test_miscellaneous.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. import itertools as it
  2. from sympy.core.expr import unchanged
  3. from sympy.core.function import Function
  4. from sympy.core.numbers import I, oo, Rational
  5. from sympy.core.power import Pow
  6. from sympy.core.singleton import S
  7. from sympy.core.symbol import Symbol
  8. from sympy.external import import_module
  9. from sympy.functions.elementary.exponential import log
  10. from sympy.functions.elementary.integers import floor, ceiling
  11. from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min,
  12. Max, real_root, Rem)
  13. from sympy.functions.elementary.trigonometric import cos, sin
  14. from sympy.functions.special.delta_functions import Heaviside
  15. from sympy.utilities.lambdify import lambdify
  16. from sympy.testing.pytest import raises, skip, ignore_warnings
  17. def test_Min():
  18. from sympy.abc import x, y, z
  19. n = Symbol('n', negative=True)
  20. n_ = Symbol('n_', negative=True)
  21. nn = Symbol('nn', nonnegative=True)
  22. nn_ = Symbol('nn_', nonnegative=True)
  23. p = Symbol('p', positive=True)
  24. p_ = Symbol('p_', positive=True)
  25. np = Symbol('np', nonpositive=True)
  26. np_ = Symbol('np_', nonpositive=True)
  27. r = Symbol('r', real=True)
  28. assert Min(5, 4) == 4
  29. assert Min(-oo, -oo) is -oo
  30. assert Min(-oo, n) is -oo
  31. assert Min(n, -oo) is -oo
  32. assert Min(-oo, np) is -oo
  33. assert Min(np, -oo) is -oo
  34. assert Min(-oo, 0) is -oo
  35. assert Min(0, -oo) is -oo
  36. assert Min(-oo, nn) is -oo
  37. assert Min(nn, -oo) is -oo
  38. assert Min(-oo, p) is -oo
  39. assert Min(p, -oo) is -oo
  40. assert Min(-oo, oo) is -oo
  41. assert Min(oo, -oo) is -oo
  42. assert Min(n, n) == n
  43. assert unchanged(Min, n, np)
  44. assert Min(np, n) == Min(n, np)
  45. assert Min(n, 0) == n
  46. assert Min(0, n) == n
  47. assert Min(n, nn) == n
  48. assert Min(nn, n) == n
  49. assert Min(n, p) == n
  50. assert Min(p, n) == n
  51. assert Min(n, oo) == n
  52. assert Min(oo, n) == n
  53. assert Min(np, np) == np
  54. assert Min(np, 0) == np
  55. assert Min(0, np) == np
  56. assert Min(np, nn) == np
  57. assert Min(nn, np) == np
  58. assert Min(np, p) == np
  59. assert Min(p, np) == np
  60. assert Min(np, oo) == np
  61. assert Min(oo, np) == np
  62. assert Min(0, 0) == 0
  63. assert Min(0, nn) == 0
  64. assert Min(nn, 0) == 0
  65. assert Min(0, p) == 0
  66. assert Min(p, 0) == 0
  67. assert Min(0, oo) == 0
  68. assert Min(oo, 0) == 0
  69. assert Min(nn, nn) == nn
  70. assert unchanged(Min, nn, p)
  71. assert Min(p, nn) == Min(nn, p)
  72. assert Min(nn, oo) == nn
  73. assert Min(oo, nn) == nn
  74. assert Min(p, p) == p
  75. assert Min(p, oo) == p
  76. assert Min(oo, p) == p
  77. assert Min(oo, oo) is oo
  78. assert Min(n, n_).func is Min
  79. assert Min(nn, nn_).func is Min
  80. assert Min(np, np_).func is Min
  81. assert Min(p, p_).func is Min
  82. # lists
  83. assert Min() is S.Infinity
  84. assert Min(x) == x
  85. assert Min(x, y) == Min(y, x)
  86. assert Min(x, y, z) == Min(z, y, x)
  87. assert Min(x, Min(y, z)) == Min(z, y, x)
  88. assert Min(x, Max(y, -oo)) == Min(x, y)
  89. assert Min(p, oo, n, p, p, p_) == n
  90. assert Min(p_, n_, p) == n_
  91. assert Min(n, oo, -7, p, p, 2) == Min(n, -7)
  92. assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_)
  93. assert Min(0, x, 1, y) == Min(0, x, y)
  94. assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100)
