assumptions_generated.py 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615
  1. """
  2. Do NOT manually edit this file.
  3. Instead, run ./bin/ask_update.py.
  4. """
  5. defined_facts = [
  6. 'algebraic',
  7. 'antihermitian',
  8. 'commutative',
  9. 'complex',
  10. 'composite',
  11. 'even',
  12. 'extended_negative',
  13. 'extended_nonnegative',
  14. 'extended_nonpositive',
  15. 'extended_nonzero',
  16. 'extended_positive',
  17. 'extended_real',
  18. 'finite',
  19. 'hermitian',
  20. 'imaginary',
  21. 'infinite',
  22. 'integer',
  23. 'irrational',
  24. 'negative',
  25. 'noninteger',
  26. 'nonnegative',
  27. 'nonpositive',
  28. 'nonzero',
  29. 'odd',
  30. 'positive',
  31. 'prime',
  32. 'rational',
  33. 'real',
  34. 'transcendental',
  35. 'zero',
  36. ] # defined_facts
  37. full_implications = dict( [
  38. # Implications of algebraic = True:
  39. (('algebraic', True), set( (
  40. ('commutative', True),
  41. ('complex', True),
  42. ('finite', True),
  43. ('infinite', False),
  44. ('transcendental', False),
  45. ) ),
  46. ),
  47. # Implications of algebraic = False:
  48. (('algebraic', False), set( (
  49. ('composite', False),
  50. ('even', False),
  51. ('integer', False),
  52. ('odd', False),
  53. ('prime', False),
  54. ('rational', False),
  55. ('zero', False),
  56. ) ),
  57. ),
  58. # Implications of antihermitian = True:
  59. (('antihermitian', True), set( (
  60. ) ),
  61. ),
  62. # Implications of antihermitian = False:
  63. (('antihermitian', False), set( (
  64. ('imaginary', False),
  65. ) ),
  66. ),
  67. # Implications of commutative = True:
  68. (('commutative', True), set( (
  69. ) ),
  70. ),
  71. # Implications of commutative = False:
  72. (('commutative', False), set( (
  73. ('algebraic', False),
  74. ('complex', False),
  75. ('composite', False),
  76. ('even', False),
  77. ('extended_negative', False),
  78. ('extended_nonnegative', False),
  79. ('extended_nonpositive', False),
  80. ('extended_nonzero', False),
  81. ('extended_positive', False),
  82. ('extended_real', False),
  83. ('imaginary', False),
  84. ('integer', False),
  85. ('irrational', False),
  86. ('negative', False),
  87. ('noninteger', False),
  88. ('nonnegative', False),
  89. ('nonpositive', False),
  90. ('nonzero', False),
  91. ('odd', False),
  92. ('positive', False),
  93. ('prime', False),
  94. ('rational', False),
  95. ('real', False),
  96. ('transcendental', False),
  97. ('zero', False),
  98. ) ),
  99. ),
  100. # Implications of complex = True:
  101. (('complex', True), set( (
  102. ('commutative', True),
  103. ('finite', True),
  104. ('infinite', False),
  105. ) ),
  106. ),
  107. # Implications of complex = False:
  108. (('complex', False), set( (
  109. ('algebraic', False),
  110. ('composite', False),
  111. ('even', False),
  112. ('imaginary', False),
  113. ('integer', False),
  114. ('irrational', False),
  115. ('negative', False),
  116. ('nonnegative', False),
  117. ('nonpositive', False),
  118. ('nonzero', False),
  119. ('odd', False),
  120. ('positive', False),
  121. ('prime', False),
  122. ('rational', False),
  123. ('real', False),
  124. ('transcendental', False),
  125. ('zero', False),
  126. ) ),
  127. ),
  128. # Implications of composite = True:
  129. (('composite', True), set( (
  130. ('algebraic', True),
  131. ('commutative', True),
  132. ('complex', True),
  133. ('extended_negative', False),
  134. ('extended_nonnegative', True),
  135. ('extended_nonpositive', False),
  136. ('extended_nonzero', True),
  137. ('extended_positive', True),
  138. ('extended_real', True),
  139. ('finite', True),
  140. ('hermitian', True),
  141. ('imaginary', False),
  142. ('infinite', False),
  143. ('integer', True),
  144. ('irrational', False),
  145. ('negative', False),
  146. ('noninteger', False),
  147. ('nonnegative', True),
  148. ('nonpositive', False),
  149. ('nonzero', True),
  150. ('positive', True),
  151. ('prime', False),
  152. ('rational', True),
  153. ('real', True),
  154. ('transcendental', False),
  155. ('zero', False),
  156. ) ),
  157. ),
  158. # Implications of composite = False:
  159. (('composite', False), set( (
  160. ) ),
  161. ),
  162. # Implications of even = True:
  163. (('even', True), set( (
  164. ('algebraic', True),
  165. ('commutative', True),
  166. ('complex', True),
  167. ('extended_real', True),
  168. ('finite', True),
  169. ('hermitian', True),
  170. ('imaginary', False),
  171. ('infinite', False),
  172. ('integer', True),
  173. ('irrational', False),
  174. ('noninteger', False),
  175. ('odd', False),
  176. ('rational', True),
  177. ('real', True),
  178. ('transcendental', False),
  179. ) ),
  180. ),
  181. # Implications of even = False:
  182. (('even', False), set( (
  183. ('zero', False),
  184. ) ),
  185. ),
  186. # Implications of extended_negative = True:
  187. (('extended_negative', True), set( (
  188. ('commutative', True),
  189. ('composite', False),
  190. ('extended_nonnegative', False),
  191. ('extended_nonpositive', True),
  192. ('extended_nonzero', True),
  193. ('extended_positive', False),
  194. ('extended_real', True),
  195. ('imaginary', False),
  196. ('nonnegative', False),
  197. ('positive', False),
  198. ('prime', False),
  199. ('zero', False),
  200. ) ),
  201. ),
  202. # Implications of extended_negative = False:
