test_trigonometric.py 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162
  1. from sympy.calculus.accumulationbounds import AccumBounds
  2. from sympy.core.add import Add
  3. from sympy.core.function import (Lambda, diff)
  4. from sympy.core.mod import Mod
  5. from sympy.core.mul import Mul
  6. from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
  7. from sympy.core.power import Pow
  8. from sympy.core.singleton import S
  9. from sympy.core.symbol import (Symbol, symbols)
  10. from sympy.functions.elementary.complexes import (arg, conjugate, im, re)
  11. from sympy.functions.elementary.exponential import (exp, log)
  12. from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, sinh, tanh)
  13. from sympy.functions.elementary.miscellaneous import sqrt
  14. from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin, atan, atan2,
  15. cos, cot, csc, sec, sin, sinc, tan)
  16. from sympy.functions.special.bessel import (besselj, jn)
  17. from sympy.functions.special.delta_functions import Heaviside
  18. from sympy.matrices.dense import Matrix
  19. from sympy.polys.polytools import (cancel, gcd)
  20. from sympy.series.limits import limit
  21. from sympy.series.order import O
  22. from sympy.series.series import series
  23. from sympy.sets.fancysets import ImageSet
  24. from sympy.sets.sets import (FiniteSet, Interval)
  25. from sympy.simplify.simplify import simplify
  26. from sympy.core.expr import unchanged
  27. from sympy.core.function import ArgumentIndexError
  28. from sympy.core.relational import Ne, Eq
  29. from sympy.functions.elementary.piecewise import Piecewise
  30. from sympy.sets.setexpr import SetExpr
  31. from sympy.testing.pytest import XFAIL, slow, raises
  32. x, y, z = symbols('x y z')
  33. r = Symbol('r', real=True)
  34. k, m = symbols('k m', integer=True)
  35. p = Symbol('p', positive=True)
  36. n = Symbol('n', negative=True)
  37. np = Symbol('p', nonpositive=True)
  38. nn = Symbol('n', nonnegative=True)
  39. nz = Symbol('nz', nonzero=True)
  40. ep = Symbol('ep', extended_positive=True)
  41. en = Symbol('en', extended_negative=True)
  42. enp = Symbol('ep', extended_nonpositive=True)
  43. enn = Symbol('en', extended_nonnegative=True)
  44. enz = Symbol('enz', extended_nonzero=True)
  45. a = Symbol('a', algebraic=True)
  46. na = Symbol('na', nonzero=True, algebraic=True)
  47. def test_sin():
  48. x, y = symbols('x y')
  49. z = symbols('z', imaginary=True)
  50. assert sin.nargs == FiniteSet(1)
  51. assert sin(nan) is nan
  52. assert sin(zoo) is nan
  53. assert sin(oo) == AccumBounds(-1, 1)
  54. assert sin(oo) - sin(oo) == AccumBounds(-2, 2)
  55. assert sin(oo*I) == oo*I
  56. assert sin(-oo*I) == -oo*I
  57. assert 0*sin(oo) is S.Zero
  58. assert 0/sin(oo) is S.Zero
  59. assert 0 + sin(oo) == AccumBounds(-1, 1)
  60. assert 5 + sin(oo) == AccumBounds(4, 6)
  61. assert sin(0) == 0
  62. assert sin(z*I) == I*sinh(z)
  63. assert sin(asin(x)) == x
  64. assert sin(atan(x)) == x / sqrt(1 + x**2)
  65. assert sin(acos(x)) == sqrt(1 - x**2)
  66. assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x)
  67. assert sin(acsc(x)) == 1 / x
  68. assert sin(asec(x)) == sqrt(1 - 1 / x**2)
  69. assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2)
  70. assert sin(pi*I) == sinh(pi)*I
  71. assert sin(-pi*I) == -sinh(pi)*I
  72. assert sin(-2*I) == -sinh(2)*I
  73. assert sin(pi) == 0
  74. assert sin(-pi) == 0
  75. assert sin(2*pi) == 0
  76. assert sin(-2*pi) == 0
  77. assert sin(-3*10**73*pi) == 0
  78. assert sin(7*10**103*pi) == 0
  79. assert sin(pi/2) == 1
  80. assert sin(-pi/2) == -1
  81. assert sin(pi*Rational(5, 2)) == 1
  82. assert sin(pi*Rational(7, 2)) == -1
  83. ne = symbols('ne', integer=True, even=False)
  84. e = symbols('e', even=True)
  85. assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half)
  86. assert sin(pi*k/2).func == sin
  87. assert sin(pi*e/2) == 0
  88. assert sin(pi*k) == 0
  89. assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298
  90. assert sin(pi/3) == S.Half*sqrt(3)
  91. assert sin(pi*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)
  92. assert sin(pi/4) == S.Half*sqrt(2)
  93. assert sin(-pi/4) == Rational(-1, 2)*sqrt(2)
  94. assert sin(pi*Rational(17, 4)) == S.Half*sqrt(2)
  95. assert sin(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
  96. assert sin(pi/6) == S.Half
  97. assert sin(-pi/6) == Rational(-1, 2)
  98. assert sin(pi*Rational(7, 6)) == Rational(-1, 2)
  99. assert sin(pi*Rational(-5, 6)) == Rational(-1, 2)
  100. assert sin(pi*Rational(1, 5)) == sqrt((5 - sqrt(5)) / 8)
  101. assert sin(pi*Rational(2, 5)) == sqrt((5 + sqrt(5)) / 8)
  102. assert sin(pi*Rational(3, 5)) == sin(pi*Rational(2, 5))
  103. assert sin(pi*Rational(4, 5)) == sin(pi*Rational(1, 5))
  104. assert sin(pi*Rational(6, 5)) == -sin(pi*Rational(1, 5))
  105. assert sin(pi*Rational(8, 5)) == -sin(pi*Rational(2, 5))
  106. assert sin(pi*Rational(-1273, 5)) == -sin(pi*Rational(2, 5))
  107. assert sin(pi/8) == sqrt((2 - sqrt(2))/4)
  108. assert sin(pi/10) == Rational(-1, 4) + sqrt(5)/4
  109. assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4
  110. assert sin(pi*Rational(5, 12)) == sqrt(2)/4 + sqrt(6)/4
  111. assert sin(pi*Rational(-7, 12)) == -sqrt(2)/4 - sqrt(6)/4
  112. assert sin(pi*Rational(-11, 12)) == sqrt(2)/4 - sqrt(6)/4
  113. assert sin(pi*Rational(104, 105)) == sin(pi/105)
  114. assert sin(pi*Rational(106, 105)) == -sin(pi/105)
  115. assert sin(pi*Rational(-104, 105)) == -sin(pi/105)
  116. assert sin(pi*Rational(-106, 105)) == sin(pi/105)
  117. assert sin(x*I) == sinh(x)*I
  118. assert sin(k*pi) == 0
  119. assert sin(17*k*pi) == 0
  120. assert sin(2*k*pi + 4) == sin(4)
  121. assert sin(2*k*pi + m*pi + 1) == (-1)**(m + 2*k)*sin(1)
  122. assert sin(k*pi*I) == sinh(k*pi)*I
  123. assert sin(r).is_real is True
  124. assert sin(0, evaluate=False).is_algebraic
  125. assert sin(a).is_algebraic is None
  126. assert sin(na).is_algebraic is False
  127. q = Symbol('q', rational=True)
  128. assert sin(pi*q).is_algebraic
  129. qn = Symbol('qn', rational=True, nonzero=True)
  130. assert sin(qn).is_rational is False
  131. assert sin(q).is_rational is None # issue 8653
  132. assert isinstance(sin( re(x) - im(y)), sin) is True
  133. assert isinstance(sin(-re(x) + im(y)), sin) is False
  134. assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)),
  135. Interval(0, 1)))
  136. for d in list(range(1, 22)) + [60, 85]:
  137. for n in range(d*2 + 1):
  138. x = n*pi/d
  139. e = abs( float(sin(x)) - sin(float(x)) )
  140. assert e < 1e-12
  141. assert sin(0, evaluate=False).is_zero is True
  142. assert sin(k*pi, evaluate=False).is_zero is True
  143. assert sin(Add(1, -1, evaluate=False), evaluate=False).is_zero is True
  144. def test_sin_cos():
  145. for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive...
  146. for n in range(-2*d, d*2):
  147. x = n*pi/d
  148. assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d)
  149. assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d)
  150. assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d)
  151. assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d)
  152. def test_sin_series():
  153. assert sin(x).series(x, 0, 9) == \
  154. x - x**3/6 + x**5/120 - x**7/5040 + O(x**9)
  155. def test_sin_rewrite():
  156. assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2
  157. assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2)
  158. assert sin(x).rewrite(cot) == \
  159. Piecewise((0, Eq(im(x), 0) & Eq(Mod(x, pi), 0)),
  160. (2*cot(x/2)/(cot(x/2)**2 + 1), True))
  161. assert sin(sinh(x)).rewrite(
  162. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n()
  163. assert sin(cosh(x)).rewrite(
  164. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n()
  165. assert sin(tanh(x)).rewrite(
  166. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n()
  167. assert sin(coth(x)).rewrite(
  168. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n()
  169. assert sin(sin(x)).rewrite(
  170. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n()
  171. assert sin(cos(x)).rewrite(
  172. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n()
  173. assert sin(tan(x)).rewrite(
  174. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n()
  175. assert sin(cot(x)).rewrite(
  176. exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n()
  177. assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2
  178. assert sin(x).rewrite(csc) == 1/csc(x)
  179. assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False)
  180. assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False)
  181. assert sin(cos(x)).rewrite(Pow) == sin(cos(x))
  182. def _test_extrig(f, i, e):
  183. from sympy.core.function import expand_trig
  184. assert unchanged(f, i)
  185. assert expand_trig(f(i)) == f(i)
  186. # testing directly instead of with .expand(trig=True)
  187. # because the other expansions undo the unevaluated Mul
  188. assert expand_trig(f(Mul(i, 1, evaluate=False))) == e
  189. assert abs(f(i) - e).n() < 1e-10
  190. def test_sin_expansion():
  191. # Note: these formulas are not unique. The ones here come from the
  192. # Chebyshev formulas.