  95. assert unchanged(Min, sin(x), cos(x))
  96. assert Min(sin(x), cos(x)) == Min(cos(x), sin(x))
  97. assert Min(cos(x), sin(x)).subs(x, 1) == cos(1)
  98. assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half)
  99. raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I))
  100. raises(ValueError, lambda: Min(I))
  101. raises(ValueError, lambda: Min(I, x))
  102. raises(ValueError, lambda: Min(S.ComplexInfinity, x))
  103. assert Min(1, x).diff(x) == Heaviside(1 - x)
  104. assert Min(x, 1).diff(x) == Heaviside(1 - x)
  105. assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \
  106. - 2*Heaviside(2*x + Min(0, -x) - 1)
  107. # issue 7619
  108. f = Function('f')
  109. assert Min(1, 2*Min(f(1), 2)) # doesn't fail
  110. # issue 7233
  111. e = Min(0, x)
  112. assert e.n().args == (0, x)
  113. # issue 8643
  114. m = Min(n, p_, n_, r)
  115. assert m.is_positive is False
  116. assert m.is_nonnegative is False
  117. assert m.is_negative is True
  118. m = Min(p, p_)
  119. assert m.is_positive is True
  120. assert m.is_nonnegative is True
  121. assert m.is_negative is False
  122. m = Min(p, nn_, p_)
  123. assert m.is_positive is None
  124. assert m.is_nonnegative is True
  125. assert m.is_negative is False
  126. m = Min(nn, p, r)
  127. assert m.is_positive is None
  128. assert m.is_nonnegative is None
  129. assert m.is_negative is None
  130. def test_Max():
  131. from sympy.abc import x, y, z
  132. n = Symbol('n', negative=True)
  133. n_ = Symbol('n_', negative=True)
  134. nn = Symbol('nn', nonnegative=True)
  135. p = Symbol('p', positive=True)
  136. p_ = Symbol('p_', positive=True)
  137. r = Symbol('r', real=True)
  138. assert Max(5, 4) == 5
  139. # lists
  140. assert Max() is S.NegativeInfinity
  141. assert Max(x) == x
  142. assert Max(x, y) == Max(y, x)
  143. assert Max(x, y, z) == Max(z, y, x)
  144. assert Max(x, Max(y, z)) == Max(z, y, x)
  145. assert Max(x, Min(y, oo)) == Max(x, y)
  146. assert Max(n, -oo, n_, p, 2) == Max(p, 2)
  147. assert Max(n, -oo, n_, p) == p
  148. assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p)
  149. assert Max(0, x, 1, y) == Max(1, x, y)
  150. assert Max(r, r + 1, r - 1) == 1 + r
  151. assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000)
  152. assert Max(cos(x), sin(x)) == Max(sin(x), cos(x))
  153. assert Max(cos(x), sin(x)).subs(x, 1) == sin(1)
  154. assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half)
  155. raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I))
  156. raises(ValueError, lambda: Max(I))
  157. raises(ValueError, lambda: Max(I, x))
  158. raises(ValueError, lambda: Max(S.ComplexInfinity, 1))
  159. assert Max(n, -oo, n_, p, 2) == Max(p, 2)
  160. assert Max(n, -oo, n_, p, 1000) == Max(p, 1000)
  161. assert Max(1, x).diff(x) == Heaviside(x - 1)
  162. assert Max(x, 1).diff(x) == Heaviside(x - 1)
  163. assert Max(x**2, 1 + x, 1).diff(x) == \
  164. 2*x*Heaviside(x**2 - Max(1, x + 1)) \
  165. + Heaviside(x - Max(1, x**2) + 1)
  166. e = Max(0, x)
  167. assert e.n().args == (0, x)
  168. # issue 8643
  169. m = Max(p, p_, n, r)
  170. assert m.is_positive is True
  171. assert m.is_nonnegative is True
  172. assert m.is_negative is False
  173. m = Max(n, n_)
  174. assert m.is_positive is False
  175. assert m.is_nonnegative is False
  176. assert m.is_negative is True
  177. m = Max(n, n_, r)
  178. assert m.is_positive is None
  179. assert m.is_nonnegative is None