  203. (('extended_negative', False), set( (
  204. ('negative', False),
  205. ) ),
  206. ),
  207. # Implications of extended_nonnegative = True:
  208. (('extended_nonnegative', True), set( (
  209. ('commutative', True),
  210. ('extended_negative', False),
  211. ('extended_real', True),
  212. ('imaginary', False),
  213. ('negative', False),
  214. ) ),
  215. ),
  216. # Implications of extended_nonnegative = False:
  217. (('extended_nonnegative', False), set( (
  218. ('composite', False),
  219. ('extended_positive', False),
  220. ('nonnegative', False),
  221. ('positive', False),
  222. ('prime', False),
  223. ('zero', False),
  224. ) ),
  225. ),
  226. # Implications of extended_nonpositive = True:
  227. (('extended_nonpositive', True), set( (
  228. ('commutative', True),
  229. ('composite', False),
  230. ('extended_positive', False),
  231. ('extended_real', True),
  232. ('imaginary', False),
  233. ('positive', False),
  234. ('prime', False),
  235. ) ),
  236. ),
  237. # Implications of extended_nonpositive = False:
  238. (('extended_nonpositive', False), set( (
  239. ('extended_negative', False),
  240. ('negative', False),
  241. ('nonpositive', False),
  242. ('zero', False),
  243. ) ),
  244. ),
  245. # Implications of extended_nonzero = True:
  246. (('extended_nonzero', True), set( (
  247. ('commutative', True),
  248. ('extended_real', True),
  249. ('imaginary', False),
  250. ('zero', False),
  251. ) ),
  252. ),
  253. # Implications of extended_nonzero = False:
  254. (('extended_nonzero', False), set( (
  255. ('composite', False),
  256. ('extended_negative', False),
  257. ('extended_positive', False),
  258. ('negative', False),
  259. ('nonzero', False),
  260. ('positive', False),
  261. ('prime', False),
  262. ) ),
  263. ),
  264. # Implications of extended_positive = True:
  265. (('extended_positive', True), set( (
  266. ('commutative', True),
  267. ('extended_negative', False),
  268. ('extended_nonnegative', True),
  269. ('extended_nonpositive', False),
  270. ('extended_nonzero', True),
  271. ('extended_real', True),
  272. ('imaginary', False),
  273. ('negative', False),
  274. ('nonpositive', False),
  275. ('zero', False),
  276. ) ),
  277. ),
  278. # Implications of extended_positive = False:
  279. (('extended_positive', False), set( (
  280. ('composite', False),
  281. ('positive', False),
  282. ('prime', False),
  283. ) ),
  284. ),
  285. # Implications of extended_real = True:
  286. (('extended_real', True), set( (
  287. ('commutative', True),
  288. ('imaginary', False),
  289. ) ),
  290. ),
  291. # Implications of extended_real = False:
  292. (('extended_real', False), set( (
  293. ('composite', False),
  294. ('even', False),
  295. ('extended_negative', False),
  296. ('extended_nonnegative', False),
  297. ('extended_nonpositive', False),
  298. ('extended_nonzero', False),
  299. ('extended_positive', False),
  300. ('integer', False),
  301. ('irrational', False),
  302. ('negative', False),
  303. ('noninteger', False),
  304. ('nonnegative', False),
  305. ('nonpositive', False),
  306. ('nonzero', False),
  307. ('odd', False),
  308. ('positive', False),
  309. ('prime', False),
  310. ('rational', False),
  311. ('real', False),
  312. ('zero', False),
  313. ) ),
  314. ),
  315. # Implications of finite = True:
  316. (('finite', True), set( (
  317. ('infinite', False),
  318. ) ),
  319. ),
  320. # Implications of finite = False:
  321. (('finite', False), set( (
  322. ('algebraic', False),
  323. ('complex', False),
  324. ('composite', False),
  325. ('even', False),
  326. ('imaginary', False),
  327. ('infinite', True),
  328. ('integer', False),
  329. ('irrational', False),
  330. ('negative', False),
  331. ('nonnegative', False),
  332. ('nonpositive', False),
  333. ('nonzero', False),
  334. ('odd', False),
  335. ('positive', False),
  336. ('prime', False),
  337. ('rational', False),
  338. ('real', False),
  339. ('transcendental', False),
  340. ('zero', False),
  341. ) ),
  342. ),
  343. # Implications of hermitian = True:
  344. (('hermitian', True), set( (
  345. ) ),
  346. ),
  347. # Implications of hermitian = False:
  348. (('hermitian', False), set( (
  349. ('composite', False),
  350. ('even', False),
  351. ('integer', False),
  352. ('irrational', False),
  353. ('negative', False),
  354. ('nonnegative', False),
  355. ('nonpositive', False),
  356. ('nonzero', False),
  357. ('odd', False),
  358. ('positive', False),
  359. ('prime', False),
  360. ('rational', False),
  361. ('real', False),
  362. ('zero', False),
  363. ) ),
  364. ),
  365. # Implications of imaginary = True:
  366. (('imaginary', True), set( (
  367. ('antihermitian', True),
  368. ('commutative', True),
  369. ('complex', True),
  370. ('composite', False),
  371. ('even', False),
  372. ('extended_negative', False),
  373. ('extended_nonnegative', False),
  374. ('extended_nonpositive', False),
  375. ('extended_nonzero', False),
  376. ('extended_positive', False),
  377. ('extended_real', False),
  378. ('finite', True),
  379. ('infinite', False),
  380. ('integer', False),
  381. ('irrational', False),
  382. ('negative', False),
  383. ('noninteger', False),
  384. ('nonnegative', False),
  385. ('nonpositive', False),
  386. ('nonzero', False),
  387. ('odd', False),
