123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806 |
- from sympy.assumptions.refine import refine
- from sympy.calculus.accumulationbounds import AccumBounds
- from sympy.concrete.products import Product
- from sympy.concrete.summations import Sum
- from sympy.core.function import expand_log
- from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
- from sympy.core.power import Pow
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.complexes import (adjoint, conjugate, re, sign, transpose)
- from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log)
- from sympy.functions.elementary.hyperbolic import (cosh, sinh, tanh)
- from sympy.functions.elementary.miscellaneous import sqrt
- from sympy.functions.elementary.trigonometric import (cos, sin, tan)
- from sympy.matrices.expressions.matexpr import MatrixSymbol
- from sympy.polys.polytools import gcd
- from sympy.series.order import O
- from sympy.simplify.simplify import simplify
- from sympy.core.parameters import global_parameters
- from sympy.functions.elementary.exponential import match_real_imag
- from sympy.abc import x, y, z
- from sympy.core.expr import unchanged
- from sympy.core.function import ArgumentIndexError
- from sympy.testing.pytest import raises, XFAIL, _both_exp_pow
- @_both_exp_pow
- def test_exp_values():
- if global_parameters.exp_is_pow:
- assert type(exp(x)) is Pow
- else:
- assert type(exp(x)) is exp
- k = Symbol('k', integer=True)
- assert exp(nan) is nan
- assert exp(oo) is oo
- assert exp(-oo) == 0
- assert exp(0) == 1
- assert exp(1) == E
- assert exp(-1 + x).as_base_exp() == (S.Exp1, x - 1)
- assert exp(1 + x).as_base_exp() == (S.Exp1, x + 1)
- assert exp(pi*I/2) == I
- assert exp(pi*I) == -1
- assert exp(pi*I*Rational(3, 2)) == -I
- assert exp(2*pi*I) == 1
- assert refine(exp(pi*I*2*k)) == 1
- assert refine(exp(pi*I*2*(k + S.Half))) == -1
- assert refine(exp(pi*I*2*(k + Rational(1, 4)))) == I
- assert refine(exp(pi*I*2*(k + Rational(3, 4)))) == -I
- assert exp(log(x)) == x
- assert exp(2*log(x)) == x**2
- assert exp(pi*log(x)) == x**pi
- assert exp(17*log(x) + E*log(y)) == x**17 * y**E
- assert exp(x*log(x)) != x**x
- assert exp(sin(x)*log(x)) != x
- assert exp(3*log(x) + oo*x) == exp(oo*x) * x**3
- assert exp(4*log(x)*log(y) + 3*log(x)) == x**3 * exp(4*log(x)*log(y))
- assert exp(-oo, evaluate=False).is_finite is True
- assert exp(oo, evaluate=False).is_finite is False
- @_both_exp_pow
- def test_exp_period():
- assert exp(I*pi*Rational(9, 4)) == exp(I*pi/4)
- assert exp(I*pi*Rational(46, 18)) == exp(I*pi*Rational(5, 9))
- assert exp(I*pi*Rational(25, 7)) == exp(I*pi*Rational(-3, 7))
- assert exp(I*pi*Rational(-19, 3)) == exp(-I*pi/3)
- assert exp(I*pi*Rational(37, 8)) - exp(I*pi*Rational(-11, 8)) == 0
- assert exp(I*pi*Rational(-5, 3)) / exp(I*pi*Rational(11, 5)) * exp(I*pi*Rational(148, 15)) == 1
- assert exp(2 - I*pi*Rational(17, 5)) == exp(2 + I*pi*Rational(3, 5))
- assert exp(log(3) + I*pi*Rational(29, 9)) == 3 * exp(I*pi*Rational(-7, 9))
- n = Symbol('n', integer=True)
- e = Symbol('e', even=True)
- assert exp(e*I*pi) == 1
- assert exp((e + 1)*I*pi) == -1
- assert exp((1 + 4*n)*I*pi/2) == I
- assert exp((-1 + 4*n)*I*pi/2) == -I
- @_both_exp_pow
- def test_exp_log():
- x = Symbol("x", real=True)
- assert log(exp(x)) == x
- assert exp(log(x)) == x
- if not global_parameters.exp_is_pow:
- assert log(x).inverse() == exp
- assert exp(x).inverse() == log
- y = Symbol("y", polar=True)
