar_lift(I))
- if nz is None and cls._trigfunc(0) == 0:
- nz = z.extract_multiplicatively(I)
- if nz is not None:
- return cls._Ifactor(nz, 1)
- nz = z.extract_multiplicatively(polar_lift(-I))
- if nz is not None:
- return cls._Ifactor(nz, -1)
- nz = z.extract_multiplicatively(polar_lift(-1))
- if nz is None and cls._trigfunc(0) == 0:
- nz = z.extract_multiplicatively(-1)
- if nz is not None:
- return cls._minusfactor(nz)
- nz, n = z.extract_branch_factor()
- if n == 0 and nz == z:
- return
- return 2*pi*I*n*cls._trigfunc(0) + cls(nz)
- def fdiff(self, argindex=1):
- arg = unpolarify(self.args[0])
- if argindex == 1:
- return self._trigfunc(arg)/arg
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_rewrite_as_Ei(self, z, **kwargs):
- return self._eval_rewrite_as_expint(z).rewrite(Ei)
- def _eval_rewrite_as_uppergamma(self, z, **kwargs):
- from sympy.functions.special.gamma_functions import uppergamma
- return self._eval_rewrite_as_expint(z).rewrite(uppergamma)
- def _eval_nseries(self, x, n, logx, cdir=0):
- # NOTE this is fairly inefficient
- n += 1
- if self.args[0].subs(x, 0) != 0:
- return super()._eval_nseries(x, n, logx)
- baseseries = self._trigfunc(x)._eval_nseries(x, n, logx)
- if self._trigfunc(0) != 0:
- baseseries -= 1
- baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False)
- if self._trigfunc(0) != 0:
- baseseries += EulerGamma + log(x)
- return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx)
- class Si(TrigonometricIntegral):
- r"""
- Sine integral.
- Explanation
- ===========
- This function is defined by
- .. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.
- It is an entire function.
- Examples
- ========
- >>> from sympy import Si
- >>> from sympy.abc import z
- The sine integral is an antiderivative of $sin(z)/z$:
- >>> Si(z).diff(z)
- sin(z)/z
- It is unbranched:
- >>> from sympy import exp_polar, I, pi
- >>> Si(z*exp_polar(2*I*pi))
- Si(z)
- Sine integral behaves much like ordinary sine under multiplication by ``I``:
- >>> Si(I*z)
- I*Shi(z)
- >>> Si(-z)
- -Si(z)
- It can also be expressed in terms of exponential integrals, but beware
- that the latter is branched:
- >>> from sympy import expint
- >>> Si(z).rewrite(expint)
- -I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
- expint(1, z*exp_polar(I*pi/2))/2) + pi/2
- It can be rewritten in the form of sinc function (by definition):
- >>> from sympy import sinc
- >>> Si(z).rewrite(sinc)
- Integral(sinc(t), (t, 0, z))
- See Also
- ========
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- sinc: unnormalized sinc function
- E1: Special case of the generalised exponential integral.
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
- """
- _trigfunc = sin
- _atzero = S.Zero
- @classmethod
- def _atinf(cls):
- return pi*S.Half
- @classmethod
- def _atneginf(cls):
- return -pi*S.Half
- @classmethod
- def _minusfactor(cls, z):
- return -Si(z)
- @classmethod
- def _Ifactor(cls, z, sign):
- return I*Shi(z)*sign
- def _eval_rewrite_as_expint(self, z, **kwargs):
- # XXX should we polarify z?
- return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I
- def _eval_rewrite_as_sinc(self, z, **kwargs):
- from sympy.integrals.integrals import Integral
- t = Symbol('t', Dummy=True)
- return Integral(sinc(t), (t, 0, z))
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- # Expansion at oo
- if point is S.Infinity:
- z = self.args[0]
- p = [S.NegativeOne**k * factorial(2*k) / z**(2*k)
- for k in range(int((n - 1)/2))] + [Order(1/z**n, x)]
- q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*k + 1)
- for k in range(int(n/2) - 1)] + [Order(1/z**n, x)]
- return pi/2 - (cos(z)/z)*Add(*p) - (sin(z)/z)*Add(*q)
- # All other points are not handled
- return super(Si, self)._eval_aseries(n, args0, x, logx)
- def _eval_is_zero(self):
- z = self.args[0]
- if z.is_zero:
- return True
- class Ci(TrigonometricIntegral):
- r"""
- Cosine integral.