  388. ('positive', False),
  389. ('prime', False),
  390. ('rational', False),
  391. ('real', False),
  392. ('zero', False),
  393. ) ),
  394. ),
  395. # Implications of imaginary = False:
  396. (('imaginary', False), set( (
  397. ) ),
  398. ),
  399. # Implications of infinite = True:
  400. (('infinite', True), set( (
  401. ('algebraic', False),
  402. ('complex', False),
  403. ('composite', False),
  404. ('even', False),
  405. ('finite', False),
  406. ('imaginary', False),
  407. ('integer', False),
  408. ('irrational', False),
  409. ('negative', False),
  410. ('nonnegative', False),
  411. ('nonpositive', False),
  412. ('nonzero', False),
  413. ('odd', False),
  414. ('positive', False),
  415. ('prime', False),
  416. ('rational', False),
  417. ('real', False),
  418. ('transcendental', False),
  419. ('zero', False),
  420. ) ),
  421. ),
  422. # Implications of infinite = False:
  423. (('infinite', False), set( (
  424. ('finite', True),
  425. ) ),
  426. ),
  427. # Implications of integer = True:
  428. (('integer', True), set( (
  429. ('algebraic', True),
  430. ('commutative', True),
  431. ('complex', True),
  432. ('extended_real', True),
  433. ('finite', True),
  434. ('hermitian', True),
  435. ('imaginary', False),
  436. ('infinite', False),
  437. ('irrational', False),
  438. ('noninteger', False),
  439. ('rational', True),
  440. ('real', True),
  441. ('transcendental', False),
  442. ) ),
  443. ),
  444. # Implications of integer = False:
  445. (('integer', False), set( (
  446. ('composite', False),
  447. ('even', False),
  448. ('odd', False),
  449. ('prime', False),
  450. ('zero', False),
  451. ) ),
  452. ),
  453. # Implications of irrational = True:
  454. (('irrational', True), set( (
  455. ('commutative', True),
  456. ('complex', True),
  457. ('composite', False),
  458. ('even', False),
  459. ('extended_nonzero', True),
  460. ('extended_real', True),
  461. ('finite', True),
  462. ('hermitian', True),
  463. ('imaginary', False),
  464. ('infinite', False),
  465. ('integer', False),
  466. ('noninteger', True),
  467. ('nonzero', True),
  468. ('odd', False),
  469. ('prime', False),
  470. ('rational', False),
  471. ('real', True),
  472. ('zero', False),
  473. ) ),
  474. ),
  475. # Implications of irrational = False:
  476. (('irrational', False), set( (
  477. ) ),
  478. ),
  479. # Implications of negative = True:
  480. (('negative', True), set( (
  481. ('commutative', True),
  482. ('complex', True),
  483. ('composite', False),
  484. ('extended_negative', True),
  485. ('extended_nonnegative', False),
  486. ('extended_nonpositive', True),
  487. ('extended_nonzero', True),
  488. ('extended_positive', False),
  489. ('extended_real', True),
  490. ('finite', True),
  491. ('hermitian', True),
  492. ('imaginary', False),
  493. ('infinite', False),
  494. ('nonnegative', False),
  495. ('nonpositive', True),
  496. ('nonzero', True),
  497. ('positive', False),
  498. ('prime', False),
  499. ('real', True),
  500. ('zero', False),
  501. ) ),
  502. ),
  503. # Implications of negative = False:
  504. (('negative', False), set( (
  505. ) ),
  506. ),
  507. # Implications of noninteger = True:
  508. (('noninteger', True), set( (
  509. ('commutative', True),
  510. ('composite', False),
  511. ('even', False),
  512. ('extended_nonzero', True),
  513. ('extended_real', True),
  514. ('imaginary', False),
  515. ('integer', False),
  516. ('odd', False),
  517. ('prime', False),
  518. ('zero', False),
  519. ) ),
  520. ),
  521. # Implications of noninteger = False:
  522. (('noninteger', False), set( (
  523. ) ),
  524. ),
  525. # Implications of nonnegative = True:
  526. (('nonnegative', True), set( (
  527. ('commutative', True),
  528. ('complex', True),
  529. ('extended_negative', False),
  530. ('extended_nonnegative', True),
  531. ('extended_real', True),
  532. ('finite', True),
  533. ('hermitian', True),
  534. ('imaginary', False),
  535. ('infinite', False),
  536. ('negative', False),
  537. ('real', True),
  538. ) ),
  539. ),
  540. # Implications of nonnegative = False:
  541. (('nonnegative', False), set( (
  542. ('composite', False),
  543. ('positive', False),
  544. ('prime', False),
  545. ('zero', False),
  546. ) ),
  547. ),
  548. # Implications of nonpositive = True:
  549. (('nonpositive', True), set( (
  550. ('commutative', True),
  551. ('complex', True),
  552. ('composite', False),
  553. ('extended_nonpositive', True),
  554. ('extended_positive', False),
  555. ('extended_real', True),
  556. ('finite', True),
  557. ('hermitian', True),
  558. ('imaginary', False),
  559. ('infinite', False),
  560. ('positive', False),
  561. ('prime', False),
  562. ('real', True),
  563. ) ),
  564. ),
  565. # Implications of nonpositive = False:
  566. (('nonpositive', False), set( (
  567. ('negative', False),
  568. ('zero', False),
  569. ) ),
  570. ),
  571. # Implications of nonzero = True:
  572. (('nonzero', True), set( (
  573. ('commutative', True),
  574. ('complex', True),
  575. ('extended_nonzero', True),
  576. ('extended_real', True),
  577. ('finite', True),
  578. ('hermitian', True),
  579. ('imaginary', False),
  580. ('infinite', False),
  581. ('real', True),
  582. ('zero', False),
  583. ) ),
  584. ),
  585. # Implications of nonzero = False:
  586. (('nonzero', False), set( (