- assert log(exp_polar(z)) == z
- assert exp(log(y)) == y
- @_both_exp_pow
- def test_exp_expand():
- e = exp(log(Rational(2))*(1 + x) - log(Rational(2))*x)
- assert e.expand() == 2
- assert exp(x + y) != exp(x)*exp(y)
- assert exp(x + y).expand() == exp(x)*exp(y)
- @_both_exp_pow
- def test_exp__as_base_exp():
- assert exp(x).as_base_exp() == (E, x)
- assert exp(2*x).as_base_exp() == (E, 2*x)
- assert exp(x*y).as_base_exp() == (E, x*y)
- assert exp(-x).as_base_exp() == (E, -x)
- # Pow( *expr.as_base_exp() ) == expr invariant should hold
- assert E**x == exp(x)
- assert E**(2*x) == exp(2*x)
- assert E**(x*y) == exp(x*y)
- assert exp(x).base is S.Exp1
- assert exp(x).exp == x
- @_both_exp_pow
- def test_exp_infinity():
- assert exp(I*y) != nan
- assert refine(exp(I*oo)) is nan
- assert refine(exp(-I*oo)) is nan
- assert exp(y*I*oo) != nan
- assert exp(zoo) is nan
- x = Symbol('x', extended_real=True, finite=False)
- assert exp(x).is_complex is None
- @_both_exp_pow
- def test_exp_subs():
- x = Symbol('x')
- e = (exp(3*log(x), evaluate=False)) # evaluates to x**3
- assert e.subs(x**3, y**3) == e
- assert e.subs(x**2, 5) == e
- assert (x**3).subs(x**2, y) != y**Rational(3, 2)
- assert exp(exp(x) + exp(x**2)).subs(exp(exp(x)), y) == y * exp(exp(x**2))
- assert exp(x).subs(E, y) == y**x
- x = symbols('x', real=True)
- assert exp(5*x).subs(exp(7*x), y) == y**Rational(5, 7)
- assert exp(2*x + 7).subs(exp(3*x), y) == y**Rational(2, 3) * exp(7)
- x = symbols('x', positive=True)
- assert exp(3*log(x)).subs(x**2, y) == y**Rational(3, 2)
- # differentiate between E and exp
- assert exp(exp(x + E)).subs(exp, 3) == 3**(3**(x + E))
- assert exp(exp(x + E)).subs(exp, sin) == sin(sin(x + E))
- assert exp(exp(x + E)).subs(E, 3) == 3**(3**(x + 3))
- assert exp(3).subs(E, sin) == sin(3)
- def test_exp_adjoint():
- assert adjoint(exp(x)) == exp(adjoint(x))
- def test_exp_conjugate():
- assert conjugate(exp(x)) == exp(conjugate(x))
- @_both_exp_pow
- def test_exp_transpose():
- assert transpose(exp(x)) == exp(transpose(x))
- @_both_exp_pow
- def test_exp_rewrite():
- assert exp(x).rewrite(sin) == sinh(x) + cosh(x)
- assert exp(x*I).rewrite(cos) == cos(x) + I*sin(x)
- assert exp(1).rewrite(cos) == sinh(1) + cosh(1)
- assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
- assert exp(1).rewrite(sin) == sinh(1) + cosh(1)
- assert exp(x).rewrite(tanh) == (1 + tanh(x/2))/(1 - tanh(x/2))
- assert exp(pi*I/4).rewrite(sqrt) == sqrt(2)/2 + sqrt(2)*I/2
- assert exp(pi*I/3).rewrite(sqrt) == S.Half + sqrt(3)*I/2
- if not global_parameters.exp_is_pow:
- assert exp(x*log(y)).rewrite(Pow) == y**x
- assert exp(log(x)*log(y)).rewrite(Pow) in [x**log(y), y**log(x)]
- assert exp(log(log(x))*y).rewrite(Pow) == log(x)**y
- n = Symbol('n', integer=True)
- assert Sum((exp(pi*I/2)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == Rational(4, 5) + I*2/5
- assert Sum((exp(pi*I/4)/2)**n, (n, 0, oo)).rewrite(sqrt).doit() == 1/(1 - sqrt(2)*(1 + I)/4)
- assert (Sum((exp(pi*I/3)/2)**n, (n, 0, oo)).rewrite(sqrt).doit().cancel()
- == 4*I/(sqrt(3) + 3*I))
- @_both_exp_pow
- def test_exp_leading_term():
- assert exp(x).as_leading_term(x) == 1
- assert exp(2 + x).as_leading_term(x) == exp(2)
- assert exp((2*x + 3) / (x+1)).as_leading_term(x) == exp(3)
- # The following tests are commented, since now SymPy returns the
- # original function when the leading term in the series expansion does
- # not exist.