  193. assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y)
  194. assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y)
  195. assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y)
  196. assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x)
  197. assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x)
  198. assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x)
  199. _test_extrig(sin, 2, 2*sin(1)*cos(1))
  200. _test_extrig(sin, 3, -4*sin(1)**3 + 3*sin(1))
  201. def test_sin_AccumBounds():
  202. assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
  203. assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1)
  204. assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
  205. assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
  206. assert sin(AccumBounds(0, S.Pi*Rational(3, 4))) == AccumBounds(0, 1)
  207. assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(7, 4))) == AccumBounds(-1, sin(S.Pi*Rational(3, 4)))
  208. assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3))
  209. assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 6))) == AccumBounds(sin(S.Pi*Rational(5, 6)), sin(S.Pi*Rational(3, 4)))
  210. def test_sin_fdiff():
  211. assert sin(x).fdiff() == cos(x)
  212. raises(ArgumentIndexError, lambda: sin(x).fdiff(2))
  213. def test_trig_symmetry():
  214. assert sin(-x) == -sin(x)
  215. assert cos(-x) == cos(x)
  216. assert tan(-x) == -tan(x)
  217. assert cot(-x) == -cot(x)
  218. assert sin(x + pi) == -sin(x)
  219. assert sin(x + 2*pi) == sin(x)
  220. assert sin(x + 3*pi) == -sin(x)
  221. assert sin(x + 4*pi) == sin(x)
  222. assert sin(x - 5*pi) == -sin(x)
  223. assert cos(x + pi) == -cos(x)
  224. assert cos(x + 2*pi) == cos(x)
  225. assert cos(x + 3*pi) == -cos(x)
  226. assert cos(x + 4*pi) == cos(x)
  227. assert cos(x - 5*pi) == -cos(x)
  228. assert tan(x + pi) == tan(x)
  229. assert tan(x - 3*pi) == tan(x)
  230. assert cot(x + pi) == cot(x)
  231. assert cot(x - 3*pi) == cot(x)
  232. assert sin(pi/2 - x) == cos(x)
  233. assert sin(pi*Rational(3, 2) - x) == -cos(x)
  234. assert sin(pi*Rational(5, 2) - x) == cos(x)
  235. assert cos(pi/2 - x) == sin(x)
  236. assert cos(pi*Rational(3, 2) - x) == -sin(x)
  237. assert cos(pi*Rational(5, 2) - x) == sin(x)
  238. assert tan(pi/2 - x) == cot(x)
  239. assert tan(pi*Rational(3, 2) - x) == cot(x)
  240. assert tan(pi*Rational(5, 2) - x) == cot(x)
  241. assert cot(pi/2 - x) == tan(x)
  242. assert cot(pi*Rational(3, 2) - x) == tan(x)
  243. assert cot(pi*Rational(5, 2) - x) == tan(x)
  244. assert sin(pi/2 + x) == cos(x)
  245. assert cos(pi/2 + x) == -sin(x)
  246. assert tan(pi/2 + x) == -cot(x)
  247. assert cot(pi/2 + x) == -tan(x)
  248. def test_cos():
  249. x, y = symbols('x y')
  250. assert cos.nargs == FiniteSet(1)
  251. assert cos(nan) is nan
  252. assert cos(oo) == AccumBounds(-1, 1)
  253. assert cos(oo) - cos(oo) == AccumBounds(-2, 2)
  254. assert cos(oo*I) is oo
  255. assert cos(-oo*I) is oo
  256. assert cos(zoo) is nan
  257. assert cos(0) == 1
  258. assert cos(acos(x)) == x
  259. assert cos(atan(x)) == 1 / sqrt(1 + x**2)
  260. assert cos(asin(x)) == sqrt(1 - x**2)
  261. assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2)
  262. assert cos(acsc(x)) == sqrt(1 - 1 / x**2)
  263. assert cos(asec(x)) == 1 / x
  264. assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2)
  265. assert cos(pi*I) == cosh(pi)
  266. assert cos(-pi*I) == cosh(pi)
  267. assert cos(-2*I) == cosh(2)
  268. assert cos(pi/2) == 0
  269. assert cos(-pi/2) == 0
  270. assert cos(pi/2) == 0
  271. assert cos(-pi/2) == 0
  272. assert cos((-3*10**73 + 1)*pi/2) == 0
  273. assert cos((7*10**103 + 1)*pi/2) == 0
  274. n = symbols('n', integer=True, even=False)
  275. e = symbols('e', even=True)
  276. assert cos(pi*n/2) == 0
  277. assert cos(pi*e/2) == (-1)**(e/2)
  278. assert cos(pi) == -1
  279. assert cos(-pi) == -1
  280. assert cos(2*pi) == 1
  281. assert cos(5*pi) == -1
  282. assert cos(8*pi) == 1
  283. assert cos(pi/3) == S.Half
  284. assert cos(pi*Rational(-2, 3)) == Rational(-1, 2)
  285. assert cos(pi/4) == S.Half*sqrt(2)
  286. assert cos(-pi/4) == S.Half*sqrt(2)
  287. assert cos(pi*Rational(11, 4)) == Rational(-1, 2)*sqrt(2)
  288. assert cos(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
  289. assert cos(pi/6) == S.Half*sqrt(3)
  290. assert cos(-pi/6) == S.Half*sqrt(3)
  291. assert cos(pi*Rational(7, 6)) == Rational(-1, 2)*sqrt(3)
  292. assert cos(pi*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3)
  293. assert cos(pi*Rational(1, 5)) == (sqrt(5) + 1)/4
  294. assert cos(pi*Rational(2, 5)) == (sqrt(5) - 1)/4
  295. assert cos(pi*Rational(3, 5)) == -cos(pi*Rational(2, 5))
  296. assert cos(pi*Rational(4, 5)) == -cos(pi*Rational(1, 5))
  297. assert cos(pi*Rational(6, 5)) == -cos(pi*Rational(1, 5))
  298. assert cos(pi*Rational(8, 5)) == cos(pi*Rational(2, 5))
  299. assert cos(pi*Rational(-1273, 5)) == -cos(pi*Rational(2, 5))
  300. assert cos(pi/8) == sqrt((2 + sqrt(2))/4)
  301. assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4
  302. assert cos(pi*Rational(5, 12)) == -sqrt(2)/4 + sqrt(6)/4
  303. assert cos(pi*Rational(7, 12)) == sqrt(2)/4 - sqrt(6)/4
  304. assert cos(pi*Rational(11, 12)) == -sqrt(2)/4 - sqrt(6)/4
  305. assert cos(pi*Rational(104, 105)) == -cos(pi/105)
  306. assert cos(pi*Rational(106, 105)) == -cos(pi/105)
  307. assert cos(pi*Rational(-104, 105)) == -cos(pi/105)
  308. assert cos(pi*Rational(-106, 105)) == -cos(pi/105)
  309. assert cos(x*I) == cosh(x)
  310. assert cos(k*pi*I) == cosh(k*pi)
  311. assert cos(r).is_real is True
  312. assert cos(0, evaluate=False).is_algebraic
  313. assert cos(a).is_algebraic is None
  314. assert cos(na).is_algebraic is False
  315. q = Symbol('q', rational=True)
  316. assert cos(pi*q).is_algebraic
  317. assert cos(pi*Rational(2, 7)).is_algebraic
  318. assert cos(k*pi) == (-1)**k
  319. assert cos(2*k*pi) == 1
  320. assert cos(0, evaluate=False).is_zero is False
  321. assert cos(Rational(1, 2)).is_zero is False
  322. # The following test will return None as the result, but really it should
  323. # be True even if it is not always possible to resolve an assumptions query.
  324. assert cos(asin(-1, evaluate=False), evaluate=False).is_zero is None
  325. for d in list(range(1, 22)) + [60, 85]:
  326. for n in range(2*d + 1):
  327. x = n*pi/d
  328. e = abs( float(cos(x)) - cos(float(x)) )
  329. assert e < 1e-12
  330. def test_issue_6190():
  331. c = Float('123456789012345678901234567890.25', '')
  332. for cls in [sin, cos, tan, cot]:
  333. assert cls(c*pi) == cls(pi/4)
  334. assert cls(4.125*pi) == cls(pi/8)
  335. assert cls(4.7*pi) == cls((4.7 % 2)*pi)
  336. def test_cos_series():
  337. assert cos(x).series(x, 0, 9) == \
  338. 1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9)
  339. def test_cos_rewrite():
  340. assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2
  341. assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2)
  342. assert cos(x).rewrite(cot) == \
  343. Piecewise((1, Eq(im(x), 0) & Eq(Mod(x, 2*pi), 0)),
  344. ((cot(x/2)**2 - 1)/(cot(x/2)**2 + 1), True))
  345. assert cos(sinh(x)).rewrite(
  346. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n()
  347. assert cos(cosh(x)).rewrite(
  348. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n()
  349. assert cos(tanh(x)).rewrite(
  350. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n()
  351. assert cos(coth(x)).rewrite(
  352. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n()
  353. assert cos(sin(x)).rewrite(
  354. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n()
  355. assert cos(cos(x)).rewrite(
  356. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n()
  357. assert cos(tan(x)).rewrite(
  358. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n()
  359. assert cos(cot(x)).rewrite(
  360. exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n()
  361. assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2
  362. assert cos(x).rewrite(sec) == 1/sec(x)
  363. assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False)
  364. assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False)
  365. assert cos(sin(x)).rewrite(Pow) == cos(sin(x))
  366. def test_cos_expansion():
  367. assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y)
  368. assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
  369. assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
  370. assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1
  371. assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x)
  372. assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1
  373. _test_extrig(cos, 2, 2*cos(1)**2 - 1)
  374. _test_extrig(cos, 3, 4*cos(1)**3 - 3*cos(1))
  375. def test_cos_AccumBounds():
  376. assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
  377. assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1)
  378. assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
  379. assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
  380. assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1)
  381. assert cos(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 4))) == AccumBounds(-1, cos(S.Pi*Rational(3, 4)))
  382. assert cos(AccumBounds(S.Pi*Rational(5, 4), S.Pi*Rational(4, 3))) == AccumBounds(cos(S.Pi*Rational(5, 4)), cos(S.Pi*Rational(4, 3)))
  383. assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4))
  384. def test_cos_fdiff():
  385. assert cos(x).fdiff() == -sin(x)
  386. raises(ArgumentIndexError, lambda: cos(x).fdiff(2))
  387. def test_tan():
  388. assert tan(nan) is nan
  389. assert tan(zoo) is nan
  390. assert tan(oo) == AccumBounds(-oo, oo)
  391. assert tan(oo) - tan(oo) == AccumBounds(-oo, oo)
  392. assert tan.nargs == FiniteSet(1)
  393. assert tan(oo*I) == I
  394. assert tan(-oo*I) == -I
  395. assert tan(0) == 0
  396. assert tan(atan(x)) == x
  397. assert tan(asin(x)) == x / sqrt(1 - x**2)
  398. assert tan(acos(x)) == sqrt(1 - x**2) / x
  399. assert tan(acot(x)) == 1 / x
  400. assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
  401. assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x
  402. assert tan(atan2(y, x)) == y/x
  403. assert tan(pi*I) == tanh(pi)*I
  404. assert tan(-pi*I) == -tanh(pi)*I