  587. ('composite', False),
  588. ('negative', False),
  589. ('positive', False),
  590. ('prime', False),
  591. ) ),
  592. ),
  593. # Implications of odd = True:
  594. (('odd', True), set( (
  595. ('algebraic', True),
  596. ('commutative', True),
  597. ('complex', True),
  598. ('even', False),
  599. ('extended_nonzero', True),
  600. ('extended_real', True),
  601. ('finite', True),
  602. ('hermitian', True),
  603. ('imaginary', False),
  604. ('infinite', False),
  605. ('integer', True),
  606. ('irrational', False),
  607. ('noninteger', False),
  608. ('nonzero', True),
  609. ('rational', True),
  610. ('real', True),
  611. ('transcendental', False),
  612. ('zero', False),
  613. ) ),
  614. ),
  615. # Implications of odd = False:
  616. (('odd', False), set( (
  617. ) ),
  618. ),
  619. # Implications of positive = True:
  620. (('positive', True), set( (
  621. ('commutative', True),
  622. ('complex', True),
  623. ('extended_negative', False),
  624. ('extended_nonnegative', True),
  625. ('extended_nonpositive', False),
  626. ('extended_nonzero', True),
  627. ('extended_positive', True),
  628. ('extended_real', True),
  629. ('finite', True),
  630. ('hermitian', True),
  631. ('imaginary', False),
  632. ('infinite', False),
  633. ('negative', False),
  634. ('nonnegative', True),
  635. ('nonpositive', False),
  636. ('nonzero', True),
  637. ('real', True),
  638. ('zero', False),
  639. ) ),
  640. ),
  641. # Implications of positive = False:
  642. (('positive', False), set( (
  643. ('composite', False),
  644. ('prime', False),
  645. ) ),
  646. ),
  647. # Implications of prime = True:
  648. (('prime', True), set( (
  649. ('algebraic', True),
  650. ('commutative', True),
  651. ('complex', True),
  652. ('composite', False),
  653. ('extended_negative', False),
  654. ('extended_nonnegative', True),
  655. ('extended_nonpositive', False),
  656. ('extended_nonzero', True),
  657. ('extended_positive', True),
  658. ('extended_real', True),
  659. ('finite', True),
  660. ('hermitian', True),
  661. ('imaginary', False),
  662. ('infinite', False),
  663. ('integer', True),
  664. ('irrational', False),
  665. ('negative', False),
  666. ('noninteger', False),
  667. ('nonnegative', True),
  668. ('nonpositive', False),
  669. ('nonzero', True),
  670. ('positive', True),
  671. ('rational', True),
  672. ('real', True),
  673. ('transcendental', False),
  674. ('zero', False),
  675. ) ),
  676. ),
  677. # Implications of prime = False:
  678. (('prime', False), set( (
  679. ) ),
  680. ),
  681. # Implications of rational = True:
  682. (('rational', True), set( (
  683. ('algebraic', True),
  684. ('commutative', True),
  685. ('complex', True),
  686. ('extended_real', True),
  687. ('finite', True),
  688. ('hermitian', True),
  689. ('imaginary', False),
  690. ('infinite', False),
  691. ('irrational', False),
  692. ('real', True),
  693. ('transcendental', False),
  694. ) ),
  695. ),
  696. # Implications of rational = False:
  697. (('rational', False), set( (
  698. ('composite', False),
  699. ('even', False),
  700. ('integer', False),
  701. ('odd', False),
  702. ('prime', False),
  703. ('zero', False),
  704. ) ),
  705. ),
  706. # Implications of real = True:
  707. (('real', True), set( (
  708. ('commutative', True),
  709. ('complex', True),
  710. ('extended_real', True),
  711. ('finite', True),
  712. ('hermitian', True),
  713. ('imaginary', False),
  714. ('infinite', False),
  715. ) ),
  716. ),
  717. # Implications of real = False:
  718. (('real', False), set( (
  719. ('composite', False),
  720. ('even', False),
  721. ('integer', False),
  722. ('irrational', False),
  723. ('negative', False),
  724. ('nonnegative', False),
  725. ('nonpositive', False),
  726. ('nonzero', False),
  727. ('odd', False),
  728. ('positive', False),
  729. ('prime', False),
  730. ('rational', False),
  731. ('zero', False),
  732. ) ),
  733. ),
  734. # Implications of transcendental = True:
  735. (('transcendental', True), set( (
  736. ('algebraic', False),
  737. ('commutative', True),
  738. ('complex', True),
  739. ('composite', False),
  740. ('even', False),
  741. ('finite', True),
  742. ('infinite', False),
  743. ('integer', False),
  744. ('odd', False),
  745. ('prime', False),
  746. ('rational', False),
  747. ('zero', False),
  748. ) ),
  749. ),
  750. # Implications of transcendental = False:
  751. (('transcendental', False), set( (
  752. ) ),
  753. ),
  754. # Implications of zero = True:
  755. (('zero', True), set( (
  756. ('algebraic', True),
  757. ('commutative', True),
  758. ('complex', True),
  759. ('composite', False),
  760. ('even', True),
  761. ('extended_negative', False),
  762. ('extended_nonnegative', True),
  763. ('extended_nonpositive', True),
  764. ('extended_nonzero', False),
  765. ('extended_positive', False),
  766. ('extended_real', True),
  767. ('finite', True),
  768. ('hermitian', True),
  769. ('imaginary', False),
  770. ('infinite', False),
  771. ('integer', True),
  772. ('irrational', False),
  773. ('negative', False),
  774. ('noninteger', False),
  775. ('nonnegative', True),
  776. ('nonpositive', True),
  777. ('nonzero', False),
  778. ('odd', False),
  779. ('positive', False),
  780. ('prime', False),
  781. ('rational', True),
  782. ('real', True),