- Explanation
- ===========
- This function is defined for positive $x$ by
- .. math:: \operatorname{Ci}(x) = \gamma + \log{x}
- + \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t
- = -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,
- where $\gamma$ is the Euler-Mascheroni constant.
- We have
- .. math:: \operatorname{Ci}(z) =
- -\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right)
- + \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}
- which holds for all polar $z$ and thus provides an analytic
- continuation to the Riemann surface of the logarithm.
- The formula also holds as stated
- for $z \in \mathbb{C}$ with $\Re(z) > 0$.
- By lifting to the principal branch, we obtain an analytic function on the
- cut complex plane.
- Examples
- ========
- >>> from sympy import Ci
- >>> from sympy.abc import z
- The cosine integral is a primitive of $\cos(z)/z$:
- >>> Ci(z).diff(z)
- cos(z)/z
- It has a logarithmic branch point at the origin:
- >>> from sympy import exp_polar, I, pi
- >>> Ci(z*exp_polar(2*I*pi))
- Ci(z) + 2*I*pi
- The cosine integral behaves somewhat like ordinary $\cos$ under
- multiplication by $i$:
- >>> from sympy import polar_lift
- >>> Ci(polar_lift(I)*z)
- Chi(z) + I*pi/2
- >>> Ci(polar_lift(-1)*z)
- Ci(z) + I*pi
- It can also be expressed in terms of exponential integrals:
- >>> from sympy import expint
- >>> Ci(z).rewrite(expint)
- -expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
- See Also
- ========
- Si: Sine integral.
- Shi: Hyperbolic sine integral.
- Chi: Hyperbolic cosine integral.
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- E1: Special case of the generalised exponential integral.
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
- """
- _trigfunc = cos
- _atzero = S.ComplexInfinity
- @classmethod
- def _atinf(cls):
- return S.Zero
- @classmethod
- def _atneginf(cls):
- return I*pi
- @classmethod
- def _minusfactor(cls, z):
- return Ci(z) + I*pi
- @classmethod
- def _Ifactor(cls, z, sign):
- return Chi(z) + I*pi/2*sign
- def _eval_rewrite_as_expint(self, z, **kwargs):
- return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if arg0 is S.NaN:
- arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
- if arg0.is_zero:
- c, e = arg.as_coeff_exponent(x)
- logx = log(x) if logx is None else logx
- return log(c) + e*logx + EulerGamma
- elif arg0.is_finite:
- return self.func(arg0)
- else:
- return self
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- # Expansion at oo
- if point is S.Infinity:
- z = self.args[0]
- p = [S.NegativeOne**k * factorial(2*k) / z**(2*k)
- for k in range(int((n - 1)/2))] + [Order(1/z**n, x)]
- q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*k + 1)
- for k in range(int(n/2) - 1)] + [Order(1/z**n, x)]
- return (sin(z)/z)*Add(*p) - (cos(z)/z)*Add(*q)
- # All other points are not handled
- return super(Ci, self)._eval_aseries(n, args0, x, logx)
- class Shi(TrigonometricIntegral):
- r"""
- Sinh integral.
- Explanation
- ===========
- This function is defined by
- .. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.
- It is an entire function.
- Examples
- ========
- >>> from sympy import Shi
- >>> from sympy.abc import z
- The Sinh integral is a primitive of $\sinh(z)/z$:
- >>> Shi(z).diff(z)
- sinh(z)/z
- It is unbranched:
- >>> from sympy import exp_polar, I, pi
- >>> Shi(z*exp_polar(2*I*pi))
- Shi(z)
- The $\sinh$ integral behaves much like ordinary $\sinh$ under
- multiplication by $i$:
- >>> Shi(I*z)
- I*Si(z)
- >>> Shi(-z)
- -Shi(z)
- It can also be expressed in terms of exponential integrals, but beware
- that the latter is branched:
- >>> from sympy import expint
- >>> Shi(z).rewrite(expint)
- expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
- See Also
- ========
- Si: Sine integral.