  405. assert tan(-2*I) == -tanh(2)*I
  406. assert tan(pi) == 0
  407. assert tan(-pi) == 0
  408. assert tan(2*pi) == 0
  409. assert tan(-2*pi) == 0
  410. assert tan(-3*10**73*pi) == 0
  411. assert tan(pi/2) is zoo
  412. assert tan(pi*Rational(3, 2)) is zoo
  413. assert tan(pi/3) == sqrt(3)
  414. assert tan(pi*Rational(-2, 3)) == sqrt(3)
  415. assert tan(pi/4) is S.One
  416. assert tan(-pi/4) is S.NegativeOne
  417. assert tan(pi*Rational(17, 4)) is S.One
  418. assert tan(pi*Rational(-3, 4)) is S.One
  419. assert tan(pi/5) == sqrt(5 - 2*sqrt(5))
  420. assert tan(pi*Rational(2, 5)) == sqrt(5 + 2*sqrt(5))
  421. assert tan(pi*Rational(18, 5)) == -sqrt(5 + 2*sqrt(5))
  422. assert tan(pi*Rational(-16, 5)) == -sqrt(5 - 2*sqrt(5))
  423. assert tan(pi/6) == 1/sqrt(3)
  424. assert tan(-pi/6) == -1/sqrt(3)
  425. assert tan(pi*Rational(7, 6)) == 1/sqrt(3)
  426. assert tan(pi*Rational(-5, 6)) == 1/sqrt(3)
  427. assert tan(pi/8) == -1 + sqrt(2)
  428. assert tan(pi*Rational(3, 8)) == 1 + sqrt(2) # issue 15959
  429. assert tan(pi*Rational(5, 8)) == -1 - sqrt(2)
  430. assert tan(pi*Rational(7, 8)) == 1 - sqrt(2)
  431. assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5)
  432. assert tan(pi*Rational(3, 10)) == sqrt(1 + 2*sqrt(5)/5)
  433. assert tan(pi*Rational(17, 10)) == -sqrt(1 + 2*sqrt(5)/5)
  434. assert tan(pi*Rational(-31, 10)) == -sqrt(1 - 2*sqrt(5)/5)
  435. assert tan(pi/12) == -sqrt(3) + 2
  436. assert tan(pi*Rational(5, 12)) == sqrt(3) + 2
  437. assert tan(pi*Rational(7, 12)) == -sqrt(3) - 2
  438. assert tan(pi*Rational(11, 12)) == sqrt(3) - 2
  439. assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6)
  440. assert tan(pi*Rational(5, 24)).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6)
  441. assert tan(pi*Rational(7, 24)).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6)
  442. assert tan(pi*Rational(11, 24)).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6)
  443. assert tan(pi*Rational(13, 24)).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6)
  444. assert tan(pi*Rational(17, 24)).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6)
  445. assert tan(pi*Rational(19, 24)).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6)
  446. assert tan(pi*Rational(23, 24)).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6)
  447. assert tan(x*I) == tanh(x)*I
  448. assert tan(k*pi) == 0
  449. assert tan(17*k*pi) == 0
  450. assert tan(k*pi*I) == tanh(k*pi)*I
  451. assert tan(r).is_real is None
  452. assert tan(r).is_extended_real is True
  453. assert tan(0, evaluate=False).is_algebraic
  454. assert tan(a).is_algebraic is None
  455. assert tan(na).is_algebraic is False
  456. assert tan(pi*Rational(10, 7)) == tan(pi*Rational(3, 7))
  457. assert tan(pi*Rational(11, 7)) == -tan(pi*Rational(3, 7))
  458. assert tan(pi*Rational(-11, 7)) == tan(pi*Rational(3, 7))
  459. assert tan(pi*Rational(15, 14)) == tan(pi/14)
  460. assert tan(pi*Rational(-15, 14)) == -tan(pi/14)
  461. assert tan(r).is_finite is None
  462. assert tan(I*r).is_finite is True
  463. # https://github.com/sympy/sympy/issues/21177
  464. f = tan(pi*(x + S(3)/2))/(3*x)
  465. assert f.as_leading_term(x) == -1/(3*pi*x**2)
  466. def test_tan_series():
  467. assert tan(x).series(x, 0, 9) == \
  468. x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9)
  469. def test_tan_rewrite():
  470. neg_exp, pos_exp = exp(-x*I), exp(x*I)
  471. assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
  472. assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x)
  473. assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x)
  474. assert tan(x).rewrite(cot) == 1/cot(x)
  475. assert tan(sinh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n()
  476. assert tan(cosh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n()
  477. assert tan(tanh(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n()
  478. assert tan(coth(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n()
  479. assert tan(sin(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n()
  480. assert tan(cos(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n()
  481. assert tan(tan(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n()
  482. assert tan(cot(x)).rewrite(exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n()
  483. assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I)
  484. assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False)
  485. assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x)
  486. assert tan(sin(x)).rewrite(Pow) == tan(sin(x))
  487. @slow
  488. def test_tan_rewrite_slow():
  489. assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow)
  490. assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow)
  491. assert tan(pi/19).rewrite(pow) == tan(pi/19)
  492. assert tan(pi*Rational(8, 19)).rewrite(sqrt) == tan(pi*Rational(8, 19))
  493. assert tan(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 +
  494. Rational(5, 8))/(Rational(-1, 4) + sqrt(5)/4)
  495. def test_tan_subs():
  496. assert tan(x).subs(tan(x), y) == y
  497. assert tan(x).subs(x, y) == tan(y)
  498. assert tan(x).subs(x, S.Pi/2) is zoo
  499. assert tan(x).subs(x, S.Pi*Rational(3, 2)) is zoo
  500. def test_tan_expansion():
  501. assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand()
  502. assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand()
  503. assert tan(x + y + z).expand(trig=True) == (
  504. (tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/
  505. (1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand()
  506. assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7
  507. assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37
  508. assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1
  509. _test_extrig(tan, 2, 2*tan(1)/(1 - tan(1)**2))
  510. _test_extrig(tan, 3, (-tan(1)**3 + 3*tan(1))/(1 - 3*tan(1)**2))
  511. def test_tan_AccumBounds():
  512. assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
  513. assert tan(AccumBounds(S.Pi/3, S.Pi*Rational(2, 3))) == AccumBounds(-oo, oo)
  514. assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3))
  515. def test_tan_fdiff():
  516. assert tan(x).fdiff() == tan(x)**2 + 1
  517. raises(ArgumentIndexError, lambda: tan(x).fdiff(2))
  518. def test_cot():
  519. assert cot(nan) is nan
  520. assert cot.nargs == FiniteSet(1)
  521. assert cot(oo*I) == -I
  522. assert cot(-oo*I) == I
  523. assert cot(zoo) is nan
  524. assert cot(0) is zoo
  525. assert cot(2*pi) is zoo
  526. assert cot(acot(x)) == x
  527. assert cot(atan(x)) == 1 / x
  528. assert cot(asin(x)) == sqrt(1 - x**2) / x
  529. assert cot(acos(x)) == x / sqrt(1 - x**2)
  530. assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x
  531. assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
  532. assert cot(atan2(y, x)) == x/y
  533. assert cot(pi*I) == -coth(pi)*I
  534. assert cot(-pi*I) == coth(pi)*I
  535. assert cot(-2*I) == coth(2)*I
  536. assert cot(pi) == cot(2*pi) == cot(3*pi)
  537. assert cot(-pi) == cot(-2*pi) == cot(-3*pi)
  538. assert cot(pi/2) == 0
  539. assert cot(-pi/2) == 0
  540. assert cot(pi*Rational(5, 2)) == 0
  541. assert cot(pi*Rational(7, 2)) == 0
  542. assert cot(pi/3) == 1/sqrt(3)
  543. assert cot(pi*Rational(-2, 3)) == 1/sqrt(3)
  544. assert cot(pi/4) is S.One
  545. assert cot(-pi/4) is S.NegativeOne
  546. assert cot(pi*Rational(17, 4)) is S.One
  547. assert cot(pi*Rational(-3, 4)) is S.One
  548. assert cot(pi/6) == sqrt(3)
  549. assert cot(-pi/6) == -sqrt(3)
  550. assert cot(pi*Rational(7, 6)) == sqrt(3)
  551. assert cot(pi*Rational(-5, 6)) == sqrt(3)
  552. assert cot(pi/8) == 1 + sqrt(2)
  553. assert cot(pi*Rational(3, 8)) == -1 + sqrt(2)
  554. assert cot(pi*Rational(5, 8)) == 1 - sqrt(2)
  555. assert cot(pi*Rational(7, 8)) == -1 - sqrt(2)
  556. assert cot(pi/12) == sqrt(3) + 2
  557. assert cot(pi*Rational(5, 12)) == -sqrt(3) + 2
  558. assert cot(pi*Rational(7, 12)) == sqrt(3) - 2
  559. assert cot(pi*Rational(11, 12)) == -sqrt(3) - 2
  560. assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6)
  561. assert cot(pi*Rational(5, 24)).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6)
  562. assert cot(pi*Rational(7, 24)).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6)
  563. assert cot(pi*Rational(11, 24)).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6)
  564. assert cot(pi*Rational(13, 24)).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6)
  565. assert cot(pi*Rational(17, 24)).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6)
  566. assert cot(pi*Rational(19, 24)).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6)
  567. assert cot(pi*Rational(23, 24)).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6)
  568. assert cot(x*I) == -coth(x)*I
  569. assert cot(k*pi*I) == -coth(k*pi)*I
  570. assert cot(r).is_real is None
  571. assert cot(r).is_extended_real is True
  572. assert cot(a).is_algebraic is None
  573. assert cot(na).is_algebraic is False
  574. assert cot(pi*Rational(10, 7)) == cot(pi*Rational(3, 7))
  575. assert cot(pi*Rational(11, 7)) == -cot(pi*Rational(3, 7))
  576. assert cot(pi*Rational(-11, 7)) == cot(pi*Rational(3, 7))
  577. assert cot(pi*Rational(39, 34)) == cot(pi*Rational(5, 34))
  578. assert cot(pi*Rational(-41, 34)) == -cot(pi*Rational(7, 34))
  579. assert cot(x).is_finite is None
  580. assert cot(r).is_finite is None
  581. i = Symbol('i', imaginary=True)
  582. assert cot(i).is_finite is True
  583. assert cot(x).subs(x, 3*pi) is zoo
  584. # https://github.com/sympy/sympy/issues/21177
  585. f = cot(pi*(x + 4))/(3*x)
  586. assert f.as_leading_term(x) == 1/(3*pi*x**2)
  587. def test_tan_cot_sin_cos_evalf():
  588. assert abs((tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15)) - 1).evalf()) < 1e-14
  589. assert abs((cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15)) - 1).evalf()) < 1e-14
  590. @XFAIL
  591. def test_tan_cot_sin_cos_ratsimp():
  592. assert 1 == (tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15))).ratsimp()
  593. assert 1 == (cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15))).ratsimp()
  594. def test_cot_series():
  595. assert cot(x).series(x, 0, 9) == \
  596. 1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9)
  597. # issue 6210
  598. assert cot(x**4 + x**5).series(x, 0, 1) == \