- # raises(NotImplementedError, lambda: exp(1/x).as_leading_term(x))
- # raises(NotImplementedError, lambda: exp((x + 1) / x**2).as_leading_term(x))
- # raises(NotImplementedError, lambda: exp(x + 1/x).as_leading_term(x))
- @_both_exp_pow
- def test_exp_taylor_term():
- x = symbols('x')
- assert exp(x).taylor_term(1, x) == x
- assert exp(x).taylor_term(3, x) == x**3/6
- assert exp(x).taylor_term(4, x) == x**4/24
- assert exp(x).taylor_term(-1, x) is S.Zero
- def test_exp_MatrixSymbol():
- A = MatrixSymbol("A", 2, 2)
- assert exp(A).has(exp)
- def test_exp_fdiff():
- x = Symbol('x')
- raises(ArgumentIndexError, lambda: exp(x).fdiff(2))
- def test_log_values():
- assert log(nan) is nan
- assert log(oo) is oo
- assert log(-oo) is oo
- assert log(zoo) is zoo
- assert log(-zoo) is zoo
- assert log(0) is zoo
- assert log(1) == 0
- assert log(-1) == I*pi
- assert log(E) == 1
- assert log(-E).expand() == 1 + I*pi
- assert unchanged(log, pi)
- assert log(-pi).expand() == log(pi) + I*pi
- assert unchanged(log, 17)
- assert log(-17) == log(17) + I*pi
- assert log(I) == I*pi/2
- assert log(-I) == -I*pi/2
- assert log(17*I) == I*pi/2 + log(17)
- assert log(-17*I).expand() == -I*pi/2 + log(17)
- assert log(oo*I) is oo
- assert log(-oo*I) is oo
- assert log(0, 2) is zoo
- assert log(0, 5) is zoo
- assert exp(-log(3))**(-1) == 3
- assert log(S.Half) == -log(2)
- assert log(2*3).func is log
- assert log(2*3**2).func is log
- def test_match_real_imag():
- x, y = symbols('x,y', real=True)
- i = Symbol('i', imaginary=True)
- assert match_real_imag(S.One) == (1, 0)
- assert match_real_imag(I) == (0, 1)
- assert match_real_imag(3 - 5*I) == (3, -5)
- assert match_real_imag(-sqrt(3) + S.Half*I) == (-sqrt(3), S.Half)
- assert match_real_imag(x + y*I) == (x, y)
- assert match_real_imag(x*I + y*I) == (0, x + y)
- assert match_real_imag((x + y)*I) == (0, x + y)
- assert match_real_imag(Rational(-2, 3)*i*I) == (None, None)
- assert match_real_imag(1 - 2*i) == (None, None)
- assert match_real_imag(sqrt(2)*(3 - 5*I)) == (None, None)
- def test_log_exact():
- # check for pi/2, pi/3, pi/4, pi/6, pi/8, pi/12; pi/5, pi/10:
- for n in range(-23, 24):
- if gcd(n, 24) != 1:
- assert log(exp(n*I*pi/24).rewrite(sqrt)) == n*I*pi/24
- for n in range(-9, 10):
- assert log(exp(n*I*pi/10).rewrite(sqrt)) == n*I*pi/10
- assert log(S.Half - I*sqrt(3)/2) == -I*pi/3
- assert log(Rational(-1, 2) + I*sqrt(3)/2) == I*pi*Rational(2, 3)
- assert log(-sqrt(2)/2 - I*sqrt(2)/2) == -I*pi*Rational(3, 4)
- assert log(-sqrt(3)/2 - I*S.Half) == -I*pi*Rational(5, 6)
- assert log(Rational(-1, 4) + sqrt(5)/4 - I*sqrt(sqrt(5)/8 + Rational(5, 8))) == -I*pi*Rational(2, 5)
- assert log(sqrt(Rational(5, 8) - sqrt(5)/8) + I*(Rational(1, 4) + sqrt(5)/4)) == I*pi*Rational(3, 10)
- assert log(-sqrt(sqrt(2)/4 + S.Half) + I*sqrt(S.Half - sqrt(2)/4)) == I*pi*Rational(7, 8)
- assert log(-sqrt(6)/4 - sqrt(2)/4 + I*(-sqrt(6)/4 + sqrt(2)/4)) == -I*pi*Rational(11, 12)
- assert log(-1 + I*sqrt(3)) == log(2) + I*pi*Rational(2, 3)
- assert log(5 + 5*I) == log(5*sqrt(2)) + I*pi/4
- assert log(sqrt(-12)) == log(2*sqrt(3)) + I*pi/2
- assert log(-sqrt(6) + sqrt(2) - I*sqrt(6) - I*sqrt(2)) == log(4) - I*pi*Rational(7, 12)
- assert log(-sqrt(6-3*sqrt(2)) - I*sqrt(6+3*sqrt(2))) == log(2*sqrt(3)) - I*pi*Rational(5, 8)
- assert log(1 + I*sqrt(2-sqrt(2))/sqrt(2+sqrt(2))) == log(2/sqrt(sqrt(2) + 2)) + I*pi/8
- assert log(cos(pi*Rational(7, 12)) + I*sin(pi*Rational(7, 12))) == I*pi*Rational(7, 12)
- assert log(cos(pi*Rational(6, 5)) + I*sin(pi*Rational(6, 5))) == I*pi*Rational(-4, 5)
- assert log(5*(1 + I)/sqrt(2)) == log(5) + I*pi/4
- assert log(sqrt(2)*(-sqrt(3) + 1 - sqrt(3)*I - I)) == log(4) - I*pi*Rational(7, 12)
- assert log(-sqrt(2)*(1 - I*sqrt(3))) == log(2*sqrt(2)) + I*pi*Rational(2, 3)
- assert log(sqrt(3)*I*(-sqrt(6 - 3*sqrt(2)) - I*sqrt(3*sqrt(2) + 6))) == log(6) - I*pi/8
- zero = (1 + sqrt(2))**2 - 3 - 2*sqrt(2)