  180. assert m.is_negative is None
  181. m = Max(n, nn, r)
  182. assert m.is_positive is None
  183. assert m.is_nonnegative is True
  184. assert m.is_negative is False
  185. def test_minmax_assumptions():
  186. r = Symbol('r', real=True)
  187. a = Symbol('a', real=True, algebraic=True)
  188. t = Symbol('t', real=True, transcendental=True)
  189. q = Symbol('q', rational=True)
  190. p = Symbol('p', irrational=True)
  191. n = Symbol('n', rational=True, integer=False)
  192. i = Symbol('i', integer=True)
  193. o = Symbol('o', odd=True)
  194. e = Symbol('e', even=True)
  195. k = Symbol('k', prime=True)
  196. reals = [r, a, t, q, p, n, i, o, e, k]
  197. for ext in (Max, Min):
  198. for x, y in it.product(reals, repeat=2):
  199. # Must be real
  200. assert ext(x, y).is_real
  201. # Algebraic?
  202. if x.is_algebraic and y.is_algebraic:
  203. assert ext(x, y).is_algebraic
  204. elif x.is_transcendental and y.is_transcendental:
  205. assert ext(x, y).is_transcendental
  206. else:
  207. assert ext(x, y).is_algebraic is None
  208. # Rational?
  209. if x.is_rational and y.is_rational:
  210. assert ext(x, y).is_rational
  211. elif x.is_irrational and y.is_irrational:
  212. assert ext(x, y).is_irrational
  213. else:
  214. assert ext(x, y).is_rational is None
  215. # Integer?
  216. if x.is_integer and y.is_integer:
  217. assert ext(x, y).is_integer
  218. elif x.is_noninteger and y.is_noninteger:
  219. assert ext(x, y).is_noninteger
  220. else:
  221. assert ext(x, y).is_integer is None
  222. # Odd?
  223. if x.is_odd and y.is_odd:
  224. assert ext(x, y).is_odd
  225. elif x.is_odd is False and y.is_odd is False:
  226. assert ext(x, y).is_odd is False
  227. else:
  228. assert ext(x, y).is_odd is None
  229. # Even?
  230. if x.is_even and y.is_even:
  231. assert ext(x, y).is_even
  232. elif x.is_even is False and y.is_even is False:
  233. assert ext(x, y).is_even is False
  234. else:
  235. assert ext(x, y).is_even is None
  236. # Prime?
  237. if x.is_prime and y.is_prime:
  238. assert ext(x, y).is_prime
  239. elif x.is_prime is False and y.is_prime is False:
  240. assert ext(x, y).is_prime is False
  241. else:
  242. assert ext(x, y).is_prime is None
  243. def test_issue_8413():
  244. x = Symbol('x', real=True)
  245. # we can't evaluate in general because non-reals are not
  246. # comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError
  247. assert Min(floor(x), x) == floor(x)
  248. assert Min(ceiling(x), x) == x
  249. assert Max(floor(x), x) == x
  250. assert Max(ceiling(x), x) == ceiling(x)
  251. def test_root():
  252. from sympy.abc import x
  253. n = Symbol('n', integer=True)
  254. k = Symbol('k', integer=True)
  255. assert root(2, 2) == sqrt(2)
  256. assert root(2, 1) == 2
  257. assert root(2, 3) == 2**Rational(1, 3)
  258. assert root(2, 3) == cbrt(2)
  259. assert root(2, -5) == 2**Rational(4, 5)/2
  260. assert root(-2, 1) == -2
  261. assert root(-2, 2) == sqrt(2)*I
  262. assert root(-2, 1) == -2
  263. assert root(x, 2) == sqrt(x)
  264. assert root(x, 1) == x
  265. assert root(x, 3) == x**Rational(1, 3)
  266. assert root(x, 3) == cbrt(x)
  267. assert root(x, -5) == x**Rational(-1, 5)
  268. assert root(x, n) == x**(1/n)
  269. assert root(x, -n) == x**(-1/n)
  270. assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n)
  271. def test_real_root():
  272. assert real_root(-8, 3) == -2
  273. assert real_root(-16, 4) == root(-16, 4)
  274. r = root(-7, 4)
  275. assert real_root(r) == r