- Ci: Cosine integral.
- Chi: Hyperbolic cosine integral.
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- E1: Special case of the generalised exponential integral.
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
- """
- _trigfunc = sinh
- _atzero = S.Zero
- @classmethod
- def _atinf(cls):
- return S.Infinity
- @classmethod
- def _atneginf(cls):
- return S.NegativeInfinity
- @classmethod
- def _minusfactor(cls, z):
- return -Shi(z)
- @classmethod
- def _Ifactor(cls, z, sign):
- return I*Si(z)*sign
- def _eval_rewrite_as_expint(self, z, **kwargs):
- # XXX should we polarify z?
- return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2
- def _eval_is_zero(self):
- z = self.args[0]
- if z.is_zero:
- return True
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0].as_leading_term(x)
- arg0 = arg.subs(x, 0)
- if arg0 is S.NaN:
- arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
- if arg0.is_zero:
- return arg
- elif not arg0.is_infinite:
- return self.func(arg0)
- else:
- return self
- class Chi(TrigonometricIntegral):
- r"""
- Cosh integral.
- Explanation
- ===========
- This function is defined for positive $x$ by
- .. math:: \operatorname{Chi}(x) = \gamma + \log{x}
- + \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,
- where $\gamma$ is the Euler-Mascheroni constant.
- We have
- .. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right)
- - i\frac{\pi}{2},
- which holds for all polar $z$ and thus provides an analytic
- continuation to the Riemann surface of the logarithm.
- By lifting to the principal branch we obtain an analytic function on the
- cut complex plane.
- Examples
- ========
- >>> from sympy import Chi
- >>> from sympy.abc import z
- The $\cosh$ integral is a primitive of $\cosh(z)/z$:
- >>> Chi(z).diff(z)
- cosh(z)/z
- It has a logarithmic branch point at the origin:
- >>> from sympy import exp_polar, I, pi
- >>> Chi(z*exp_polar(2*I*pi))
- Chi(z) + 2*I*pi
- The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under
- multiplication by $i$:
- >>> from sympy import polar_lift
- >>> Chi(polar_lift(I)*z)
- Ci(z) + I*pi/2
- >>> Chi(polar_lift(-1)*z)
- Chi(z) + I*pi
- It can also be expressed in terms of exponential integrals:
- >>> from sympy import expint
- >>> Chi(z).rewrite(expint)
- -expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
- See Also
- ========
- Si: Sine integral.
- Ci: Cosine integral.
- Shi: Hyperbolic sine integral.
- Ei: Exponential integral.
- expint: Generalised exponential integral.
- E1: Special case of the generalised exponential integral.
- li: Logarithmic integral.
- Li: Offset logarithmic integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
- """
- _trigfunc = cosh
- _atzero = S.ComplexInfinity
- @classmethod
- def _atinf(cls):
- return S.Infinity
- @classmethod
- def _atneginf(cls):
- return S.Infinity
- @classmethod
- def _minusfactor(cls, z):
- return Chi(z) + I*pi
- @classmethod
- def _Ifactor(cls, z, sign):
- return Ci(z) + I*pi/2*sign
- def _eval_rewrite_as_expint(self, z, **kwargs):
- return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if arg0 is S.NaN:
- arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
- if arg0.is_zero:
- c, e = arg.as_coeff_exponent(x)
- logx = log(x) if logx is None else logx
- return log(c) + e*logx + EulerGamma
- elif arg0.is_finite:
- return self.func(arg0)
- else:
- return self
- ###############################################################################
- #################### FRESNEL INTEGRALS ########################################
- ###############################################################################
- class FresnelIntegral(Function):
- """ Base class for the Fresnel integrals."""