  783. ('transcendental', False),
  784. ) ),
  785. ),
  786. # Implications of zero = False:
  787. (('zero', False), set( (
  788. ) ),
  789. ),
  790. ] ) # full_implications
  791. prereq = {
  792. # facts that could determine the value of algebraic
  793. 'algebraic': {
  794. 'commutative',
  795. 'complex',
  796. 'composite',
  797. 'even',
  798. 'finite',
  799. 'infinite',
  800. 'integer',
  801. 'odd',
  802. 'prime',
  803. 'rational',
  804. 'transcendental',
  805. 'zero',
  806. },
  807. # facts that could determine the value of antihermitian
  808. 'antihermitian': {
  809. 'imaginary',
  810. },
  811. # facts that could determine the value of commutative
  812. 'commutative': {
  813. 'algebraic',
  814. 'complex',
  815. 'composite',
  816. 'even',
  817. 'extended_negative',
  818. 'extended_nonnegative',
  819. 'extended_nonpositive',
  820. 'extended_nonzero',
  821. 'extended_positive',
  822. 'extended_real',
  823. 'imaginary',
  824. 'integer',
  825. 'irrational',
  826. 'negative',
  827. 'noninteger',
  828. 'nonnegative',
  829. 'nonpositive',
  830. 'nonzero',
  831. 'odd',
  832. 'positive',
  833. 'prime',
  834. 'rational',
  835. 'real',
  836. 'transcendental',
  837. 'zero',
  838. },
  839. # facts that could determine the value of complex
  840. 'complex': {
  841. 'algebraic',
  842. 'commutative',
  843. 'composite',
  844. 'even',
  845. 'finite',
  846. 'imaginary',
  847. 'infinite',
  848. 'integer',
  849. 'irrational',
  850. 'negative',
  851. 'nonnegative',
  852. 'nonpositive',
  853. 'nonzero',
  854. 'odd',
  855. 'positive',
  856. 'prime',
  857. 'rational',
  858. 'real',
  859. 'transcendental',
  860. 'zero',
  861. },
  862. # facts that could determine the value of composite
  863. 'composite': {
  864. 'algebraic',
  865. 'commutative',
  866. 'complex',
  867. 'extended_negative',
  868. 'extended_nonnegative',
  869. 'extended_nonpositive',
  870. 'extended_nonzero',
  871. 'extended_positive',
  872. 'extended_real',
  873. 'finite',
  874. 'hermitian',
  875. 'imaginary',
  876. 'infinite',
  877. 'integer',
  878. 'irrational',
  879. 'negative',
  880. 'noninteger',
  881. 'nonnegative',
  882. 'nonpositive',
  883. 'nonzero',
  884. 'positive',
  885. 'prime',
  886. 'rational',
  887. 'real',
  888. 'transcendental',
  889. 'zero',
  890. },
  891. # facts that could determine the value of even
  892. 'even': {
  893. 'algebraic',
  894. 'commutative',
  895. 'complex',
  896. 'extended_real',
  897. 'finite',
  898. 'hermitian',
  899. 'imaginary',
  900. 'infinite',
  901. 'integer',
  902. 'irrational',
  903. 'noninteger',
  904. 'odd',
  905. 'rational',
  906. 'real',
  907. 'transcendental',
  908. 'zero',
  909. },
  910. # facts that could determine the value of extended_negative
  911. 'extended_negative': {
  912. 'commutative',
  913. 'composite',
  914. 'extended_nonnegative',
  915. 'extended_nonpositive',
  916. 'extended_nonzero',
  917. 'extended_positive',
  918. 'extended_real',
  919. 'imaginary',
  920. 'negative',
  921. 'nonnegative',
  922. 'positive',
  923. 'prime',
  924. 'zero',
  925. },
  926. # facts that could determine the value of extended_nonnegative
  927. 'extended_nonnegative': {
  928. 'commutative',
  929. 'composite',
  930. 'extended_negative',
  931. 'extended_positive',
  932. 'extended_real',
  933. 'imaginary',
  934. 'negative',
  935. 'nonnegative',
  936. 'positive',
  937. 'prime',
  938. 'zero',
  939. },
  940. # facts that could determine the value of extended_nonpositive
  941. 'extended_nonpositive': {
  942. 'commutative',
  943. 'composite',
  944. 'extended_negative',
  945. 'extended_positive',
  946. 'extended_real',
  947. 'imaginary',
  948. 'negative',
  949. 'nonpositive',
  950. 'positive',
  951. 'prime',
  952. 'zero',
  953. },
  954. # facts that could determine the value of extended_nonzero
  955. 'extended_nonzero': {
  956. 'commutative',
  957. 'composite',
  958. 'extended_negative',
  959. 'extended_positive',
  960. 'extended_real',
  961. 'imaginary',
  962. 'irrational',
  963. 'negative',
  964. 'noninteger',
  965. 'nonzero',
  966. 'odd',
  967. 'positive',
  968. 'prime',
  969. 'zero',
  970. },
  971. # facts that could determine the value of extended_positive
  972. 'extended_positive': {
  973. 'commutative',
  974. 'composite',
  975. 'extended_negative',
  976. 'extended_nonnegative',
  977. 'extended_nonpositive',
  978. 'extended_nonzero',
  979. 'extended_real',
  980. 'imaginary',
  981. 'negative',
  982. 'nonpositive',
  983. 'positive',
  984. 'prime',
  985. 'zero',
  986. },
  987. # facts that could determine the value of extended_real
  988. 'extended_real': {
  989. 'commutative',
  990. 'composite',
  991. 'even',
  992. 'extended_negative',
  993. 'extended_nonnegative',
  994. 'extended_nonpositive',
  995. 'extended_nonzero',
  996. 'extended_positive',
  997. 'imaginary',
  998. 'integer',
  999. 'irrational',
  1000. 'negative',
  1001. 'noninteger',
  1002. 'nonnegative',
  1003. 'nonpositive',
  1004. 'nonzero',
  1005. 'odd',
  1006. 'positive',
  1007. 'prime',
  1008. 'rational',
  1009. 'real',
  1010. 'zero',
  1011. },
  1012. # facts that could determine the value of finite
  1013. 'finite': {
  1014. 'algebraic',
  1015. 'complex',
  1016. 'composite',
  1017. 'even',
  1018. 'imaginary',
  1019. 'infinite',