  276. r1 = root(-1, 3)
  277. r2 = r1**2
  278. r3 = root(-1, 4)
  279. assert real_root(r1 + r2 + r3) == -1 + r2 + r3
  280. assert real_root(root(-2, 3)) == -root(2, 3)
  281. assert real_root(-8., 3) == -2.0
  282. x = Symbol('x')
  283. n = Symbol('n')
  284. g = real_root(x, n)
  285. assert g.subs({"x": -8, "n": 3}) == -2
  286. assert g.subs({"x": 8, "n": 3}) == 2
  287. # give principle root if there is no real root -- if this is not desired
  288. # then maybe a Root class is needed to raise an error instead
  289. assert g.subs({"x": I, "n": 3}) == cbrt(I)
  290. assert g.subs({"x": -8, "n": 2}) == sqrt(-8)
  291. assert g.subs({"x": I, "n": 2}) == sqrt(I)
  292. def test_issue_11463():
  293. numpy = import_module('numpy')
  294. if not numpy:
  295. skip("numpy not installed.")
  296. x = Symbol('x')
  297. f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy')
  298. # numpy.select evaluates all options before considering conditions,
  299. # so it raises a warning about root of negative number which does
  300. # not affect the outcome. This warning is suppressed here
  301. with ignore_warnings(RuntimeWarning):
  302. assert f(numpy.array(-1)) < -1
  303. def test_rewrite_MaxMin_as_Heaviside():
  304. from sympy.abc import x
  305. assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x)
  306. assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \
  307. 3*Heaviside(-x + 3)
  308. assert Max(0, x+2, 2*x).rewrite(Heaviside) == \
  309. 2*x*Heaviside(2*x)*Heaviside(x - 2) + \
  310. (x + 2)*Heaviside(-x + 2)*Heaviside(x + 2)
  311. assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x)
  312. assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \
  313. 3*Heaviside(x - 3)
  314. assert Min(x, -x, -2).rewrite(Heaviside) == \
  315. x*Heaviside(-2*x)*Heaviside(-x - 2) - \
  316. x*Heaviside(2*x)*Heaviside(x - 2) \
  317. - 2*Heaviside(-x + 2)*Heaviside(x + 2)
  318. def test_rewrite_MaxMin_as_Piecewise():
  319. from sympy.core.symbol import symbols
  320. from sympy.functions.elementary.piecewise import Piecewise
  321. x, y, z, a, b = symbols('x y z a b', real=True)
  322. vx, vy, va = symbols('vx vy va')
  323. assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True))
  324. assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True))
  325. assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)),
  326. (b, (b >= x) & (b >= y)), (x, x >= y), (y, True))
  327. assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True))
  328. assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True))
  329. assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)),
  330. (b, (b <= x) & (b <= y)), (x, x <= y), (y, True))
  331. # Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments
  332. assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True))
  333. assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True))
  334. def test_issue_11099():
  335. from sympy.abc import x, y
  336. # some fixed value tests
  337. fixed_test_data = {x: -2, y: 3}
  338. assert Min(x, y).evalf(subs=fixed_test_data) == \
  339. Min(x, y).subs(fixed_test_data).evalf()
  340. assert Max(x, y).evalf(subs=fixed_test_data) == \
  341. Max(x, y).subs(fixed_test_data).evalf()
  342. # randomly generate some test data
  343. from sympy.core.random import randint
  344. for i in range(20):
  345. random_test_data = {x: randint(-100, 100), y: randint(-100, 100)}
  346. assert Min(x, y).evalf(subs=random_test_data) == \
