123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r
- from sympy.diffgeom import intcurve_series, Differential, WedgeProduct
- from sympy.core import symbols, Function, Derivative
- from sympy.simplify import trigsimp, simplify
- from sympy.functions import sqrt, atan2, sin, cos
- from sympy.matrices import Matrix
- # Most of the functionality is covered in the
- # test_functional_diffgeom_ch* tests which are based on the
- # example from the paper of Sussman and Wisdom.
- # If they do not cover something, additional tests are added in other test
- # functions.
- # From "Functional Differential Geometry" as of 2011
- # by Sussman and Wisdom.
- def test_functional_diffgeom_ch2():
- x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True)
- x, y = symbols('x, y', real=True)
- f = Function('f')
- assert (R2_p.point_to_coords(R2_r.point([x0, y0])) ==
- Matrix([sqrt(x0**2 + y0**2), atan2(y0, x0)]))
- assert (R2_r.point_to_coords(R2_p.point([r0, theta0])) ==
- Matrix([r0*cos(theta0), r0*sin(theta0)]))
- assert R2_p.jacobian(R2_r, [r0, theta0]) == Matrix(
- [[cos(theta0), -r0*sin(theta0)], [sin(theta0), r0*cos(theta0)]])
- field = f(R2.x, R2.y)
- p1_in_rect = R2_r.point([x0, y0])
- p1_in_polar = R2_p.point([sqrt(x0**2 + y0**2), atan2(y0, x0)])
- assert field.rcall(p1_in_rect) == f(x0, y0)
- assert field.rcall(p1_in_polar) == f(x0, y0)
- p_r = R2_r.point([x0, y0])
- p_p = R2_p.point([r0, theta0])
- assert R2.x(p_r) == x0
- assert R2.x(p_p) == r0*cos(theta0)
- assert R2.r(p_p) == r0
- assert R2.r(p_r) == sqrt(x0**2 + y0**2)
- assert R2.theta(p_r) == atan2(y0, x0)
- h = R2.x*R2.r**2 + R2.y**3
- assert h.rcall(p_r) == x0*(x0**2 + y0**2) + y0**3
- assert h.rcall(p_p) == r0**3*sin(theta0)**3 + r0**3*cos(theta0)
- def test_functional_diffgeom_ch3():
- x0, y0 = symbols('x0, y0', real=True)
- x, y, t = symbols('x, y, t', real=True)
- f = Function('f')
- b1 = Function('b1')
- b2 = Function('b2')
- p_r = R2_r.point([x0, y0])
- s_field = f(R2.x, R2.y)
- v_field = b1(R2.x)*R2.e_x + b2(R2.y)*R2.e_y
- assert v_field.rcall(s_field).rcall(p_r).doit() == b1(
- x0)*Derivative(f(x0, y0), x0) + b2(y0)*Derivative(f(x0, y0), y0)
- assert R2.e_x(R2.r**2).rcall(p_r) == 2*x0
- v = R2.e_x + 2*R2.e_y
- s = R2.r**2 + 3*R2.x
- assert v.rcall(s).rcall(p_r).doit() == 2*x0 + 4*y0 + 3
- circ = -R2.y*R2.e_x + R2.x*R2.e_y
- series = intcurve_series(circ, t, R2_r.point([1, 0]), coeffs=True)
- series_x, series_y = zip(*series)
- assert all(
- [term == cos(t).taylor_term(i, t) for i, term in enumerate(series_x)])
- assert all(
- [term == sin(t).taylor_term(i, t) for i, term in enumerate(series_y)])
- def test_functional_diffgeom_ch4():
- x0, y0, theta0 = symbols('x0, y0, theta0', real=True)
- x, y, r, theta = symbols('x, y, r, theta', real=True)
- r0 = symbols('r0', positive=True)
- f = Function('f')
- b1 = Function('b1')
- b2 = Function('b2')
- p_r = R2_r.point([x0, y0])
- p_p = R2_p.point([r0, theta0])
- f_field = b1(R2.x, R2.y)*R2.dx + b2(R2.x, R2.y)*R2.dy
- assert f_field.rcall(R2.e_x).rcall(p_r) == b1(x0, y0)
- assert f_field.rcall(R2.e_y).rcall(p_r) == b2(x0, y0)
- s_field_r = f(R2.x, R2.y)
- df = Differential(s_field_r)
- assert df(R2.e_x).rcall(p_r).doit() == Derivative(f(x0, y0), x0)
- assert df(R2.e_y).rcall(p_r).doit() == Derivative(f(x0, y0), y0)
- s_field_p = f(R2.r, R2.theta)
- df = Differential(s_field_p)
- assert trigsimp(df(R2.e_x).rcall(p_p).doit()) == (
- cos(theta0)*Derivative(f(r0, theta0), r0) -
- sin(theta0)*Derivative(f(r0, theta0), theta0)/r0)
- assert trigsimp(df(R2.e_y).rcall(p_p).doit()) == (
- sin(theta0)*Derivative(f(r0, theta0), r0) +
- cos(theta0)*Derivative(f(r0, theta0), theta0)/r0)
- assert R2.dx(R2.e_x).rcall(p_r) == 1
- assert R2.dx(R2.e_x) == 1
- assert R2.dx(R2.e_y).rcall(p_r) == 0
- assert R2.dx(R2.e_y) == 0
- circ = -R2.y*R2.e_x + R2.x*R2.e_y
- assert R2.dx(circ).rcall(p_r).doit() == -y0
- assert R2.dy(circ).rcall(p_r) == x0
- assert R2.dr(circ).rcall(p_r) == 0
- assert simplify(R2.dtheta(circ).rcall(p_r)) == 1
- assert (circ - R2.e_theta).rcall(s_field_r).rcall(p_r) == 0
- def test_functional_diffgeom_ch6():
- u0, u1, u2, v0, v1, v2, w0, w1, w2 = symbols('u0:3, v0:3, w0:3', real=True)
- u = u0*R2.e_x + u1*R2.e_y
- v = v0*R2.e_x + v1*R2.e_y
- wp = WedgeProduct(R2.dx, R2.dy)
- assert wp(u, v) == u0*v1 - u1*v0
- u = u0*R3_r.e_x + u1*R3_r.e_y + u2*R3_r.e_z
- v = v0*R3_r.e_x + v1*R3_r.e_y + v2*R3_r.e_z
- w = w0*R3_r.e_x + w1*R3_r.e_y + w2*R3_r.e_z
- wp = WedgeProduct(R3_r.dx, R3_r.dy, R3_r.dz)
- assert wp(
- u, v, w) == Matrix(3, 3, [u0, u1, u2, v0, v1, v2, w0, w1, w2]).det()
- a, b, c = symbols('a, b, c', cls=Function)
- a_f = a(R3_r.x, R3_r.y, R3_r.z)
- b_f = b(R3_r.x, R3_r.y, R3_r.z)
- c_f = c(R3_r.x, R3_r.y, R3_r.z)
- theta = a_f*R3_r.dx + b_f*R3_r.dy + c_f*R3_r.dz
- dtheta = Differential(theta)
- da = Differential(a_f)
- db = Differential(b_f)
- dc = Differential(c_f)
- expr = dtheta - WedgeProduct(
- da, R3_r.dx) - WedgeProduct(db, R3_r.dy) - WedgeProduct(dc, R3_r.dz)
- assert expr.rcall(R3_r.e_x, R3_r.e_y) == 0
|