  1020. 'integer',
  1021. 'irrational',
  1022. 'negative',
  1023. 'nonnegative',
  1024. 'nonpositive',
  1025. 'nonzero',
  1026. 'odd',
  1027. 'positive',
  1028. 'prime',
  1029. 'rational',
  1030. 'real',
  1031. 'transcendental',
  1032. 'zero',
  1033. },
  1034. # facts that could determine the value of hermitian
  1035. 'hermitian': {
  1036. 'composite',
  1037. 'even',
  1038. 'integer',
  1039. 'irrational',
  1040. 'negative',
  1041. 'nonnegative',
  1042. 'nonpositive',
  1043. 'nonzero',
  1044. 'odd',
  1045. 'positive',
  1046. 'prime',
  1047. 'rational',
  1048. 'real',
  1049. 'zero',
  1050. },
  1051. # facts that could determine the value of imaginary
  1052. 'imaginary': {
  1053. 'antihermitian',
  1054. 'commutative',
  1055. 'complex',
  1056. 'composite',
  1057. 'even',
  1058. 'extended_negative',
  1059. 'extended_nonnegative',
  1060. 'extended_nonpositive',
  1061. 'extended_nonzero',
  1062. 'extended_positive',
  1063. 'extended_real',
  1064. 'finite',
  1065. 'infinite',
  1066. 'integer',
  1067. 'irrational',
  1068. 'negative',
  1069. 'noninteger',
  1070. 'nonnegative',
  1071. 'nonpositive',
  1072. 'nonzero',
  1073. 'odd',
  1074. 'positive',
  1075. 'prime',
  1076. 'rational',
  1077. 'real',
  1078. 'zero',
  1079. },
  1080. # facts that could determine the value of infinite
  1081. 'infinite': {
  1082. 'algebraic',
  1083. 'complex',
  1084. 'composite',
  1085. 'even',
  1086. 'finite',
  1087. 'imaginary',
  1088. 'integer',
  1089. 'irrational',
  1090. 'negative',
  1091. 'nonnegative',
  1092. 'nonpositive',
  1093. 'nonzero',
  1094. 'odd',
  1095. 'positive',
  1096. 'prime',
  1097. 'rational',
  1098. 'real',
  1099. 'transcendental',
  1100. 'zero',
  1101. },
  1102. # facts that could determine the value of integer
  1103. 'integer': {
  1104. 'algebraic',
  1105. 'commutative',
  1106. 'complex',
  1107. 'composite',
  1108. 'even',
  1109. 'extended_real',
  1110. 'finite',
  1111. 'hermitian',
  1112. 'imaginary',
  1113. 'infinite',
  1114. 'irrational',
  1115. 'noninteger',
  1116. 'odd',
  1117. 'prime',
  1118. 'rational',
  1119. 'real',
  1120. 'transcendental',
  1121. 'zero',
  1122. },
  1123. # facts that could determine the value of irrational
  1124. 'irrational': {
  1125. 'commutative',
  1126. 'complex',
  1127. 'composite',
  1128. 'even',
  1129. 'extended_real',
  1130. 'finite',
  1131. 'hermitian',
  1132. 'imaginary',
  1133. 'infinite',
  1134. 'integer',
  1135. 'odd',
  1136. 'prime',
  1137. 'rational',
  1138. 'real',
  1139. 'zero',
  1140. },
  1141. # facts that could determine the value of negative
  1142. 'negative': {
  1143. 'commutative',
  1144. 'complex',
  1145. 'composite',
  1146. 'extended_negative',
  1147. 'extended_nonnegative',
  1148. 'extended_nonpositive',
  1149. 'extended_nonzero',
  1150. 'extended_positive',
  1151. 'extended_real',
  1152. 'finite',
  1153. 'hermitian',
  1154. 'imaginary',
  1155. 'infinite',
  1156. 'nonnegative',
  1157. 'nonpositive',
  1158. 'nonzero',
  1159. 'positive',
  1160. 'prime',
  1161. 'real',
  1162. 'zero',
  1163. },
  1164. # facts that could determine the value of noninteger
  1165. 'noninteger': {
  1166. 'commutative',
  1167. 'composite',
  1168. 'even',
  1169. 'extended_real',
  1170. 'imaginary',
  1171. 'integer',
  1172. 'irrational',
  1173. 'odd',
  1174. 'prime',
  1175. 'zero',
  1176. },
  1177. # facts that could determine the value of nonnegative
  1178. 'nonnegative': {
  1179. 'commutative',
  1180. 'complex',
  1181. 'composite',
  1182. 'extended_negative',
  1183. 'extended_nonnegative',
  1184. 'extended_real',
  1185. 'finite',
  1186. 'hermitian',
  1187. 'imaginary',
  1188. 'infinite',
  1189. 'negative',
  1190. 'positive',
  1191. 'prime',
  1192. 'real',
  1193. 'zero',
  1194. },
  1195. # facts that could determine the value of nonpositive
  1196. 'nonpositive': {
  1197. 'commutative',
  1198. 'complex',
  1199. 'composite',
  1200. 'extended_nonpositive',
  1201. 'extended_positive',
  1202. 'extended_real',
  1203. 'finite',
  1204. 'hermitian',
  1205. 'imaginary',
  1206. 'infinite',
  1207. 'negative',
  1208. 'positive',
  1209. 'prime',
  1210. 'real',
  1211. 'zero',
  1212. },
  1213. # facts that could determine the value of nonzero
  1214. 'nonzero': {
  1215. 'commutative',
  1216. 'complex',
  1217. 'composite',
  1218. 'extended_nonzero',
  1219. 'extended_real',
  1220. 'finite',
  1221. 'hermitian',
  1222. 'imaginary',
  1223. 'infinite',
  1224. 'irrational',
  1225. 'negative',
  1226. 'odd',
  1227. 'positive',
  1228. 'prime',
  1229. 'real',
  1230. 'zero',
  1231. },
  1232. # facts that could determine the value of odd
  1233. 'odd': {
  1234. 'algebraic',
  1235. 'commutative',
  1236. 'complex',
  1237. 'even',
  1238. 'extended_real',
  1239. 'finite',
  1240. 'hermitian',
  1241. 'imaginary',
  1242. 'infinite',
  1243. 'integer',
  1244. 'irrational',
  1245. 'noninteger',
  1246. 'rational',
  1247. 'real',
  1248. 'transcendental',
  1249. 'zero',
  1250. },
  1251. # facts that could determine the value of positive
  1252. 'positive': {
  1253. 'commutative',
  1254. 'complex',
  1255. 'composite',
  1256. 'extended_negative',
  1257. 'extended_nonnegative',
  1258. 'extended_nonpositive',
  1259. 'extended_nonzero',
  1260. 'extended_positive',
  1261. 'extended_real',
  1262. 'finite',