- unbranched = True
- @classmethod
- def eval(cls, z):
- # Values at positive infinities signs
- # if any were extracted automatically
- if z is S.Infinity:
- return S.Half
- # Value at zero
- if z.is_zero:
- return S.Zero
- # Try to pull out factors of -1 and I
- prefact = S.One
- newarg = z
- changed = False
- nz = newarg.extract_multiplicatively(-1)
- if nz is not None:
- prefact = -prefact
- newarg = nz
- changed = True
- nz = newarg.extract_multiplicatively(I)
- if nz is not None:
- prefact = cls._sign*I*prefact
- newarg = nz
- changed = True
- if changed:
- return prefact*cls(newarg)
- def fdiff(self, argindex=1):
- if argindex == 1:
- return self._trigfunc(S.Half*pi*self.args[0]**2)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_is_extended_real(self):
- return self.args[0].is_extended_real
- _eval_is_finite = _eval_is_extended_real
- def _eval_is_zero(self):
- return self.args[0].is_zero
- def _eval_conjugate(self):
- return self.func(self.args[0].conjugate())
- as_real_imag = real_to_real_as_real_imag
- class fresnels(FresnelIntegral):
- r"""
- Fresnel integral S.
- Explanation
- ===========
- This function is defined by
- .. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.
- It is an entire function.
- Examples
- ========
- >>> from sympy import I, oo, fresnels
- >>> from sympy.abc import z
- Several special values are known:
- >>> fresnels(0)
- 0
- >>> fresnels(oo)
- 1/2
- >>> fresnels(-oo)
- -1/2
- >>> fresnels(I*oo)
- -I/2
- >>> fresnels(-I*oo)
- I/2
- In general one can pull out factors of -1 and $i$ from the argument:
- >>> fresnels(-z)
- -fresnels(z)
- >>> fresnels(I*z)
- -I*fresnels(z)
- The Fresnel S integral obeys the mirror symmetry
- $\overline{S(z)} = S(\bar{z})$:
- >>> from sympy import conjugate
- >>> conjugate(fresnels(z))
- fresnels(conjugate(z))
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(fresnels(z), z)
- sin(pi*z**2/2)
- Defining the Fresnel functions via an integral:
- >>> from sympy import integrate, pi, sin, expand_func
- >>> integrate(sin(pi*z**2/2), z)
- 3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
- >>> expand_func(integrate(sin(pi*z**2/2), z))
- fresnels(z)
- We can numerically evaluate the Fresnel integral to arbitrary precision
- on the whole complex plane:
- >>> fresnels(2).evalf(30)
- 0.343415678363698242195300815958
- >>> fresnels(-2*I).evalf(30)
- 0.343415678363698242195300815958*I
- See Also
- ========
- fresnelc: Fresnel cosine integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Fresnel_integral
- .. [2] https://dlmf.nist.gov/7
- .. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
- .. [4] https://functions.wolfram.com/GammaBetaErf/FresnelS
- .. [5] The converging factors for the fresnel integrals
- by John W. Wrench Jr. and Vicki Alley
- """
- _trigfunc = sin
- _sign = -S.One
- @staticmethod
- @cacheit
- def taylor_term(n, x, *previous_terms):
- if n < 0:
- return S.Zero
- else:
- x = sympify(x)
- if len(previous_terms) > 1:
- p = previous_terms[-1]
- return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p
- else:
- return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1))
- def _eval_rewrite_as_erf(self, z, **kwargs):
- return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
- def _eval_rewrite_as_hyper(self, z, **kwargs):
- return pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)
- def _eval_rewrite_as_meijerg(self, z, **kwargs):
- return (pi*z**Rational(9, 4) / (sqrt(2)*(z**2)**Rational(3, 4)*(-z)**Rational(3, 4))
- * meijerg([], [1], [Rational(3, 4)], [Rational(1, 4), 0], -pi**2*z**4/16))
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- from sympy.series.order import Order
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if arg0 is S.ComplexInfinity:
- arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
- if arg0.is_zero:
- return pi*arg**3/6
- elif arg0 in [S.Infinity, S.NegativeInfinity]:
- s = 1 if arg0 is S.Infinity else -1
- return s*S.Half + Order(x, x)
- else:
- return self.func(arg0)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- # Expansion at oo and -oo
- if point in [S.Infinity, -S.Infinity]:
- z = self.args[0]
- # expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8
- # as only real infinities are dealt with, sin and cos are O(1)
- p = [S.NegativeOne**k * factorial(4*k + 1) /
- (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
- for k in range(0, n) if 4*k + 3 < n]
- q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) /
- (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
- for k in range(1, n) if 4*k + 1 < n]
- p = [-sqrt(2/pi)*t for t in p]
- q = [-sqrt(2/pi)*t for t in q]
- s = 1 if point is S.Infinity else -1
- # The expansion at oo is 1/2 + some odd powers of z
- # To get the expansion at -oo, replace z by -z and flip the sign
- # The result -1/2 + the same odd powers of z as before.