- assert log(zero - I*sqrt(3)) == log(sqrt(3)) - I*pi/2
- assert unchanged(log, zero + I*zero) or log(zero + zero*I) is zoo
- # bail quickly if no obvious simplification is possible:
- assert unchanged(log, (sqrt(2)-1/sqrt(sqrt(3)+I))**1000)
- # beware of non-real coefficients
- assert unchanged(log, sqrt(2-sqrt(5))*(1 + I))
- def test_log_base():
- assert log(1, 2) == 0
- assert log(2, 2) == 1
- assert log(3, 2) == log(3)/log(2)
- assert log(6, 2) == 1 + log(3)/log(2)
- assert log(6, 3) == 1 + log(2)/log(3)
- assert log(2**3, 2) == 3
- assert log(3**3, 3) == 3
- assert log(5, 1) is zoo
- assert log(1, 1) is nan
- assert log(Rational(2, 3), 10) == log(Rational(2, 3))/log(10)
- assert log(Rational(2, 3), Rational(1, 3)) == -log(2)/log(3) + 1
- assert log(Rational(2, 3), Rational(2, 5)) == \
- log(Rational(2, 3))/log(Rational(2, 5))
- # issue 17148
- assert log(Rational(8, 3), 2) == -log(3)/log(2) + 3
- def test_log_symbolic():
- assert log(x, exp(1)) == log(x)
- assert log(exp(x)) != x
- assert log(x, exp(1)) == log(x)
- assert log(x*y) != log(x) + log(y)
- assert log(x/y).expand() != log(x) - log(y)
- assert log(x/y).expand(force=True) == log(x) - log(y)
- assert log(x**y).expand() != y*log(x)
- assert log(x**y).expand(force=True) == y*log(x)
- assert log(x, 2) == log(x)/log(2)
- assert log(E, 2) == 1/log(2)
- p, q = symbols('p,q', positive=True)
- r = Symbol('r', real=True)
- assert log(p**2) != 2*log(p)
- assert log(p**2).expand() == 2*log(p)
- assert log(x**2).expand() != 2*log(x)
- assert log(p**q) != q*log(p)
- assert log(exp(p)) == p
- assert log(p*q) != log(p) + log(q)
- assert log(p*q).expand() == log(p) + log(q)
- assert log(-sqrt(3)) == log(sqrt(3)) + I*pi
- assert log(-exp(p)) != p + I*pi
- assert log(-exp(x)).expand() != x + I*pi
- assert log(-exp(r)).expand() == r + I*pi
- assert log(x**y) != y*log(x)
- assert (log(x**-5)**-1).expand() != -1/log(x)/5
- assert (log(p**-5)**-1).expand() == -1/log(p)/5
- assert log(-x).func is log and log(-x).args[0] == -x
- assert log(-p).func is log and log(-p).args[0] == -p
- def test_log_exp():
- assert log(exp(4*I*pi)) == 0 # exp evaluates
- assert log(exp(-5*I*pi)) == I*pi # exp evaluates
- assert log(exp(I*pi*Rational(19, 4))) == I*pi*Rational(3, 4)
- assert log(exp(I*pi*Rational(25, 7))) == I*pi*Rational(-3, 7)
- assert log(exp(-5*I)) == -5*I + 2*I*pi
- @_both_exp_pow
- def test_exp_assumptions():
- r = Symbol('r', real=True)
- i = Symbol('i', imaginary=True)
- for e in exp, exp_polar:
- assert e(x).is_real is None
- assert e(x).is_imaginary is None
- assert e(i).is_real is None
- assert e(i).is_imaginary is None
- assert e(r).is_real is True
- assert e(r).is_imaginary is False
- assert e(re(x)).is_extended_real is True
- assert e(re(x)).is_imaginary is False
- assert Pow(E, I*pi, evaluate=False).is_imaginary == False
- assert Pow(E, 2*I*pi, evaluate=False).is_imaginary == False
- assert Pow(E, I*pi/2, evaluate=False).is_imaginary == True
- assert Pow(E, I*pi/3, evaluate=False).is_imaginary is None
- assert exp(0, evaluate=False).is_algebraic
- a = Symbol('a', algebraic=True)
- an = Symbol('an', algebraic=True, nonzero=True)
- r = Symbol('r', rational=True)
- rn = Symbol('rn', rational=True, nonzero=True)
- assert exp(a).is_algebraic is None
- assert exp(an).is_algebraic is False
- assert exp(pi*r).is_algebraic is None
- assert exp(pi*rn).is_algebraic is False
- assert exp(0, evaluate=False).is_algebraic is True
- assert exp(I*pi/3, evaluate=False).is_algebraic is True
- assert exp(I*pi*r, evaluate=False).is_algebraic is True
- @_both_exp_pow
- def test_exp_AccumBounds():
- assert exp(AccumBounds(1, 2)) == AccumBounds(E, E**2)
- def test_log_assumptions():
- p = symbols('p', positive=True)
- n = symbols('n', negative=True)
- z = symbols('z', zero=True)
- x = symbols('x', infinite=True, extended_positive=True)
- assert log(z).is_positive is False
- assert log(x).is_extended_positive is True
- assert log(2) > 0