  599. x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x)
  600. assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3)
  601. assert cot(x).taylor_term(0, x) == 1/x
  602. assert cot(x).taylor_term(2, x) is S.Zero
  603. assert cot(x).taylor_term(3, x) == -x**3/45
  604. def test_cot_rewrite():
  605. neg_exp, pos_exp = exp(-x*I), exp(x*I)
  606. assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
  607. assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2))
  608. assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False)
  609. assert cot(x).rewrite(tan) == 1/tan(x)
  610. def check(func):
  611. z = cot(func(x)).rewrite(exp) - cot(x).rewrite(exp).subs(x, func(x))
  612. assert z.rewrite(exp).expand() == 0
  613. check(sinh)
  614. check(cosh)
  615. check(tanh)
  616. check(coth)
  617. check(sin)
  618. check(cos)
  619. check(tan)
  620. assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I)
  621. assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x)
  622. assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False)
  623. assert cot(sin(x)).rewrite(Pow) == cot(sin(x))
  624. @slow
  625. def test_cot_rewrite_slow():
  626. assert cot(pi*Rational(4, 34)).rewrite(pow).ratsimp() == \
  627. (cos(pi*Rational(4, 34))/sin(pi*Rational(4, 34))).rewrite(pow).ratsimp()
  628. assert cot(pi*Rational(4, 17)).rewrite(pow) == \
  629. (cos(pi*Rational(4, 17))/sin(pi*Rational(4, 17))).rewrite(pow)
  630. assert cot(pi/19).rewrite(pow) == cot(pi/19)
  631. assert cot(pi/19).rewrite(sqrt) == cot(pi/19)
  632. assert cot(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == \
  633. (Rational(-1, 4) + sqrt(5)/4) / sqrt(sqrt(5)/8 + Rational(5, 8))
  634. def test_cot_subs():
  635. assert cot(x).subs(cot(x), y) == y
  636. assert cot(x).subs(x, y) == cot(y)
  637. assert cot(x).subs(x, 0) is zoo
  638. assert cot(x).subs(x, S.Pi) is zoo
  639. def test_cot_expansion():
  640. assert cot(x + y).expand(trig=True).together() == (
  641. (cot(x)*cot(y) - 1)/(cot(x) + cot(y)))
  642. assert cot(x - y).expand(trig=True).together() == (
  643. cot(x)*cot(-y) - 1)/(cot(x) + cot(-y))
  644. assert cot(x + y + z).expand(trig=True).together() == (
  645. (cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/
  646. (-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z)))
  647. assert cot(3*x).expand(trig=True).together() == (
  648. (cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1))
  649. assert cot(2*x).expand(trig=True) == cot(x)/2 - 1/(2*cot(x))
  650. assert cot(3*x).expand(trig=True).together() == (
  651. cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1)
  652. assert cot(4*x - pi/4).expand(trig=True).cancel() == (
  653. -tan(x)**4 + 4*tan(x)**3 + 6*tan(x)**2 - 4*tan(x) - 1
  654. )/(tan(x)**4 + 4*tan(x)**3 - 6*tan(x)**2 - 4*tan(x) + 1)
  655. _test_extrig(cot, 2, (-1 + cot(1)**2)/(2*cot(1)))
  656. _test_extrig(cot, 3, (-3*cot(1) + cot(1)**3)/(-1 + 3*cot(1)**2))
  657. def test_cot_AccumBounds():
  658. assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
  659. assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo)
  660. assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6))
  661. def test_cot_fdiff():
  662. assert cot(x).fdiff() == -cot(x)**2 - 1
  663. raises(ArgumentIndexError, lambda: cot(x).fdiff(2))
  664. def test_sinc():
  665. assert isinstance(sinc(x), sinc)
  666. s = Symbol('s', zero=True)
  667. assert sinc(s) is S.One
  668. assert sinc(S.Infinity) is S.Zero
  669. assert sinc(S.NegativeInfinity) is S.Zero
  670. assert sinc(S.NaN) is S.NaN
  671. assert sinc(S.ComplexInfinity) is S.NaN
  672. n = Symbol('n', integer=True, nonzero=True)
  673. assert sinc(n*pi) is S.Zero
  674. assert sinc(-n*pi) is S.Zero
  675. assert sinc(pi/2) == 2 / pi
  676. assert sinc(-pi/2) == 2 / pi
  677. assert sinc(pi*Rational(5, 2)) == 2 / (5*pi)
  678. assert sinc(pi*Rational(7, 2)) == -2 / (7*pi)
  679. assert sinc(-x) == sinc(x)
  680. assert sinc(x).diff(x) == cos(x)/x - sin(x)/x**2
  681. assert sinc(x).diff(x) == (sin(x)/x).diff(x)
  682. assert sinc(x).diff(x, x) == (-sin(x) - 2*cos(x)/x + 2*sin(x)/x**2)/x
  683. assert sinc(x).diff(x, x) == (sin(x)/x).diff(x, x)
  684. assert limit(sinc(x).diff(x), x, 0) == 0
  685. assert limit(sinc(x).diff(x, x), x, 0) == -S(1)/3
  686. # https://github.com/sympy/sympy/issues/11402
  687. #
  688. # assert sinc(x).diff(x) == Piecewise(((x*cos(x) - sin(x)) / x**2, Ne(x, 0)), (0, True))
  689. #
  690. # assert sinc(x).diff(x).equals(sinc(x).rewrite(sin).diff(x))
  691. #
  692. # assert sinc(x).diff(x).subs(x, 0) is S.Zero
  693. assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6)
  694. assert sinc(x).rewrite(jn) == jn(0, x)
  695. assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True))
  696. assert sinc(pi, evaluate=False).is_zero is True
  697. assert sinc(0, evaluate=False).is_zero is False
  698. assert sinc(n*pi, evaluate=False).is_zero is True
  699. assert sinc(x).is_zero is None
  700. xr = Symbol('xr', real=True, nonzero=True)
  701. assert sinc(x).is_real is None
  702. assert sinc(xr).is_real is True
  703. assert sinc(I*xr).is_real is True
  704. assert sinc(I*100).is_real is True
  705. assert sinc(x).is_finite is None
  706. assert sinc(xr).is_finite is True
  707. def test_asin():
  708. assert asin(nan) is nan
  709. assert asin.nargs == FiniteSet(1)
  710. assert asin(oo) == -I*oo
  711. assert asin(-oo) == I*oo
  712. assert asin(zoo) is zoo
  713. # Note: asin(-x) = - asin(x)
  714. assert asin(0) == 0
  715. assert asin(1) == pi/2
  716. assert asin(-1) == -pi/2
  717. assert asin(sqrt(3)/2) == pi/3
  718. assert asin(-sqrt(3)/2) == -pi/3
  719. assert asin(sqrt(2)/2) == pi/4
  720. assert asin(-sqrt(2)/2) == -pi/4
  721. assert asin(sqrt((5 - sqrt(5))/8)) == pi/5
  722. assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5
  723. assert asin(S.Half) == pi/6
  724. assert asin(Rational(-1, 2)) == -pi/6
  725. assert asin((sqrt(2 - sqrt(2)))/2) == pi/8
  726. assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8
  727. assert asin((sqrt(5) - 1)/4) == pi/10
  728. assert asin(-(sqrt(5) - 1)/4) == -pi/10
  729. assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12
  730. assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12
  731. # check round-trip for exact values:
  732. for d in [5, 6, 8, 10, 12]:
  733. for n in range(-(d//2), d//2 + 1):
  734. if gcd(n, d) == 1:
  735. assert asin(sin(n*pi/d)) == n*pi/d
  736. assert asin(x).diff(x) == 1/sqrt(1 - x**2)
  737. assert asin(0.2, evaluate=False).is_real is True
  738. assert asin(-2).is_real is False
  739. assert asin(r).is_real is None
  740. assert asin(-2*I) == -I*asinh(2)
  741. assert asin(Rational(1, 7), evaluate=False).is_positive is True
  742. assert asin(Rational(-1, 7), evaluate=False).is_positive is False
  743. assert asin(p).is_positive is None
  744. assert asin(sin(Rational(7, 2))) == Rational(-7, 2) + pi
  745. assert asin(sin(Rational(-7, 4))) == Rational(7, 4) - pi
  746. assert unchanged(asin, cos(x))
  747. def test_asin_series():
  748. assert asin(x).series(x, 0, 9) == \
  749. x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9)
  750. t5 = asin(x).taylor_term(5, x)
  751. assert t5 == 3*x**5/40
  752. assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112
  753. def test_asin_leading_term():
  754. assert asin(x).as_leading_term(x) == x
  755. # Tests concerning branch points
  756. assert asin(x + 1).as_leading_term(x) == pi/2
  757. assert asin(x - 1).as_leading_term(x) == -pi/2
  758. assert asin(1/x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2)
  759. assert asin(1/x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2)
  760. # Tests concerning points lying on branch cuts
  761. assert asin(I*x + 2).as_leading_term(x, cdir=1) == pi - asin(2)
  762. assert asin(-I*x + 2).as_leading_term(x, cdir=1) == asin(2)
  763. assert asin(I*x - 2).as_leading_term(x, cdir=1) == -asin(2)
  764. assert asin(-I*x - 2).as_leading_term(x, cdir=1) == -pi + asin(2)
  765. # Tests concerning im(ndir) == 0
  766. assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == -pi/2 + I*log(2 - sqrt(3))
  767. assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(2 - sqrt(3))
  768. def test_asin_rewrite():
  769. assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2))
  770. assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2)))
  771. assert asin(x).rewrite(acos) == S.Pi/2 - acos(x)
  772. assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x)
  773. assert asin(x).rewrite(asec) == -asec(1/x) + pi/2
  774. assert asin(x).rewrite(acsc) == acsc(1/x)
  775. def test_asin_fdiff():
  776. assert asin(x).fdiff() == 1/sqrt(1 - x**2)
  777. raises(ArgumentIndexError, lambda: asin(x).fdiff(2))
  778. def test_acos():
  779. assert acos(nan) is nan
  780. assert acos(zoo) is zoo
  781. assert acos.nargs == FiniteSet(1)
  782. assert acos(oo) == I*oo
  783. assert acos(-oo) == -I*oo
  784. # Note: acos(-x) = pi - acos(x)
  785. assert acos(0) == pi/2
  786. assert acos(S.Half) == pi/3
  787. assert acos(Rational(-1, 2)) == pi*Rational(2, 3)
  788. assert acos(1) == 0
  789. assert acos(-1) == pi
  790. assert acos(sqrt(2)/2) == pi/4
  791. assert acos(-sqrt(2)/2) == pi*Rational(3, 4)
  792. # check round-trip for exact values:
  793. for d in [5, 6, 8, 10, 12]:
  794. for num in range(d):
  795. if gcd(num, d) == 1:
  796. assert acos(cos(num*pi/d)) == num*pi/d
  797. assert acos(2*I) == pi/2 - asin(2*I)
  798. assert acos(x).diff(x) == -1/sqrt(1 - x**2)
  799. assert acos(0.2).is_real is True
  800. assert acos(-2).is_real is False
  801. assert acos(r).is_real is None
  802. assert acos(Rational(1, 7), evaluate=False).is_positive is True
  803. assert acos(Rational(-1, 7), evaluate=False).is_positive is True
  804. assert acos(Rational(3, 2), evaluate=False).is_positive is False
  805. assert acos(p).is_positive is None
  806. assert acos(2 + p).conjugate() != acos(10 + p)
  807. assert acos(-3 + n).conjugate() != acos(-3 + n)
  808. assert acos(Rational(1, 3)).conjugate() == acos(Rational(1, 3))
  809. assert acos(Rational(-1, 3)).conjugate() == acos(Rational(-1, 3))
  810. assert acos(p + n*I).conjugate() == acos(p - n*I)
  811. assert acos(z).conjugate() != acos(conjugate(z))
  812. def test_acos_leading_term():