- return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q)
- ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
- # All other points are not handled
- return super()._eval_aseries(n, args0, x, logx)
- class fresnelc(FresnelIntegral):
- r"""
- Fresnel integral C.
- Explanation
- ===========
- This function is defined by
- .. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.
- It is an entire function.
- Examples
- ========
- >>> from sympy import I, oo, fresnelc
- >>> from sympy.abc import z
- Several special values are known:
- >>> fresnelc(0)
- 0
- >>> fresnelc(oo)
- 1/2
- >>> fresnelc(-oo)
- -1/2
- >>> fresnelc(I*oo)
- I/2
- >>> fresnelc(-I*oo)
- -I/2
- In general one can pull out factors of -1 and $i$ from the argument:
- >>> fresnelc(-z)
- -fresnelc(z)
- >>> fresnelc(I*z)
- I*fresnelc(z)
- The Fresnel C integral obeys the mirror symmetry
- $\overline{C(z)} = C(\bar{z})$:
- >>> from sympy import conjugate
- >>> conjugate(fresnelc(z))
- fresnelc(conjugate(z))
- Differentiation with respect to $z$ is supported:
- >>> from sympy import diff
- >>> diff(fresnelc(z), z)
- cos(pi*z**2/2)
- Defining the Fresnel functions via an integral:
- >>> from sympy import integrate, pi, cos, expand_func
- >>> integrate(cos(pi*z**2/2), z)
- fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
- >>> expand_func(integrate(cos(pi*z**2/2), z))
- fresnelc(z)
- We can numerically evaluate the Fresnel integral to arbitrary precision
- on the whole complex plane:
- >>> fresnelc(2).evalf(30)
- 0.488253406075340754500223503357
- >>> fresnelc(-2*I).evalf(30)
- -0.488253406075340754500223503357*I
- See Also
- ========
- fresnels: Fresnel sine integral.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Fresnel_integral
- .. [2] https://dlmf.nist.gov/7
- .. [3] https://mathworld.wolfram.com/FresnelIntegrals.html
- .. [4] https://functions.wolfram.com/GammaBetaErf/FresnelC
- .. [5] The converging factors for the fresnel integrals
- by John W. Wrench Jr. and Vicki Alley
- """
- _trigfunc = cos
- _sign = S.One
- @staticmethod
- @cacheit
- def taylor_term(n, x, *previous_terms):
- if n < 0:
- return S.Zero
- else:
- x = sympify(x)
- if len(previous_terms) > 1:
- p = previous_terms[-1]
- return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p
- else:
- return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n))
- def _eval_rewrite_as_erf(self, z, **kwargs):
- return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
- def _eval_rewrite_as_hyper(self, z, **kwargs):
- return z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)
- def _eval_rewrite_as_meijerg(self, z, **kwargs):
- return (pi*z**Rational(3, 4) / (sqrt(2)*root(z**2, 4)*root(-z, 4))
- * meijerg([], [1], [Rational(1, 4)], [Rational(3, 4), 0], -pi**2*z**4/16))
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- from sympy.series.order import Order
- arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
- arg0 = arg.subs(x, 0)
- if arg0 is S.ComplexInfinity:
- arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
- if arg0.is_zero:
- return arg
- elif arg0 in [S.Infinity, S.NegativeInfinity]:
- s = 1 if arg0 is S.Infinity else -1
- return s*S.Half + Order(x, x)
- else:
- return self.func(arg0)
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- # Expansion at oo
- if point in [S.Infinity, -S.Infinity]:
- z = self.args[0]
- # expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8
- # as only real infinities are dealt with, sin and cos are O(1)
- p = [S.NegativeOne**k * factorial(4*k + 1) /
- (2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
- for k in range(n) if 4*k + 3 < n]
- q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) /
- (2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
- for k in range(1, n) if 4*k + 1 < n]
- p = [-sqrt(2/pi)*t for t in p]
- q = [ sqrt(2/pi)*t for t in q]
- s = 1 if point is S.Infinity else -1
- # The expansion at oo is 1/2 + some odd powers of z
- # To get the expansion at -oo, replace z by -z and flip the sign
- # The result -1/2 + the same odd powers of z as before.