  1263. 'hermitian',
  1264. 'imaginary',
  1265. 'infinite',
  1266. 'negative',
  1267. 'nonnegative',
  1268. 'nonpositive',
  1269. 'nonzero',
  1270. 'prime',
  1271. 'real',
  1272. 'zero',
  1273. },
  1274. # facts that could determine the value of prime
  1275. 'prime': {
  1276. 'algebraic',
  1277. 'commutative',
  1278. 'complex',
  1279. 'composite',
  1280. 'extended_negative',
  1281. 'extended_nonnegative',
  1282. 'extended_nonpositive',
  1283. 'extended_nonzero',
  1284. 'extended_positive',
  1285. 'extended_real',
  1286. 'finite',
  1287. 'hermitian',
  1288. 'imaginary',
  1289. 'infinite',
  1290. 'integer',
  1291. 'irrational',
  1292. 'negative',
  1293. 'noninteger',
  1294. 'nonnegative',
  1295. 'nonpositive',
  1296. 'nonzero',
  1297. 'positive',
  1298. 'rational',
  1299. 'real',
  1300. 'transcendental',
  1301. 'zero',
  1302. },
  1303. # facts that could determine the value of rational
  1304. 'rational': {
  1305. 'algebraic',
  1306. 'commutative',
  1307. 'complex',
  1308. 'composite',
  1309. 'even',
  1310. 'extended_real',
  1311. 'finite',
  1312. 'hermitian',
  1313. 'imaginary',
  1314. 'infinite',
  1315. 'integer',
  1316. 'irrational',
  1317. 'odd',
  1318. 'prime',
  1319. 'real',
  1320. 'transcendental',
  1321. 'zero',
  1322. },
  1323. # facts that could determine the value of real
  1324. 'real': {
  1325. 'commutative',
  1326. 'complex',
  1327. 'composite',
  1328. 'even',
  1329. 'extended_real',
  1330. 'finite',
  1331. 'hermitian',
  1332. 'imaginary',
  1333. 'infinite',
  1334. 'integer',
  1335. 'irrational',
  1336. 'negative',
  1337. 'nonnegative',
  1338. 'nonpositive',
  1339. 'nonzero',
  1340. 'odd',
  1341. 'positive',
  1342. 'prime',
  1343. 'rational',
  1344. 'zero',
  1345. },
  1346. # facts that could determine the value of transcendental
  1347. 'transcendental': {
  1348. 'algebraic',
  1349. 'commutative',
  1350. 'complex',
  1351. 'composite',
  1352. 'even',
  1353. 'finite',
  1354. 'infinite',
  1355. 'integer',
  1356. 'odd',
  1357. 'prime',
  1358. 'rational',
  1359. 'zero',
  1360. },
  1361. # facts that could determine the value of zero
  1362. 'zero': {
  1363. 'algebraic',
  1364. 'commutative',
  1365. 'complex',
  1366. 'composite',
  1367. 'even',
  1368. 'extended_negative',
  1369. 'extended_nonnegative',
  1370. 'extended_nonpositive',
  1371. 'extended_nonzero',
  1372. 'extended_positive',
  1373. 'extended_real',
  1374. 'finite',
  1375. 'hermitian',
  1376. 'imaginary',
  1377. 'infinite',
  1378. 'integer',
  1379. 'irrational',
  1380. 'negative',
  1381. 'noninteger',
  1382. 'nonnegative',
  1383. 'nonpositive',
  1384. 'nonzero',
  1385. 'odd',
  1386. 'positive',
  1387. 'prime',
  1388. 'rational',
  1389. 'real',
  1390. 'transcendental',
  1391. },
  1392. } # prereq
  1393. # Note: the order of the beta rules is used in the beta_triggers
  1394. beta_rules = [
  1395. # Rules implying composite = True
  1396. ({('even', True), ('positive', True), ('prime', False)},
  1397. ('composite', True)),
  1398. # Rules implying even = False
  1399. ({('composite', False), ('positive', True), ('prime', False)},
  1400. ('even', False)),
  1401. # Rules implying even = True
  1402. ({('integer', True), ('odd', False)},
  1403. ('even', True)),
  1404. # Rules implying extended_negative = True
  1405. ({('extended_positive', False), ('extended_real', True), ('zero', False)},
  1406. ('extended_negative', True)),
  1407. ({('extended_nonpositive', True), ('extended_nonzero', True)},
  1408. ('extended_negative', True)),
  1409. # Rules implying extended_nonnegative = True
  1410. ({('extended_negative', False), ('extended_real', True)},
  1411. ('extended_nonnegative', True)),
  1412. # Rules implying extended_nonpositive = True
  1413. ({('extended_positive', False), ('extended_real', True)},
  1414. ('extended_nonpositive', True)),
  1415. # Rules implying extended_nonzero = True
  1416. ({('extended_real', True), ('zero', False)},
  1417. ('extended_nonzero', True)),
  1418. # Rules implying extended_positive = True
  1419. ({('extended_negative', False), ('extended_real', True), ('zero', False)},
  1420. ('extended_positive', True)),
  1421. ({('extended_nonnegative', True), ('extended_nonzero', True)},
  1422. ('extended_positive', True)),
  1423. # Rules implying extended_real = False
  1424. ({('infinite', False), ('real', False)},
  1425. ('extended_real', False)),
  1426. ({('extended_negative', False), ('extended_positive', False), ('zero', False)},
  1427. ('extended_real', False)),
  1428. # Rules implying infinite = True
  1429. ({('extended_real', True), ('real', False)},
  1430. ('infinite', True)),
  1431. # Rules implying irrational = True
  1432. ({('rational', False), ('real', True)},
  1433. ('irrational', True)),
  1434. # Rules implying negative = True
  1435. ({('positive', False), ('real', True), ('zero', False)},
  1436. ('negative', True)),
  1437. ({('nonpositive', True), ('nonzero', True)},
  1438. ('negative', True)),
  1439. ({('extended_negative', True), ('finite', True)},
  1440. ('negative', True)),
  1441. # Rules implying noninteger = True
  1442. ({('extended_real', True), ('integer', False)},
  1443. ('noninteger', True)),
  1444. # Rules implying nonnegative = True
  1445. ({('negative', False), ('real', True)},
  1446. ('nonnegative', True)),