- assert log(1, evaluate=False).is_zero
- assert log(1 + z).is_zero
- assert log(p).is_zero is None
- assert log(n).is_zero is False
- assert log(0.5).is_negative is True
- assert log(exp(p) + 1).is_positive
- assert log(1, evaluate=False).is_algebraic
- assert log(42, evaluate=False).is_algebraic is False
- assert log(1 + z).is_rational
- def test_log_hashing():
- assert x != log(log(x))
- assert hash(x) != hash(log(log(x)))
- assert log(x) != log(log(log(x)))
- e = 1/log(log(x) + log(log(x)))
- assert e.base.func is log
- e = 1/log(log(x) + log(log(log(x))))
- assert e.base.func is log
- e = log(log(x))
- assert e.func is log
- assert x.func is not log
- assert hash(log(log(x))) != hash(x)
- assert e != x
- def test_log_sign():
- assert sign(log(2)) == 1
- def test_log_expand_complex():
- assert log(1 + I).expand(complex=True) == log(2)/2 + I*pi/4
- assert log(1 - sqrt(2)).expand(complex=True) == log(sqrt(2) - 1) + I*pi
- def test_log_apply_evalf():
- value = (log(3)/log(2) - 1).evalf()
- assert value.epsilon_eq(Float("0.58496250072115618145373"))
- def test_log_leading_term():
- p = Symbol('p')
- # Test for STEP 3
- assert log(1 + x + x**2).as_leading_term(x, cdir=1) == x
- # Test for STEP 4
- assert log(2*x).as_leading_term(x, cdir=1) == log(x) + log(2)
- assert log(2*x).as_leading_term(x, cdir=-1) == log(x) + log(2)
- assert log(-2*x).as_leading_term(x, cdir=1, logx=p) == p + log(2) + I*pi
- assert log(-2*x).as_leading_term(x, cdir=-1, logx=p) == p + log(2) - I*pi
- # Test for STEP 5
- assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2) - I*pi
- assert log(-2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - I*pi
- assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=1) == log(x) + log(2)
- assert log(2*x + (3 - I)*x**2).as_leading_term(x, cdir=-1) == log(x) + log(2) - 2*I*pi
- assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=1) == -I*pi
- assert log(-1 + x - I*x**2 + I*x**3).as_leading_term(x, cdir=-1) == -I*pi
- assert log(-1/(1 - x)).as_leading_term(x, cdir=1) == I*pi
- assert log(-1/(1 - x)).as_leading_term(x, cdir=-1) == I*pi
- def test_log_nseries():
- p = Symbol('p')
- assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=1) == p
- assert log(1/x)._eval_nseries(x, 4, logx=-p, cdir=-1) == p + 2*I*pi
- assert log(x - 1)._eval_nseries(x, 4, None, I) == I*pi - x - x**2/2 - x**3/3 + O(x**4)
- assert log(x - 1)._eval_nseries(x, 4, None, -I) == -I*pi - x - x**2/2 - x**3/3 + O(x**4)
- assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x + x**2/2 + O(x**3)
- assert log(I*x + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == -I*pi - I*x + x**2/2 + O(x**3)
- assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, 1) == I*pi - I*x**2 + O(x**3)
- assert log(I*x**2 + I*x**3 - 1)._eval_nseries(x, 3, None, -1) == I*pi - I*x**2 + O(x**3)
- assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == log(2) + log(x) + \
- x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
- assert log(2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -2*I*pi + log(2) + \
- log(x) - x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
- assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, 1) == -I*pi + log(2) + log(x) + \
- x*(-S(3)/2 + I/2) + x**2*(-1 + 3*I/4) + O(x**3)
- assert log(-2*x + (3 - I)*x**2)._eval_nseries(x, 3, None, -1) == -I*pi + log(2) + log(x) - \
- x*(S(3)/2 - I/2) + x**2*(-1 + 3*I/4) + O(x**3)
- assert log(sqrt(-I*x**2 - 3)*sqrt(-I*x**2 - 1) - 2)._eval_nseries(x, 3, None, 1) == -I*pi + \
- log(sqrt(3) + 2) + I*x**2*(-2 + 4*sqrt(3)/3) + O(x**3)
- assert log(-1/(1 - x))._eval_nseries(x, 3, None, 1) == I*pi + x + x**2/2 + O(x**3)
- assert log(-1/(1 - x))._eval_nseries(x, 3, None, -1) == I*pi + x + x**2/2 + O(x**3)
- def test_log_series():
- # Note Series at infinities other than oo/-oo were introduced as a part of
- # pull request 23798. Refer https://github.com/sympy/sympy/pull/23798 for
- # more information.