  347. Min(x, y).subs(random_test_data).evalf()
  348. assert Max(x, y).evalf(subs=random_test_data) == \
  349. Max(x, y).subs(random_test_data).evalf()
  350. def test_issue_12638():
  351. from sympy.abc import a, b, c
  352. assert Min(a, b, c, Max(a, b)) == Min(a, b, c)
  353. assert Min(a, b, Max(a, b, c)) == Min(a, b)
  354. assert Min(a, b, Max(a, c)) == Min(a, b)
  355. def test_issue_21399():
  356. from sympy.abc import a, b, c
  357. assert Max(Min(a, b), Min(a, b, c)) == Min(a, b)
  358. def test_instantiation_evaluation():
  359. from sympy.abc import v, w, x, y, z
  360. assert Min(1, Max(2, x)) == 1
  361. assert Max(3, Min(2, x)) == 3
  362. assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z))
  363. assert set(Min(Max(w, x), Max(y, z)).args) == {
  364. Max(w, x), Max(y, z)}
  365. assert Min(Max(x, y), Max(x, z), w) == Min(
  366. w, Max(x, Min(y, z)))
  367. A, B = Min, Max
  368. for i in range(2):
  369. assert A(x, B(x, y)) == x
  370. assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z)))
  371. A, B = B, A
  372. assert Min(w, Max(x, y), Max(v, x, z)) == Min(
  373. w, Max(x, Min(y, Max(v, z))))
  374. def test_rewrite_as_Abs():
  375. from itertools import permutations
  376. from sympy.functions.elementary.complexes import Abs
  377. from sympy.abc import x, y, z, w
  378. def test(e):
  379. free = e.free_symbols
  380. a = e.rewrite(Abs)
  381. assert not a.has(Min, Max)
  382. for i in permutations(range(len(free))):
  383. reps = dict(zip(free, i))
  384. assert a.xreplace(reps) == e.xreplace(reps)
  385. test(Min(x, y))
  386. test(Max(x, y))
  387. test(Min(x, y, z))
  388. test(Min(Max(w, x), Max(y, z)))
  389. def test_issue_14000():
  390. assert isinstance(sqrt(4, evaluate=False), Pow) == True
  391. assert isinstance(cbrt(3.5, evaluate=False), Pow) == True
  392. assert isinstance(root(16, 4, evaluate=False), Pow) == True
  393. assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False)
  394. assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False)
  395. assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False)
  396. assert root(16, 4, 2, evaluate=False).has(Pow) == True
  397. assert real_root(-8, 3, evaluate=False).has(Pow) == True
  398. def test_issue_6899():
  399. from sympy.core.function import Lambda
  400. x = Symbol('x')
  401. eqn = Lambda(x, x)
  402. assert eqn.func(*eqn.args) == eqn
  403. def test_Rem():
  404. from sympy.abc import x, y
  405. assert Rem(5, 3) == 2
  406. assert Rem(-5, 3) == -2
  407. assert Rem(5, -3) == 2
  408. assert Rem(-5, -3) == -2
  409. assert Rem(x**3, y) == Rem(x**3, y)
  410. assert Rem(Rem(-5, 3) + 3, 3) == 1
  411. def test_minmax_no_evaluate():
  412. from sympy import evaluate
  413. p = Symbol('p', positive=True)
  414. assert Max(1, 3) == 3
  415. assert Max(1, 3).args == ()
  416. assert Max(0, p) == p
  417. assert Max(0, p).args == ()
  418. assert Min(0, p) == 0
  419. assert Min(0, p).args == ()
  420. assert Max(1, 3, evaluate=False) != 3
  421. assert Max(1, 3, evaluate=False).args == (1, 3)
  422. assert Max(0, p, evaluate=False) != p
  423. assert Max(0, p, evaluate=False).args == (0, p)
  424. assert Min(0, p, evaluate=False) != 0
  425. assert Min(0, p, evaluate=False).args == (0, p)
  426. with evaluate(False):
  427. assert Max(1, 3) != 3
  428. assert Max(1, 3).args == (1, 3)
  429. assert Max(0, p) != p
  430. assert Max(0, p).args == (0, p)
  431. assert Min(0, p) != 0
  432. assert Min(0, p).args == (0, p)