  813. assert acos(x).as_leading_term(x) == pi/2
  814. # Tests concerning branch points
  815. assert acos(x + 1).as_leading_term(x) == sqrt(2)*sqrt(-x)
  816. assert acos(x - 1).as_leading_term(x) == pi
  817. assert acos(1/x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2)
  818. assert acos(1/x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2)
  819. # Tests concerning points lying on branch cuts
  820. assert acos(I*x + 2).as_leading_term(x, cdir=1) == -acos(2)
  821. assert acos(-I*x + 2).as_leading_term(x, cdir=1) == acos(2)
  822. assert acos(I*x - 2).as_leading_term(x, cdir=1) == acos(-2)
  823. assert acos(-I*x - 2).as_leading_term(x, cdir=1) == 2*pi - acos(-2)
  824. # Tests concerning im(ndir) == 0
  825. assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == pi + I*log(sqrt(3) + 2)
  826. assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == pi + I*log(sqrt(3) + 2)
  827. def test_acos_series():
  828. assert acos(x).series(x, 0, 8) == \
  829. pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8)
  830. assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8)
  831. t5 = acos(x).taylor_term(5, x)
  832. assert t5 == -3*x**5/40
  833. assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112
  834. assert acos(x).taylor_term(0, x) == pi/2
  835. assert acos(x).taylor_term(2, x) is S.Zero
  836. def test_acos_rewrite():
  837. assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2))
  838. assert acos(x).rewrite(atan) == pi*(-x*sqrt(x**(-2)) + 1)/2 + atan(sqrt(1 - x**2)/x)
  839. assert acos(0).rewrite(atan) == S.Pi/2
  840. assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log)
  841. assert acos(x).rewrite(asin) == S.Pi/2 - asin(x)
  842. assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2
  843. assert acos(x).rewrite(asec) == asec(1/x)
  844. assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2
  845. def test_acos_fdiff():
  846. assert acos(x).fdiff() == -1/sqrt(1 - x**2)
  847. raises(ArgumentIndexError, lambda: acos(x).fdiff(2))
  848. def test_atan():
  849. assert atan(nan) is nan
  850. assert atan.nargs == FiniteSet(1)
  851. assert atan(oo) == pi/2
  852. assert atan(-oo) == -pi/2
  853. assert atan(zoo) == AccumBounds(-pi/2, pi/2)
  854. assert atan(0) == 0
  855. assert atan(1) == pi/4
  856. assert atan(sqrt(3)) == pi/3
  857. assert atan(-(1 + sqrt(2))) == pi*Rational(-3, 8)
  858. assert atan(sqrt(5 - 2 * sqrt(5))) == pi/5
  859. assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10
  860. assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == pi*Rational(3, 10)
  861. assert atan(-2 + sqrt(3)) == -pi/12
  862. assert atan(2 + sqrt(3)) == pi*Rational(5, 12)
  863. assert atan(-2 - sqrt(3)) == pi*Rational(-5, 12)
  864. # check round-trip for exact values:
  865. for d in [5, 6, 8, 10, 12]:
  866. for num in range(-(d//2), d//2 + 1):
  867. if gcd(num, d) == 1:
  868. assert atan(tan(num*pi/d)) == num*pi/d
  869. assert atan(oo) == pi/2
  870. assert atan(x).diff(x) == 1/(1 + x**2)
  871. assert atan(r).is_real is True
  872. assert atan(-2*I) == -I*atanh(2)
  873. assert unchanged(atan, cot(x))
  874. assert atan(cot(Rational(1, 4))) == Rational(-1, 4) + pi/2
  875. assert acot(Rational(1, 4)).is_rational is False
  876. for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz):
  877. if s.is_real or s.is_extended_real is None:
  878. assert s.is_nonzero is atan(s).is_nonzero
  879. assert s.is_positive is atan(s).is_positive
  880. assert s.is_negative is atan(s).is_negative
  881. assert s.is_nonpositive is atan(s).is_nonpositive
  882. assert s.is_nonnegative is atan(s).is_nonnegative
  883. else:
  884. assert s.is_extended_nonzero is atan(s).is_nonzero
  885. assert s.is_extended_positive is atan(s).is_positive
  886. assert s.is_extended_negative is atan(s).is_negative
  887. assert s.is_extended_nonpositive is atan(s).is_nonpositive
  888. assert s.is_extended_nonnegative is atan(s).is_nonnegative
  889. assert s.is_extended_nonzero is atan(s).is_extended_nonzero
  890. assert s.is_extended_positive is atan(s).is_extended_positive
  891. assert s.is_extended_negative is atan(s).is_extended_negative
  892. assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive
  893. assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative
  894. def test_atan_rewrite():
  895. assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2
  896. assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
  897. assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x
  898. assert atan(x).rewrite(acot) == acot(1/x)
  899. assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x
  900. assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
  901. assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I})
  902. assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I})
  903. def test_atan_fdiff():
  904. assert atan(x).fdiff() == 1/(x**2 + 1)
  905. raises(ArgumentIndexError, lambda: atan(x).fdiff(2))
  906. def test_atan_leading_term():
  907. assert atan(x).as_leading_term(x) == x
  908. assert atan(1/x).as_leading_term(x, cdir=1) == pi/2
  909. assert atan(1/x).as_leading_term(x, cdir=-1) == -pi/2
  910. # Tests concerning branch points
  911. assert atan(x + I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2
  912. assert atan(x + I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2
  913. assert atan(x - I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2
  914. assert atan(x - I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2
  915. # Tests concerning points lying on branch cuts
  916. assert atan(x + 2*I).as_leading_term(x, cdir=1) == I*atanh(2)
  917. assert atan(x + 2*I).as_leading_term(x, cdir=-1) == -pi + I*atanh(2)
  918. assert atan(x - 2*I).as_leading_term(x, cdir=1) == pi - I*atanh(2)
  919. assert atan(x - 2*I).as_leading_term(x, cdir=-1) == -I*atanh(2)
  920. # Tests concerning re(ndir) == 0
  921. assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 + I*log(3)/2
  922. assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(3)/2
  923. def test_atan2():
  924. assert atan2.nargs == FiniteSet(2)
  925. assert atan2(0, 0) is S.NaN
  926. assert atan2(0, 1) == 0
  927. assert atan2(1, 1) == pi/4
  928. assert atan2(1, 0) == pi/2
  929. assert atan2(1, -1) == pi*Rational(3, 4)
  930. assert atan2(0, -1) == pi
  931. assert atan2(-1, -1) == pi*Rational(-3, 4)
  932. assert atan2(-1, 0) == -pi/2
  933. assert atan2(-1, 1) == -pi/4
  934. i = symbols('i', imaginary=True)
  935. r = symbols('r', real=True)
  936. eq = atan2(r, i)
  937. ans = -I*log((i + I*r)/sqrt(i**2 + r**2))
  938. reps = ((r, 2), (i, I))
  939. assert eq.subs(reps) == ans.subs(reps)
  940. x = Symbol('x', negative=True)
  941. y = Symbol('y', negative=True)
  942. assert atan2(y, x) == atan(y/x) - pi
  943. y = Symbol('y', nonnegative=True)
  944. assert atan2(y, x) == atan(y/x) + pi
  945. y = Symbol('y')
  946. assert atan2(y, x) == atan2(y, x, evaluate=False)
  947. u = Symbol("u", positive=True)
  948. assert atan2(0, u) == 0
  949. u = Symbol("u", negative=True)
  950. assert atan2(0, u) == pi
  951. assert atan2(y, oo) == 0
  952. assert atan2(y, -oo)== 2*pi*Heaviside(re(y), S.Half) - pi
  953. assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
  954. assert atan2(0, 0) is S.NaN
  955. ex = atan2(y, x) - arg(x + I*y)
  956. assert ex.subs({x:2, y:3}).rewrite(arg) == 0
  957. assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5)
  958. assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I)
  959. assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(Rational(2, 3)) + atan(Rational(3, 2))
  960. i = symbols('i', imaginary=True)
  961. r = symbols('r', real=True)
  962. e = atan2(i, r)
  963. rewrite = e.rewrite(arg)
  964. reps = {i: I, r: -2}
  965. assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2))
  966. assert (e - rewrite).subs(reps).equals(0)
  967. assert atan2(0, x).rewrite(atan) == Piecewise((pi, re(x) < 0),
  968. (0, Ne(x, 0)),
  969. (nan, True))
  970. assert atan2(0, r).rewrite(atan) == Piecewise((pi, r < 0), (0, Ne(r, 0)), (S.NaN, True))
  971. assert atan2(0, i),rewrite(atan) == 0
  972. assert atan2(0, r + i).rewrite(atan) == Piecewise((pi, r < 0), (0, True))
  973. assert atan2(y, x).rewrite(atan) == Piecewise(
  974. (2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
  975. (pi, re(x) < 0),
  976. (0, (re(x) > 0) | Ne(im(x), 0)),
  977. (nan, True))
  978. assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))
  979. assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
  980. assert diff(atan2(y, x), y) == x/(x**2 + y**2)
  981. assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
  982. assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2)
  983. assert str(atan2(1, 2).evalf(5)) == '0.46365'
  984. raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3))
  985. def test_issue_17461():
  986. class A(Symbol):
  987. is_extended_real = True
  988. def _eval_evalf(self, prec):
  989. return Float(5.0)
  990. x = A('X')
  991. y = A('Y')
  992. assert abs(atan2(x, y).evalf() - 0.785398163397448) <= 1e-10
  993. def test_acot():
  994. assert acot(nan) is nan
  995. assert acot.nargs == FiniteSet(1)
  996. assert acot(-oo) == 0
  997. assert acot(oo) == 0
  998. assert acot(zoo) == 0
  999. assert acot(1) == pi/4
  1000. assert acot(0) == pi/2
  1001. assert acot(sqrt(3)/3) == pi/3
  1002. assert acot(1/sqrt(3)) == pi/3
  1003. assert acot(-1/sqrt(3)) == -pi/3
  1004. assert acot(x).diff(x) == -1/(1 + x**2)
  1005. assert acot(r).is_extended_real is True
  1006. assert acot(I*pi) == -I*acoth(pi)
  1007. assert acot(-2*I) == I*acoth(2)
  1008. assert acot(x).is_positive is None
  1009. assert acot(n).is_positive is False
  1010. assert acot(p).is_positive is True
  1011. assert acot(I).is_positive is False
  1012. assert acot(Rational(1, 4)).is_rational is False
  1013. assert unchanged(acot, cot(x))
  1014. assert unchanged(acot, tan(x))
  1015. assert acot(cot(Rational(1, 4))) == Rational(1, 4)
  1016. assert acot(tan(Rational(-1, 4))) == Rational(1, 4) - pi/2
  1017. def test_acot_rewrite():
  1018. assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2
  1019. assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2))
  1020. assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1))