- expr1 = log(1 + x)
- expr2 = log(x + sqrt(x**2 + 1))
- assert expr1.series(x, x0=I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x + \
- I*pi/2 - log(I/x) + O(x**(-4), (x, oo*I))
- assert expr1.series(x, x0=-I*oo, n=4) == 1/(3*x**3) - 1/(2*x**2) + 1/x - \
- I*pi/2 - log(-I/x) + O(x**(-4), (x, -oo*I))
- assert expr2.series(x, x0=I*oo, n=4) == 1/(4*x**2) + I*pi/2 + log(2) - \
- log(I/x) + O(x**(-4), (x, oo*I))
- assert expr2.series(x, x0=-I*oo, n=4) == -1/(4*x**2) - I*pi/2 - log(2) + \
- log(-I/x) + O(x**(-4), (x, -oo*I))
- def test_log_expand():
- w = Symbol("w", positive=True)
- e = log(w**(log(5)/log(3)))
- assert e.expand() == log(5)/log(3) * log(w)
- x, y, z = symbols('x,y,z', positive=True)
- assert log(x*(y + z)).expand(mul=False) == log(x) + log(y + z)
- assert log(log(x**2)*log(y*z)).expand() in [log(2*log(x)*log(y) +
- 2*log(x)*log(z)), log(log(x)*log(z) + log(y)*log(x)) + log(2),
- log((log(y) + log(z))*log(x)) + log(2)]
- assert log(x**log(x**2)).expand(deep=False) == log(x)*log(x**2)
- assert log(x**log(x**2)).expand() == 2*log(x)**2
- x, y = symbols('x,y')
- assert log(x*y).expand(force=True) == log(x) + log(y)
- assert log(x**y).expand(force=True) == y*log(x)
- assert log(exp(x)).expand(force=True) == x
- # there's generally no need to expand out logs since this requires
- # factoring and if simplification is sought, it's cheaper to put
- # logs together than it is to take them apart.
- assert log(2*3**2).expand() != 2*log(3) + log(2)
- @XFAIL
- def test_log_expand_fail():
- x, y, z = symbols('x,y,z', positive=True)
- assert (log(x*(y + z))*(x + y)).expand(mul=True, log=True) == y*log(
- x) + y*log(y + z) + z*log(x) + z*log(y + z)
- def test_log_simplify():
- x = Symbol("x", positive=True)
- assert log(x**2).expand() == 2*log(x)
- assert expand_log(log(x**(2 + log(2)))) == (2 + log(2))*log(x)
- z = Symbol('z')
- assert log(sqrt(z)).expand() == log(z)/2
- assert expand_log(log(z**(log(2) - 1))) == (log(2) - 1)*log(z)
- assert log(z**(-1)).expand() != -log(z)
- assert log(z**(x/(x+1))).expand() == x*log(z)/(x + 1)
- def test_log_AccumBounds():
- assert log(AccumBounds(1, E)) == AccumBounds(0, 1)
- assert log(AccumBounds(0, E)) == AccumBounds(-oo, 1)
- assert log(AccumBounds(-1, E)) == S.NaN
- assert log(AccumBounds(0, oo)) == AccumBounds(-oo, oo)
- assert log(AccumBounds(-oo, 0)) == S.NaN
- assert log(AccumBounds(-oo, oo)) == S.NaN
- @_both_exp_pow
- def test_lambertw():
- k = Symbol('k')
- assert LambertW(x, 0) == LambertW(x)
- assert LambertW(x, 0, evaluate=False) != LambertW(x)
- assert LambertW(0) == 0
- assert LambertW(E) == 1
- assert LambertW(-1/E) == -1
- assert LambertW(-log(2)/2) == -log(2)
- assert LambertW(oo) is oo
- assert LambertW(0, 1) is -oo
- assert LambertW(0, 42) is -oo
- assert LambertW(-pi/2, -1) == -I*pi/2
- assert LambertW(-1/E, -1) == -1
- assert LambertW(-2*exp(-2), -1) == -2
- assert LambertW(2*log(2)) == log(2)
- assert LambertW(-pi/2) == I*pi/2