- return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q)
- ).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
- # All other points are not handled
- return super()._eval_aseries(n, args0, x, logx)
- ###############################################################################
- #################### HELPER FUNCTIONS #########################################
- ###############################################################################
- class _erfs(Function):
- """
- Helper function to make the $\\mathrm{erf}(z)$ function
- tractable for the Gruntz algorithm.
- """
- @classmethod
- def eval(cls, arg):
- if arg.is_zero:
- return S.One
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- point = args0[0]
- # Expansion at oo
- if point is S.Infinity:
- z = self.args[0]
- l = [1/sqrt(pi) * factorial(2*k)*(-S(
- 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)]
- o = Order(1/z**(2*n + 1), x)
- # It is very inefficient to first add the order and then do the nseries
- return (Add(*l))._eval_nseries(x, n, logx) + o
- # Expansion at I*oo
- t = point.extract_multiplicatively(I)
- if t is S.Infinity:
- z = self.args[0]
- # TODO: is the series really correct?
- l = [1/sqrt(pi) * factorial(2*k)*(-S(
- 4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)]
- o = Order(1/z**(2*n + 1), x)
- # It is very inefficient to first add the order and then do the nseries
- return (Add(*l))._eval_nseries(x, n, logx) + o
- # All other points are not handled
- return super()._eval_aseries(n, args0, x, logx)
- def fdiff(self, argindex=1):
- if argindex == 1:
- z = self.args[0]
- return -2/sqrt(pi) + 2*z*_erfs(z)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_rewrite_as_intractable(self, z, **kwargs):
- return (S.One - erf(z))*exp(z**2)
- class _eis(Function):
- """
- Helper function to make the $\\mathrm{Ei}(z)$ and $\\mathrm{li}(z)$
- functions tractable for the Gruntz algorithm.
- """
- def _eval_aseries(self, n, args0, x, logx):
- from sympy.series.order import Order
- if args0[0] != S.Infinity:
- return super(_erfs, self)._eval_aseries(n, args0, x, logx)
- z = self.args[0]
- l = [factorial(k) * (1/z)**(k + 1) for k in range(n)]
- o = Order(1/z**(n + 1), x)
- # It is very inefficient to first add the order and then do the nseries
- return (Add(*l))._eval_nseries(x, n, logx) + o
- def fdiff(self, argindex=1):
- if argindex == 1:
- z = self.args[0]
- return S.One / z - _eis(z)
- else:
- raise ArgumentIndexError(self, argindex)
- def _eval_rewrite_as_intractable(self, z, **kwargs):
- return exp(-z)*Ei(z)
- def _eval_as_leading_term(self, x, logx=None, cdir=0):
- x0 = self.args[0].limit(x, 0)
- if x0.is_zero:
- f = self._eval_rewrite_as_intractable(*self.args)
- return f._eval_as_leading_term(x, logx=logx, cdir=cdir)
- return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
- def _eval_nseries(self, x, n, logx, cdir=0):
- x0 = self.args[0].limit(x, 0)
- if x0.is_zero:
- f = self._eval_rewrite_as_intractable(*self.args)
- return f._eval_nseries(x, n, logx)
- return super()._eval_nseries(x, n, logx)
|