  1021. assert acot(x).rewrite(atan) == atan(1/x)
  1022. assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2))
  1023. assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2))
  1024. assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5})
  1025. assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5})
  1026. def test_acot_fdiff():
  1027. assert acot(x).fdiff() == -1/(x**2 + 1)
  1028. raises(ArgumentIndexError, lambda: acot(x).fdiff(2))
  1029. def test_acot_leading_term():
  1030. assert acot(1/x).as_leading_term(x) == x
  1031. # Tests concerning branch points
  1032. assert acot(x + I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2
  1033. assert acot(x + I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2
  1034. assert acot(x - I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2
  1035. assert acot(x - I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2
  1036. # Tests concerning points lying on branch cuts
  1037. assert acot(x).as_leading_term(x, cdir=1) == pi/2
  1038. assert acot(x).as_leading_term(x, cdir=-1) == -pi/2
  1039. assert acot(x + I/2).as_leading_term(x, cdir=1) == pi - I*acoth(S(1)/2)
  1040. assert acot(x + I/2).as_leading_term(x, cdir=-1) == -I*acoth(S(1)/2)
  1041. assert acot(x - I/2).as_leading_term(x, cdir=1) == I*acoth(S(1)/2)
  1042. assert acot(x - I/2).as_leading_term(x, cdir=-1) == -pi + I*acoth(S(1)/2)
  1043. # Tests concerning re(ndir) == 0
  1044. assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 - I*log(3)/2
  1045. assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 - I*log(3)/2
  1046. def test_attributes():
  1047. assert sin(x).args == (x,)
  1048. def test_sincos_rewrite():
  1049. assert sin(pi/2 - x) == cos(x)
  1050. assert sin(pi - x) == sin(x)
  1051. assert cos(pi/2 - x) == sin(x)
  1052. assert cos(pi - x) == -cos(x)
  1053. def _check_even_rewrite(func, arg):
  1054. """Checks that the expr has been rewritten using f(-x) -> f(x)
  1055. arg : -x
  1056. """
  1057. return func(arg).args[0] == -arg
  1058. def _check_odd_rewrite(func, arg):
  1059. """Checks that the expr has been rewritten using f(-x) -> -f(x)
  1060. arg : -x
  1061. """
  1062. return func(arg).func.is_Mul
  1063. def _check_no_rewrite(func, arg):
  1064. """Checks that the expr is not rewritten"""
  1065. return func(arg).args[0] == arg
  1066. def test_evenodd_rewrite():
  1067. a = cos(2) # negative
  1068. b = sin(1) # positive
  1069. even = [cos]
  1070. odd = [sin, tan, cot, asin, atan, acot]
  1071. with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y]
  1072. for func in even:
  1073. for expr in with_minus:
  1074. assert _check_even_rewrite(func, expr)
  1075. assert _check_no_rewrite(func, a*b)
  1076. assert func(
  1077. x - y) == func(y - x) # it doesn't matter which form is canonical
  1078. for func in odd:
  1079. for expr in with_minus:
  1080. assert _check_odd_rewrite(func, expr)
  1081. assert _check_no_rewrite(func, a*b)
  1082. assert func(
  1083. x - y) == -func(y - x) # it doesn't matter which form is canonical
  1084. def test_as_leading_term_issue_5272():
  1085. assert sin(x).as_leading_term(x) == x
  1086. assert cos(x).as_leading_term(x) == 1
  1087. assert tan(x).as_leading_term(x) == x
  1088. assert cot(x).as_leading_term(x) == 1/x
  1089. def test_leading_terms():
  1090. assert sin(1/x).as_leading_term(x) == AccumBounds(-1, 1)
  1091. assert sin(S.Half).as_leading_term(x) == sin(S.Half)
  1092. assert cos(1/x).as_leading_term(x) == AccumBounds(-1, 1)
  1093. assert cos(S.Half).as_leading_term(x) == cos(S.Half)
  1094. assert sec(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
  1095. assert csc(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
  1096. assert tan(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
  1097. assert cot(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
  1098. # https://github.com/sympy/sympy/issues/21038
  1099. f = sin(pi*(x + 4))/(3*x)
  1100. assert f.as_leading_term(x) == pi/3
  1101. def test_atan2_expansion():
  1102. assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0
  1103. assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5)
  1104. + atan2(0, x) - atan(0)) == O(y**5)
  1105. assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4)
  1106. + atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1))
  1107. assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3)
  1108. + atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1))
  1109. assert Matrix([atan2(y, x)]).jacobian([y, x]) == \
  1110. Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]])
  1111. def test_aseries():
  1112. def t(n, v, d, e):
  1113. assert abs(
  1114. n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e
  1115. t(atan, 0.1, '+', 1e-5)
  1116. t(atan, -0.1, '-', 1e-5)
  1117. t(acot, 0.1, '+', 1e-5)
  1118. t(acot, -0.1, '-', 1e-5)
  1119. def test_issue_4420():
  1120. i = Symbol('i', integer=True)
  1121. e = Symbol('e', even=True)
  1122. o = Symbol('o', odd=True)
  1123. # unknown parity for variable
  1124. assert cos(4*i*pi) == 1
  1125. assert sin(4*i*pi) == 0
  1126. assert tan(4*i*pi) == 0
  1127. assert cot(4*i*pi) is zoo
  1128. assert cos(3*i*pi) == cos(pi*i) # +/-1
  1129. assert sin(3*i*pi) == 0
  1130. assert tan(3*i*pi) == 0
  1131. assert cot(3*i*pi) is zoo
  1132. assert cos(4.0*i*pi) == 1
  1133. assert sin(4.0*i*pi) == 0
  1134. assert tan(4.0*i*pi) == 0
  1135. assert cot(4.0*i*pi) is zoo
  1136. assert cos(3.0*i*pi) == cos(pi*i) # +/-1
  1137. assert sin(3.0*i*pi) == 0
  1138. assert tan(3.0*i*pi) == 0
  1139. assert cot(3.0*i*pi) is zoo
  1140. assert cos(4.5*i*pi) == cos(0.5*pi*i)
  1141. assert sin(4.5*i*pi) == sin(0.5*pi*i)
  1142. assert tan(4.5*i*pi) == tan(0.5*pi*i)
  1143. assert cot(4.5*i*pi) == cot(0.5*pi*i)
  1144. # parity of variable is known
  1145. assert cos(4*e*pi) == 1
  1146. assert sin(4*e*pi) == 0
  1147. assert tan(4*e*pi) == 0
  1148. assert cot(4*e*pi) is zoo
  1149. assert cos(3*e*pi) == 1
  1150. assert sin(3*e*pi) == 0
  1151. assert tan(3*e*pi) == 0
  1152. assert cot(3*e*pi) is zoo
  1153. assert cos(4.0*e*pi) == 1
  1154. assert sin(4.0*e*pi) == 0
  1155. assert tan(4.0*e*pi) == 0
  1156. assert cot(4.0*e*pi) is zoo
  1157. assert cos(3.0*e*pi) == 1
  1158. assert sin(3.0*e*pi) == 0
  1159. assert tan(3.0*e*pi) == 0
  1160. assert cot(3.0*e*pi) is zoo
  1161. assert cos(4.5*e*pi) == cos(0.5*pi*e)
  1162. assert sin(4.5*e*pi) == sin(0.5*pi*e)
  1163. assert tan(4.5*e*pi) == tan(0.5*pi*e)
  1164. assert cot(4.5*e*pi) == cot(0.5*pi*e)
  1165. assert cos(4*o*pi) == 1
  1166. assert sin(4*o*pi) == 0
  1167. assert tan(4*o*pi) == 0
  1168. assert cot(4*o*pi) is zoo
  1169. assert cos(3*o*pi) == -1
  1170. assert sin(3*o*pi) == 0
  1171. assert tan(3*o*pi) == 0
  1172. assert cot(3*o*pi) is zoo
  1173. assert cos(4.0*o*pi) == 1
  1174. assert sin(4.0*o*pi) == 0
  1175. assert tan(4.0*o*pi) == 0
  1176. assert cot(4.0*o*pi) is zoo
  1177. assert cos(3.0*o*pi) == -1
  1178. assert sin(3.0*o*pi) == 0
  1179. assert tan(3.0*o*pi) == 0
  1180. assert cot(3.0*o*pi) is zoo
  1181. assert cos(4.5*o*pi) == cos(0.5*pi*o)
  1182. assert sin(4.5*o*pi) == sin(0.5*pi*o)
  1183. assert tan(4.5*o*pi) == tan(0.5*pi*o)
  1184. assert cot(4.5*o*pi) == cot(0.5*pi*o)
  1185. # x could be imaginary
  1186. assert cos(4*x*pi) == cos(4*pi*x)
  1187. assert sin(4*x*pi) == sin(4*pi*x)
  1188. assert tan(4*x*pi) == tan(4*pi*x)
  1189. assert cot(4*x*pi) == cot(4*pi*x)
  1190. assert cos(3*x*pi) == cos(3*pi*x)
  1191. assert sin(3*x*pi) == sin(3*pi*x)
  1192. assert tan(3*x*pi) == tan(3*pi*x)
  1193. assert cot(3*x*pi) == cot(3*pi*x)
  1194. assert cos(4.0*x*pi) == cos(4.0*pi*x)
  1195. assert sin(4.0*x*pi) == sin(4.0*pi*x)
  1196. assert tan(4.0*x*pi) == tan(4.0*pi*x)
  1197. assert cot(4.0*x*pi) == cot(4.0*pi*x)
  1198. assert cos(3.0*x*pi) == cos(3.0*pi*x)
  1199. assert sin(3.0*x*pi) == sin(3.0*pi*x)
  1200. assert tan(3.0*x*pi) == tan(3.0*pi*x)
  1201. assert cot(3.0*x*pi) == cot(3.0*pi*x)
  1202. assert cos(4.5*x*pi) == cos(4.5*pi*x)
  1203. assert sin(4.5*x*pi) == sin(4.5*pi*x)
  1204. assert tan(4.5*x*pi) == tan(4.5*pi*x)
  1205. assert cot(4.5*x*pi) == cot(4.5*pi*x)
  1206. def test_inverses():
  1207. raises(AttributeError, lambda: sin(x).inverse())
  1208. raises(AttributeError, lambda: cos(x).inverse())
  1209. assert tan(x).inverse() == atan
  1210. assert cot(x).inverse() == acot
  1211. raises(AttributeError, lambda: csc(x).inverse())
  1212. raises(AttributeError, lambda: sec(x).inverse())
  1213. assert asin(x).inverse() == sin
  1214. assert acos(x).inverse() == cos
  1215. assert atan(x).inverse() == tan
  1216. assert acot(x).inverse() == cot
  1217. def test_real_imag():
  1218. a, b = symbols('a b', real=True)
  1219. z = a + b*I
  1220. for deep in [True, False]:
  1221. assert sin(
  1222. z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b))
  1223. assert cos(
  1224. z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b))
  1225. assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) +
  1226. cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b)))
  1227. assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) -
  1228. cosh(2*b)), sinh(2*b)/(cos(2*a) - cosh(2*b)))
  1229. assert sin(a).as_real_imag(deep=deep) == (sin(a), 0)
  1230. assert cos(a).as_real_imag(deep=deep) == (cos(a), 0)
  1231. assert tan(a).as_real_imag(deep=deep) == (tan(a), 0)
  1232. assert cot(a).as_real_imag(deep=deep) == (cot(a), 0)
  1233. @XFAIL
  1234. def test_sin_cos_with_infinity():
  1235. # Test for issue 5196
  1236. # https://github.com/sympy/sympy/issues/5196
  1237. assert sin(oo) is S.NaN
  1238. assert cos(oo) is S.NaN
  1239. @slow
  1240. def test_sincos_rewrite_sqrt():
  1241. # equivalent to testing rewrite(pow)
  1242. for p in [1, 3, 5, 17]:
  1243. for t in [1, 8]:
  1244. n = t*p
  1245. # The vertices `exp(i*pi/n)` of a regular `n`-gon can
  1246. # be expressed by means of nested square roots if and
  1247. # only if `n` is a product of Fermat primes, `p`, and
  1248. # powers of 2, `t'. The code aims to check all vertices
  1249. # not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`).
  1250. # For large `n` this makes the test too slow, therefore
  1251. # the vertices are limited to those of index `i < 10`.