- assert LambertW(exp(1 + E)) == E
- assert LambertW(x**2).diff(x) == 2*LambertW(x**2)/x/(1 + LambertW(x**2))
- assert LambertW(x, k).diff(x) == LambertW(x, k)/x/(1 + LambertW(x, k))
- assert LambertW(sqrt(2)).evalf(30).epsilon_eq(
- Float("0.701338383413663009202120278965", 30), 1e-29)
- assert re(LambertW(2, -1)).evalf().epsilon_eq(Float("-0.834310366631110"))
- assert LambertW(-1).is_real is False # issue 5215
- assert LambertW(2, evaluate=False).is_real
- p = Symbol('p', positive=True)
- assert LambertW(p, evaluate=False).is_real
- assert LambertW(p - 1, evaluate=False).is_real is None
- assert LambertW(-p - 2/S.Exp1, evaluate=False).is_real is False
- assert LambertW(S.Half, -1, evaluate=False).is_real is False
- assert LambertW(Rational(-1, 10), -1, evaluate=False).is_real
- assert LambertW(-10, -1, evaluate=False).is_real is False
- assert LambertW(-2, 2, evaluate=False).is_real is False
- assert LambertW(0, evaluate=False).is_algebraic
- na = Symbol('na', nonzero=True, algebraic=True)
- assert LambertW(na).is_algebraic is False
- assert LambertW(p).is_zero is False
- n = Symbol('n', negative=True)
- assert LambertW(n).is_zero is False
- def test_issue_5673():
- e = LambertW(-1)
- assert e.is_comparable is False
- assert e.is_positive is not True
- e2 = 1 - 1/(1 - exp(-1000))
- assert e2.is_positive is not True
- e3 = -2 + exp(exp(LambertW(log(2)))*LambertW(log(2)))
- assert e3.is_nonzero is not True
- def test_log_fdiff():
- x = Symbol('x')
- raises(ArgumentIndexError, lambda: log(x).fdiff(2))
- def test_log_taylor_term():
- x = symbols('x')
- assert log(x).taylor_term(0, x) == x
- assert log(x).taylor_term(1, x) == -x**2/2
- assert log(x).taylor_term(4, x) == x**5/5
- assert log(x).taylor_term(-1, x) is S.Zero
- def test_exp_expand_NC():
- A, B, C = symbols('A,B,C', commutative=False)
- assert exp(A + B).expand() == exp(A + B)
- assert exp(A + B + C).expand() == exp(A + B + C)
- assert exp(x + y).expand() == exp(x)*exp(y)
- assert exp(x + y + z).expand() == exp(x)*exp(y)*exp(z)
- @_both_exp_pow
- def test_as_numer_denom():
- n = symbols('n', negative=True)
- assert exp(x).as_numer_denom() == (exp(x), 1)
- assert exp(-x).as_numer_denom() == (1, exp(x))
- assert exp(-2*x).as_numer_denom() == (1, exp(2*x))
- assert exp(-2).as_numer_denom() == (1, exp(2))
- assert exp(n).as_numer_denom() == (1, exp(-n))
- assert exp(-n).as_numer_denom() == (exp(-n), 1)
- assert exp(-I*x).as_numer_denom() == (1, exp(I*x))
- assert exp(-I*n).as_numer_denom() == (1, exp(I*n))
- assert exp(-n).as_numer_denom() == (exp(-n), 1)
- @_both_exp_pow
- def test_polar():
- x, y = symbols('x y', polar=True)
- assert abs(exp_polar(I*4)) == 1
- assert abs(exp_polar(0)) == 1
- assert abs(exp_polar(2 + 3*I)) == exp(2)
- assert exp_polar(I*10).n() == exp_polar(I*10)
- assert log(exp_polar(z)) == z
- assert log(x*y).expand() == log(x) + log(y)
- assert log(x**z).expand() == z*log(x)
- assert exp_polar(3).exp == 3
- # Compare exp(1.0*pi*I).