  1252. for i in range(1, min((n + 1)//2 + 1, 10)):
  1253. if 1 == gcd(i, n):
  1254. x = i*pi/n
  1255. s1 = sin(x).rewrite(sqrt)
  1256. c1 = cos(x).rewrite(sqrt)
  1257. assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
  1258. assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
  1259. assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n)
  1260. assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n)
  1261. assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half)
  1262. assert cos(pi*Rational(-15, 2)/11, evaluate=False).rewrite(
  1263. sqrt) == -sqrt(-cos(pi*Rational(4, 11))/2 + S.Half)
  1264. assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite(
  1265. sqrt) == -1
  1266. e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation
  1267. a = (
  1268. -3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 -
  1269. 3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) +
  1270. 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
  1271. + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17)
  1272. + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1273. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - Rational(1, 32) +
  1274. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1275. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
  1276. 3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128
  1277. + 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) +
  1278. 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
  1279. + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32
  1280. + sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 +
  1281. sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
  1282. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1283. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/8 -
  1284. 5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
  1285. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1286. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
  1287. Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1288. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 -
  1289. 3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
  1290. sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
  1291. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1292. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32
  1293. + sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
  1294. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1295. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
  1296. Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1297. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
  1298. sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
  1299. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1300. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/2 +
  1301. S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) +
  1302. 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
  1303. sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
  1304. 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
  1305. sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
  1306. 6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
  1307. sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
  1308. sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
  1309. 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
  1310. Rational(15, 32))/32)/2)
  1311. assert e.rewrite(sqrt) == a
  1312. assert e.n() == a.n()
  1313. # coverage of fermatCoords: multiplicity > 1; the following could be
  1314. # different but that portion of the code should be tested in some way
  1315. assert cos(pi/9/17).rewrite(sqrt) == \
  1316. sin(pi/9)*sin(pi*Rational(2, 17)) + cos(pi/9)*cos(pi*Rational(2, 17))
  1317. @slow
  1318. def test_sincos_rewrite_sqrt_257():
  1319. assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64)
  1320. @slow
  1321. def test_tancot_rewrite_sqrt():
  1322. # equivalent to testing rewrite(pow)
  1323. for p in [1, 3, 5, 17]:
  1324. for t in [1, 8]:
  1325. n = t*p
  1326. for i in range(1, min((n + 1)//2 + 1, 10)):
  1327. if 1 == gcd(i, n):
  1328. x = i*pi/n
  1329. if 2*i != n and 3*i != 2*n:
  1330. t1 = tan(x).rewrite(sqrt)
  1331. assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
  1332. assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
  1333. if i != 0 and i != n:
  1334. c1 = cot(x).rewrite(sqrt)
  1335. assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
  1336. assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
  1337. def test_sec():
  1338. x = symbols('x', real=True)
  1339. z = symbols('z')
  1340. assert sec.nargs == FiniteSet(1)
  1341. assert sec(zoo) is nan
  1342. assert sec(0) == 1
  1343. assert sec(pi) == -1
  1344. assert sec(pi/2) is zoo
  1345. assert sec(-pi/2) is zoo
  1346. assert sec(pi/6) == 2*sqrt(3)/3
  1347. assert sec(pi/3) == 2
  1348. assert sec(pi*Rational(5, 2)) is zoo
  1349. assert sec(pi*Rational(9, 7)) == -sec(pi*Rational(2, 7))
  1350. assert sec(pi*Rational(3, 4)) == -sqrt(2) # issue 8421
  1351. assert sec(I) == 1/cosh(1)
  1352. assert sec(x*I) == 1/cosh(x)
  1353. assert sec(-x) == sec(x)
  1354. assert sec(asec(x)) == x
  1355. assert sec(z).conjugate() == sec(conjugate(z))
  1356. assert (sec(z).as_real_imag() ==
  1357. (cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
  1358. cos(re(z))**2*cosh(im(z))**2),
  1359. sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
  1360. cos(re(z))**2*cosh(im(z))**2)))
  1361. assert sec(x).expand(trig=True) == 1/cos(x)
  1362. assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1)
  1363. assert sec(x).is_extended_real == True
  1364. assert sec(z).is_real == None
  1365. assert sec(a).is_algebraic is None
  1366. assert sec(na).is_algebraic is False
  1367. assert sec(x).as_leading_term() == sec(x)
  1368. assert sec(0, evaluate=False).is_finite == True
  1369. assert sec(x).is_finite == None
  1370. assert sec(pi/2, evaluate=False).is_finite == False
  1371. assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
  1372. # https://github.com/sympy/sympy/issues/7166
  1373. assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6)
  1374. # https://github.com/sympy/sympy/issues/7167
  1375. assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
  1376. 1/sqrt(x - pi*Rational(3, 2)) + (x - pi*Rational(3, 2))**Rational(3, 2)/12 +
  1377. (x - pi*Rational(3, 2))**Rational(7, 2)/160 + O((x - pi*Rational(3, 2))**4, (x, pi*Rational(3, 2))))
  1378. assert sec(x).diff(x) == tan(x)*sec(x)
  1379. # Taylor Term checks
  1380. assert sec(z).taylor_term(4, z) == 5*z**4/24
  1381. assert sec(z).taylor_term(6, z) == 61*z**6/720
  1382. assert sec(z).taylor_term(5, z) == 0
  1383. def test_sec_rewrite():
  1384. assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2)
  1385. assert sec(x).rewrite(cos) == 1/cos(x)
  1386. assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1)
  1387. assert sec(x).rewrite(pow) == sec(x)
  1388. assert sec(x).rewrite(sqrt) == sec(x)
  1389. assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1)
  1390. assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False)
  1391. assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1)
  1392. assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)
  1393. def test_sec_fdiff():
  1394. assert sec(x).fdiff() == tan(x)*sec(x)
  1395. raises(ArgumentIndexError, lambda: sec(x).fdiff(2))
  1396. def test_csc():
  1397. x = symbols('x', real=True)
  1398. z = symbols('z')
  1399. # https://github.com/sympy/sympy/issues/6707
  1400. cosecant = csc('x')
  1401. alternate = 1/sin('x')
  1402. assert cosecant.equals(alternate) == True
  1403. assert alternate.equals(cosecant) == True
  1404. assert csc.nargs == FiniteSet(1)
  1405. assert csc(0) is zoo
  1406. assert csc(pi) is zoo
  1407. assert csc(zoo) is nan
  1408. assert csc(pi/2) == 1
  1409. assert csc(-pi/2) == -1
  1410. assert csc(pi/6) == 2
  1411. assert csc(pi/3) == 2*sqrt(3)/3
  1412. assert csc(pi*Rational(5, 2)) == 1
  1413. assert csc(pi*Rational(9, 7)) == -csc(pi*Rational(2, 7))
  1414. assert csc(pi*Rational(3, 4)) == sqrt(2) # issue 8421
  1415. assert csc(I) == -I/sinh(1)
  1416. assert csc(x*I) == -I/sinh(x)
  1417. assert csc(-x) == -csc(x)
  1418. assert csc(acsc(x)) == x
  1419. assert csc(z).conjugate() == csc(conjugate(z))
  1420. assert (csc(z).as_real_imag() ==
  1421. (sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
  1422. cos(re(z))**2*sinh(im(z))**2),
  1423. -cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
  1424. cos(re(z))**2*sinh(im(z))**2)))
  1425. assert csc(x).expand(trig=True) == 1/sin(x)
  1426. assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x))
  1427. assert csc(x).is_extended_real == True
  1428. assert csc(z).is_real == None
  1429. assert csc(a).is_algebraic is None
  1430. assert csc(na).is_algebraic is False
  1431. assert csc(x).as_leading_term() == csc(x)
  1432. assert csc(0, evaluate=False).is_finite == False
  1433. assert csc(x).is_finite == None
  1434. assert csc(pi/2, evaluate=False).is_finite == True
  1435. assert series(csc(x), x, x0=pi/2, n=6) == \
  1436. 1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2))
  1437. assert series(csc(x), x, x0=0, n=6) == \
  1438. 1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6)
  1439. assert csc(x).diff(x) == -cot(x)*csc(x)
  1440. assert csc(x).taylor_term(2, x) == 0
  1441. assert csc(x).taylor_term(3, x) == 7*x**3/360
  1442. assert csc(x).taylor_term(5, x) == 31*x**5/15120
  1443. raises(ArgumentIndexError, lambda: csc(x).fdiff(2))
  1444. def test_asec():
  1445. z = Symbol('z', zero=True)
  1446. assert asec(z) is zoo
  1447. assert asec(nan) is nan
  1448. assert asec(1) == 0
  1449. assert asec(-1) == pi
  1450. assert asec(oo) == pi/2
  1451. assert asec(-oo) == pi/2
  1452. assert asec(zoo) == pi/2
  1453. assert asec(sec(pi*Rational(13, 4))) == pi*Rational(3, 4)
  1454. assert asec(1 + sqrt(5)) == pi*Rational(2, 5)
  1455. assert asec(2/sqrt(3)) == pi/6
  1456. assert asec(sqrt(4 - 2*sqrt(2))) == pi/8
  1457. assert asec(-sqrt(4 + 2*sqrt(2))) == pi*Rational(5, 8)
  1458. assert asec(sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(3, 10)
  1459. assert asec(-sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(7, 10)
  1460. assert asec(sqrt(2) - sqrt(6)) == pi*Rational(11, 12)
  1461. assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2))
  1462. assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2
  1463. assert asec(x).rewrite(asin) == -asin(1/x) + pi/2
  1464. assert asec(x).rewrite(acos) == acos(1/x)
  1465. assert asec(x).rewrite(atan) == \
  1466. pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*atan(sqrt(x**2 - 1))/x
  1467. assert asec(x).rewrite(acot) == \
  1468. pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*acot(1/sqrt(x**2 - 1))/x
  1469. assert asec(x).rewrite(acsc) == -acsc(x) + pi/2
  1470. raises(ArgumentIndexError, lambda: asec(x).fdiff(2))
  1471. def test_asec_is_real():
  1472. assert asec(S.Half).is_real is False
  1473. n = Symbol('n', positive=True, integer=True)
  1474. assert asec(n).is_extended_real is True
  1475. assert asec(x).is_real is None
  1476. assert asec(r).is_real is None
  1477. t = Symbol('t', real=False, finite=True)
  1478. assert asec(t).is_real is False
  1479. def test_asec_leading_term():
  1480. assert asec(1/x).as_leading_term(x) == pi/2
  1481. # Tests concerning branch points
  1482. assert asec(x + 1).as_leading_term(x) == sqrt(2)*sqrt(x)
  1483. assert asec(x - 1).as_leading_term(x) == pi
  1484. # Tests concerning points lying on branch cuts
  1485. assert asec(x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2)
  1486. assert asec(x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2)
  1487. assert asec(I*x + 1/2).as_leading_term(x, cdir=1) == asec(1/2)
  1488. assert asec(-I*x + 1/2).as_leading_term(x, cdir=1) == -asec(1/2)
  1489. assert asec(I*x - 1/2).as_leading_term(x, cdir=1) == 2*pi - asec(-1/2)
  1490. assert asec(-I*x - 1/2).as_leading_term(x, cdir=1) == asec(-1/2)
  1491. # Tests concerning im(ndir) == 0
  1492. assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == pi + I*log(2 - sqrt(3))
  1493. assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == pi + I*log(2 - sqrt(3))
  1494. def test_asec_series():
  1495. assert asec(x).series(x, 0, 9) == \
  1496. I*log(2) - I*log(x) - I*x**2/4 - 3*I*x**4/32 \
  1497. - 5*I*x**6/96 - 35*I*x**8/1024 + O(x**9)
  1498. t4 = asec(x).taylor_term(4, x)
  1499. assert t4 == -3*I*x**4/32
  1500. assert asec(x).taylor_term(6, x, t4, 0) == -5*I*x**6/96
  1501. def test_acsc():
  1502. assert acsc(nan) is nan
  1503. assert acsc(1) == pi/2
  1504. assert acsc(-1) == -pi/2
  1505. assert acsc(oo) == 0
  1506. assert acsc(-oo) == 0
  1507. assert acsc(zoo) == 0
  1508. assert acsc(0) is zoo
  1509. assert acsc(csc(3)) == -3 + pi
  1510. assert acsc(csc(4)) == -4 + pi
  1511. assert acsc(csc(6)) == 6 - 2*pi
  1512. assert unchanged(acsc, csc(x))
  1513. assert unchanged(acsc, sec(x))
  1514. assert acsc(2/sqrt(3)) == pi/3
  1515. assert acsc(csc(pi*Rational(13, 4))) == -pi/4
  1516. assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5
  1517. assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5
  1518. assert acsc(-2) == -pi/6
  1519. assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8
  1520. assert acsc(sqrt(4 - 2*sqrt(2))) == pi*Rational(3, 8)
  1521. assert acsc(1 + sqrt(5)) == pi/10
  1522. assert acsc(sqrt(2) - sqrt(6)) == pi*Rational(-5, 12)
  1523. assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2))
  1524. assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x)
  1525. assert acsc(x).rewrite(asin) == asin(1/x)
  1526. assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2
  1527. assert acsc(x).rewrite(atan) == \
  1528. (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