- assert (exp_polar(1.0*pi*I).n(n=5)).as_real_imag()[1] >= 0
- assert exp_polar(0).is_rational is True # issue 8008
- def test_exp_summation():
- w = symbols("w")
- m, n, i, j = symbols("m n i j")
- expr = exp(Sum(w*i, (i, 0, n), (j, 0, m)))
- assert expr.expand() == Product(exp(w*i), (i, 0, n), (j, 0, m))
- def test_log_product():
- from sympy.abc import n, m
- i, j = symbols('i,j', positive=True, integer=True)
- x, y = symbols('x,y', positive=True)
- z = symbols('z', real=True)
- w = symbols('w')
- expr = log(Product(x**i, (i, 1, n)))
- assert simplify(expr) == expr
- assert expr.expand() == Sum(i*log(x), (i, 1, n))
- expr = log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))
- assert simplify(expr) == expr
- assert expr.expand() == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
- expr = log(Product(-2, (n, 0, 4)))
- assert simplify(expr) == expr
- assert expr.expand() == expr
- assert expr.expand(force=True) == Sum(log(-2), (n, 0, 4))
- expr = log(Product(exp(z*i), (i, 0, n)))
- assert expr.expand() == Sum(z*i, (i, 0, n))
- expr = log(Product(exp(w*i), (i, 0, n)))
- assert expr.expand() == expr
- assert expr.expand(force=True) == Sum(w*i, (i, 0, n))
- expr = log(Product(i**2*abs(j), (i, 1, n), (j, 1, m)))
- assert expr.expand() == Sum(2*log(i) + log(j), (i, 1, n), (j, 1, m))
- @XFAIL
- def test_log_product_simplify_to_sum():
- from sympy.abc import n, m
- i, j = symbols('i,j', positive=True, integer=True)
- x, y = symbols('x,y', positive=True)
- assert simplify(log(Product(x**i, (i, 1, n)))) == Sum(i*log(x), (i, 1, n))
- assert simplify(log(Product(x**i*y**j, (i, 1, n), (j, 1, m)))) == \
- Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m))
- def test_issue_8866():
- assert simplify(log(x, 10, evaluate=False)) == simplify(log(x, 10))
- assert expand_log(log(x, 10, evaluate=False)) == expand_log(log(x, 10))
- y = Symbol('y', positive=True)
- l1 = log(exp(y), exp(10))
- b1 = log(exp(y), exp(5))
- l2 = log(exp(y), exp(10), evaluate=False)
- b2 = log(exp(y), exp(5), evaluate=False)
- assert simplify(log(l1, b1)) == simplify(log(l2, b2))
- assert expand_log(log(l1, b1)) == expand_log(log(l2, b2))
- def test_log_expand_factor():
- assert (log(18)/log(3) - 2).expand(factor=True) == log(2)/log(3)
- assert (log(12)/log(2)).expand(factor=True) == log(3)/log(2) + 2
- assert (log(15)/log(3)).expand(factor=True) == 1 + log(5)/log(3)
- assert (log(2)/(-log(12) + log(24))).expand(factor=True) == 1
- assert expand_log(log(12), factor=True) == log(3) + 2*log(2)
- assert expand_log(log(21)/log(7), factor=False) == log(3)/log(7) + 1
- assert expand_log(log(45)/log(5) + log(20), factor=False) == \
- 1 + 2*log(3)/log(5) + log(20)
- assert expand_log(log(45)/log(5) + log(26), factor=True) == \
- log(2) + log(13) + (log(5) + 2*log(3))/log(5)
- def test_issue_9116():
- n = Symbol('n', positive=True, integer=True)
- assert log(n).is_nonnegative is True
- def test_issue_18473():
- assert exp(x*log(cos(1/x))).as_leading_term(x) == S.NaN
- assert exp(x*log(tan(1/x))).as_leading_term(x) == S.NaN
- assert log(cos(1/x)).as_leading_term(x) == S.NaN
- assert log(tan(1/x)).as_leading_term(x) == S.NaN
- assert log(cos(1/x) + 2).as_leading_term(x) == AccumBounds(0, log(3))
- assert exp(x*log(cos(1/x) + 2)).as_leading_term(x) == 1
- assert log(cos(1/x) - 2).as_leading_term(x) == S.NaN
- assert exp(x*log(cos(1/x) - 2)).as_leading_term(x) == S.NaN
- assert log(cos(1/x) + 1).as_leading_term(x) == AccumBounds(-oo, log(2))
- assert exp(x*log(cos(1/x) + 1)).as_leading_term(x) == AccumBounds(0, 1)
- assert log(sin(1/x)**2).as_leading_term(x) == AccumBounds(-oo, 0)
- assert exp(x*log(sin(1/x)**2)).as_leading_term(x) == AccumBounds(0, 1)
- assert log(tan(1/x)**2).as_leading_term(x) == AccumBounds(-oo, oo)
- assert exp(2*x*(log(tan(1/x)**2))).as_leading_term(x) == AccumBounds(0, oo)
|