  1529. assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
  1530. assert acsc(x).rewrite(asec) == -asec(x) + pi/2
  1531. raises(ArgumentIndexError, lambda: acsc(x).fdiff(2))
  1532. def test_csc_rewrite():
  1533. assert csc(x).rewrite(pow) == csc(x)
  1534. assert csc(x).rewrite(sqrt) == csc(x)
  1535. assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x))
  1536. assert csc(x).rewrite(sin) == 1/sin(x)
  1537. assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2))
  1538. assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2))
  1539. assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False)
  1540. assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False)
  1541. # issue 17349
  1542. assert csc(1 - exp(-besselj(I, I))).rewrite(cos) == \
  1543. -1/cos(-pi/2 - 1 + cos(I*besselj(I, I)) +
  1544. I*cos(-pi/2 + I*besselj(I, I), evaluate=False), evaluate=False)
  1545. def test_acsc_leading_term():
  1546. assert acsc(1/x).as_leading_term(x) == x
  1547. # Tests concerning branch points
  1548. assert acsc(x + 1).as_leading_term(x) == pi/2
  1549. assert acsc(x - 1).as_leading_term(x) == -pi/2
  1550. # Tests concerning points lying on branch cuts
  1551. assert acsc(x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2)
  1552. assert acsc(x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2)
  1553. assert acsc(I*x + 1/2).as_leading_term(x, cdir=1) == acsc(1/2)
  1554. assert acsc(-I*x + 1/2).as_leading_term(x, cdir=1) == pi - acsc(1/2)
  1555. assert acsc(I*x - 1/2).as_leading_term(x, cdir=1) == -pi - acsc(-1/2)
  1556. assert acsc(-I*x - 1/2).as_leading_term(x, cdir=1) == -acsc(1/2)
  1557. # Tests concerning im(ndir) == 0
  1558. assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == -pi/2 + I*log(sqrt(3) + 2)
  1559. assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(sqrt(3) + 2)
  1560. def test_acsc_series():
  1561. assert acsc(x).series(x, 0, 9) == \
  1562. -I*log(2) + pi/2 + I*log(x) + I*x**2/4 \
  1563. + 3*I*x**4/32 + 5*I*x**6/96 + 35*I*x**8/1024 + O(x**9)
  1564. t6 = acsc(x).taylor_term(6, x)
  1565. assert t6 == 5*I*x**6/96
  1566. assert acsc(x).taylor_term(8, x, t6, 0) == 35*I*x**8/1024
  1567. def test_asin_nseries():
  1568. assert asin(x + 2)._eval_nseries(x, 4, None, I) == -asin(2) + pi + \
  1569. sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
  1570. assert asin(x + 2)._eval_nseries(x, 4, None, -I) == asin(2) - \
  1571. sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
  1572. assert asin(x - 2)._eval_nseries(x, 4, None, I) == -asin(2) - \
  1573. sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
  1574. assert asin(x - 2)._eval_nseries(x, 4, None, -I) == asin(2) - pi + \
  1575. sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
  1576. # testing nseries for asin at branch points
  1577. assert asin(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) - \
  1578. sqrt(2)*(-x)**(S(3)/2)/12 - 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
  1579. assert asin(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) + \
  1580. sqrt(2)*x**(S(3)/2)/12 + 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
  1581. assert asin(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) + \
  1582. sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
  1583. assert asin(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \
  1584. sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
  1585. def test_acos_nseries():
  1586. assert acos(x + 2)._eval_nseries(x, 4, None, I) == -acos(2) - sqrt(3)*I*x/3 + \
  1587. sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
  1588. assert acos(x + 2)._eval_nseries(x, 4, None, -I) == acos(2) + sqrt(3)*I*x/3 - \
  1589. sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
  1590. assert acos(x - 2)._eval_nseries(x, 4, None, I) == acos(-2) + sqrt(3)*I*x/3 + \
  1591. sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
  1592. assert acos(x - 2)._eval_nseries(x, 4, None, -I) == -acos(-2) + 2*pi - \
  1593. sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
  1594. # testing nseries for acos at branch points
  1595. assert acos(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) + \
  1596. sqrt(2)*(-x)**(S(3)/2)/12 + 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
  1597. assert acos(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) - \
  1598. sqrt(2)*x**(S(3)/2)/12 - 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
  1599. assert acos(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) - \
  1600. sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
  1601. assert acos(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \
  1602. sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
  1603. def test_atan_nseries():
  1604. assert atan(x + 2*I)._eval_nseries(x, 4, None, 1) == I*atanh(2) - x/3 - \
  1605. 2*I*x**2/9 + 13*x**3/81 + O(x**4)
  1606. assert atan(x + 2*I)._eval_nseries(x, 4, None, -1) == I*atanh(2) - pi - \
  1607. x/3 - 2*I*x**2/9 + 13*x**3/81 + O(x**4)
  1608. assert atan(x - 2*I)._eval_nseries(x, 4, None, 1) == -I*atanh(2) + pi - \
  1609. x/3 + 2*I*x**2/9 + 13*x**3/81 + O(x**4)
  1610. assert atan(x - 2*I)._eval_nseries(x, 4, None, -1) == -I*atanh(2) - x/3 + \
  1611. 2*I*x**2/9 + 13*x**3/81 + O(x**4)
  1612. assert atan(1/x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2)
  1613. assert atan(1/x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2)
  1614. # testing nseries for atan at branch points
  1615. assert atan(x + I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \
  1616. I*log(x)/2 + x/4 + I*x**2/16 - x**3/48 + O(x**4)
  1617. assert atan(x - I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \
  1618. I*log(x)/2 + x/4 - I*x**2/16 - x**3/48 + O(x**4)
  1619. def test_acot_nseries():
  1620. assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, 1) == -I*acoth(S(1)/2) + \
  1621. pi - 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4)
  1622. assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, -1) == -I*acoth(S(1)/2) - \
  1623. 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4)
  1624. assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, 1) == I*acoth(S(1)/2) - \
  1625. 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4)
  1626. assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, -1) == I*acoth(S(1)/2) - \
  1627. pi - 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4)
  1628. assert acot(x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2)
  1629. assert acot(x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2)
  1630. # testing nseries for acot at branch points
  1631. assert acot(x + I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \
  1632. I*log(x)/2 - x/4 - I*x**2/16 + x**3/48 + O(x**4)
  1633. assert acot(x - I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \
  1634. I*log(x)/2 - x/4 + I*x**2/16 + x**3/48 + O(x**4)
  1635. def test_asec_nseries():
  1636. assert asec(x + S(1)/2)._eval_nseries(x, 4, None, I) == asec(S(1)/2) - \
  1637. 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
  1638. assert asec(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -asec(S(1)/2) + \
  1639. 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
  1640. assert asec(x - S(1)/2)._eval_nseries(x, 4, None, I) == -asec(-S(1)/2) + \
  1641. 2*pi + 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
  1642. assert asec(x - S(1)/2)._eval_nseries(x, 4, None, -I) == asec(-S(1)/2) - \
  1643. 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
  1644. # testing nseries for asec at branch points
  1645. assert asec(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \
  1646. 5*sqrt(2)*x**(S(3)/2)/12 + 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
  1647. assert asec(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \
  1648. 5*sqrt(2)*(-x)**(S(3)/2)/12 - 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
  1649. assert asec(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \
  1650. sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3)
  1651. assert asec(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) + \
  1652. sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3)
  1653. def test_acsc_nseries():
  1654. assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) + \
  1655. 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
  1656. assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \
  1657. pi - 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
  1658. assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) - pi -\
  1659. 4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
  1660. assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \
  1661. 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
  1662. # testing nseries for acsc at branch points
  1663. assert acsc(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \
  1664. 5*sqrt(2)*x**(S(3)/2)/12 - 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
  1665. assert acsc(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \
  1666. 5*sqrt(2)*(-x)**(S(3)/2)/12 + 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
  1667. assert acsc(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \
  1668. sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3)
  1669. assert acsc(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) - \
  1670. sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3)
  1671. def test_issue_8653():
  1672. n = Symbol('n', integer=True)
  1673. assert sin(n).is_irrational is None
  1674. assert cos(n).is_irrational is None
  1675. assert tan(n).is_irrational is None
  1676. def test_issue_9157():
  1677. n = Symbol('n', integer=True, positive=True)
  1678. assert atan(n - 1).is_nonnegative is True
  1679. def test_trig_period():
  1680. x, y = symbols('x, y')
  1681. assert sin(x).period() == 2*pi
  1682. assert cos(x).period() == 2*pi
  1683. assert tan(x).period() == pi
  1684. assert cot(x).period() == pi
  1685. assert sec(x).period() == 2*pi
  1686. assert csc(x).period() == 2*pi
  1687. assert sin(2*x).period() == pi
  1688. assert cot(4*x - 6).period() == pi/4
  1689. assert cos((-3)*x).period() == pi*Rational(2, 3)
  1690. assert cos(x*y).period(x) == 2*pi/abs(y)
  1691. assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x)
  1692. assert tan(3*x).period(y) is S.Zero
  1693. raises(NotImplementedError, lambda: sin(x**2).period(x))
  1694. def test_issue_7171():
  1695. assert sin(x).rewrite(sqrt) == sin(x)
  1696. assert sin(x).rewrite(pow) == sin(x)
  1697. def test_issue_11864():
  1698. w, k = symbols('w, k', real=True)
  1699. F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True))
  1700. soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True))
  1701. assert F.rewrite(sinc) == soln
  1702. def test_real_assumptions():
  1703. z = Symbol('z', real=False, finite=True)
  1704. assert sin(z).is_real is None
  1705. assert cos(z).is_real is None
  1706. assert tan(z).is_real is False
  1707. assert sec(z).is_real is None
  1708. assert csc(z).is_real is None
  1709. assert cot(z).is_real is False
  1710. assert asin(p).is_real is None
  1711. assert asin(n).is_real is None
  1712. assert asec(p).is_real is None
  1713. assert asec(n).is_real is None
  1714. assert acos(p).is_real is None
  1715. assert acos(n).is_real is None
  1716. assert acsc(p).is_real is None
  1717. assert acsc(n).is_real is None
  1718. assert atan(p).is_positive is True
  1719. assert atan(n).is_negative is True
  1720. assert acot(p).is_positive is True
  1721. assert acot(n).is_negative is True
  1722. def test_issue_14320():
  1723. assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi)
  1724. assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2)
  1725. assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2)
  1726. assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20)
  1727. assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi)
  1728. assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17)
  1729. assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15)
  1730. assert atan(cot(12)) == -12 + pi*Rational(7, 2) and (-pi/2 < -12 + pi*Rational(7, 2) < pi/2) and cot(12) == tan(-12 + pi*Rational(7, 2))
  1731. assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15)
  1732. assert acot(tan(19)) == -19 + pi*Rational(13, 2) and (-pi/2 < -19 + pi*Rational(13, 2) <= pi/2) and tan(19) == cot(-19 + pi*Rational(13, 2))
  1733. assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi)
  1734. assert asec(csc(13)) == -13 + pi*Rational(9, 2) and (0 <= -13 + pi*Rational(9, 2) <= pi) and sin(13) == cos(-13 + pi*Rational(9, 2))
  1735. assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14)
  1736. assert acsc(sec(10)) == pi*Rational(-7, 2) + 10 and (-pi/2 <= pi*Rational(-7, 2) + 10 <= pi/2) and cos(10) == sin(pi*Rational(-7, 2) + 10)
  1737. def test_issue_14543():
  1738. assert sec(2*pi + 11) == sec(11)
  1739. assert sec(2*pi - 11) == sec(11)
  1740. assert sec(pi + 11) == -sec(11)
  1741. assert sec(pi - 11) == -sec(11)
  1742. assert csc(2*pi + 17) == csc(17)
  1743. assert csc(2*pi - 17) == -csc(17)
  1744. assert csc(pi + 17) == -csc(17)
  1745. assert csc(pi - 17) == csc(17)
  1746. x = Symbol('x')
  1747. assert csc(pi/2 + x) == sec(x)
  1748. assert csc(pi/2 - x) == sec(x)
  1749. assert csc(pi*Rational(3, 2) + x) == -sec(x)
  1750. assert csc(pi*Rational(3, 2) - x) == -sec(x)
  1751. assert sec(pi/2 - x) == csc(x)
  1752. assert sec(pi/2 + x) == -csc(x)
  1753. assert sec(pi*Rational(3, 2) + x) == csc(x)
  1754. assert sec(pi*Rational(3, 2) - x) == -csc(x)
  1755. def test_as_real_imag():
  1756. # This is for https://github.com/sympy/sympy/issues/17142
  1757. # If it start failing again in irrelevant builds or in the master
  1758. # please open up the issue again.
  1759. expr = atan(I/(I + I*tan(1)))
  1760. assert expr.as_real_imag() == (expr, 0)
  1761. def test_issue_18746():
  1762. e3 = cos(S.Pi*(x/4 + 1/4))
  1763. assert e3.period() == 8