  1447. ({('extended_nonnegative', True), ('finite', True)},
  1448. ('nonnegative', True)),
  1449. # Rules implying nonpositive = True
  1450. ({('positive', False), ('real', True)},
  1451. ('nonpositive', True)),
  1452. ({('extended_nonpositive', True), ('finite', True)},
  1453. ('nonpositive', True)),
  1454. # Rules implying nonzero = True
  1455. ({('extended_nonzero', True), ('finite', True)},
  1456. ('nonzero', True)),
  1457. # Rules implying odd = True
  1458. ({('even', False), ('integer', True)},
  1459. ('odd', True)),
  1460. # Rules implying positive = False
  1461. ({('composite', False), ('even', True), ('prime', False)},
  1462. ('positive', False)),
  1463. # Rules implying positive = True
  1464. ({('negative', False), ('real', True), ('zero', False)},
  1465. ('positive', True)),
  1466. ({('nonnegative', True), ('nonzero', True)},
  1467. ('positive', True)),
  1468. ({('extended_positive', True), ('finite', True)},
  1469. ('positive', True)),
  1470. # Rules implying prime = True
  1471. ({('composite', False), ('even', True), ('positive', True)},
  1472. ('prime', True)),
  1473. # Rules implying real = False
  1474. ({('negative', False), ('positive', False), ('zero', False)},
  1475. ('real', False)),
  1476. # Rules implying real = True
  1477. ({('extended_real', True), ('infinite', False)},
  1478. ('real', True)),
  1479. ({('extended_real', True), ('finite', True)},
  1480. ('real', True)),
  1481. # Rules implying transcendental = True
  1482. ({('algebraic', False), ('complex', True)},
  1483. ('transcendental', True)),
  1484. # Rules implying zero = True
  1485. ({('extended_negative', False), ('extended_positive', False), ('extended_real', True)},
  1486. ('zero', True)),
  1487. ({('negative', False), ('positive', False), ('real', True)},
  1488. ('zero', True)),
  1489. ({('extended_nonnegative', True), ('extended_nonpositive', True)},
  1490. ('zero', True)),
  1491. ({('nonnegative', True), ('nonpositive', True)},
  1492. ('zero', True)),
  1493. ] # beta_rules
  1494. beta_triggers = {
  1495. ('algebraic', False): [32, 11, 3, 8, 29, 14, 25, 13, 17, 7],
  1496. ('algebraic', True): [10, 30, 31, 27, 16, 21, 19, 22],
  1497. ('antihermitian', False): [],
  1498. ('commutative', False): [],
  1499. ('complex', False): [10, 12, 11, 3, 8, 17, 7],
  1500. ('complex', True): [32, 10, 30, 31, 27, 16, 21, 19, 22],
  1501. ('composite', False): [1, 28, 24],
  1502. ('composite', True): [23, 2],
  1503. ('even', False): [23, 11, 3, 8, 29, 14, 25, 7],
  1504. ('even', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 0, 28, 24, 7],
  1505. ('extended_negative', False): [11, 33, 8, 5, 29, 34, 25, 18],
  1506. ('extended_negative', True): [30, 12, 31, 29, 14, 20, 16, 21, 22, 17],
  1507. ('extended_nonnegative', False): [11, 3, 6, 29, 14, 20, 7],
  1508. ('extended_nonnegative', True): [30, 12, 31, 33, 8, 9, 6, 29, 34, 25, 18, 19, 35, 17, 7],
  1509. ('extended_nonpositive', False): [11, 8, 5, 29, 25, 18, 7],
  1510. ('extended_nonpositive', True): [30, 12, 31, 3, 33, 4, 5, 29, 14, 34, 20, 21, 35, 17, 7],
  1511. ('extended_nonzero', False): [11, 33, 6, 5, 29, 34, 20, 18],
  1512. ('extended_nonzero', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22, 17],
  1513. ('extended_positive', False): [11, 3, 33, 6, 29, 14, 34, 20],
  1514. ('extended_positive', True): [30, 12, 31, 29, 25, 18, 27, 19, 22, 17],
  1515. ('extended_real', False): [],
  1516. ('extended_real', True): [30, 12, 31, 3, 33, 8, 6, 5, 17, 7],
  1517. ('finite', False): [11, 3, 8, 17, 7],
  1518. ('finite', True): [10, 30, 31, 27, 16, 21, 19, 22],
  1519. ('hermitian', False): [10, 12, 11, 3, 8, 17, 7],
  1520. ('imaginary', True): [32],
  1521. ('infinite', False): [10, 30, 31, 27, 16, 21, 19, 22],
  1522. ('infinite', True): [11, 3, 8, 17, 7],
  1523. ('integer', False): [11, 3, 8, 29, 14, 25, 17, 7],
  1524. ('integer', True): [23, 2, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 7],
  1525. ('irrational', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
  1526. ('negative', False): [29, 34, 25, 18],
  1527. ('negative', True): [32, 13, 17],
  1528. ('noninteger', True): [30, 12, 31, 3, 8, 4, 9, 6, 5, 29, 14, 25, 22],
  1529. ('nonnegative', False): [11, 3, 8, 29, 14, 20, 7],
  1530. ('nonnegative', True): [32, 33, 8, 9, 6, 34, 25, 26, 20, 27, 21, 22, 35, 36, 13, 17, 7],
  1531. ('nonpositive', False): [11, 3, 8, 29, 25, 18, 7],
  1532. ('nonpositive', True): [32, 3, 33, 4, 5, 14, 34, 15, 18, 16, 19, 22, 35, 36, 13, 17, 7],
  1533. ('nonzero', False): [29, 34, 20, 18],
  1534. ('nonzero', True): [32, 3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19, 13, 17],
  1535. ('odd', False): [2],
  1536. ('odd', True): [3, 8, 4, 9, 6, 5, 14, 25, 15, 26, 20, 18, 27, 16, 21, 19],
  1537. ('positive', False): [29, 14, 34, 20],
  1538. ('positive', True): [32, 0, 1, 28, 13, 17],
  1539. ('prime', False): [0, 1, 24],
  1540. ('prime', True): [23, 2],
  1541. ('rational', False): [11, 3, 8, 29, 14, 25, 13, 17, 7],
  1542. ('rational', True): [3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 17, 7],
  1543. ('real', False): [10, 12, 11, 3, 8, 17, 7],
  1544. ('real', True): [32, 3, 33, 8, 6, 5, 14, 34, 25, 20, 18, 27, 16, 21, 19, 22, 13, 17, 7],
  1545. ('transcendental', True): [10, 30, 31, 11, 3, 8, 29, 14, 25, 27, 16, 21, 19, 22, 13, 17, 7],
  1546. ('zero', False): [11, 3, 8, 29, 14, 25, 7],
  1547. ('zero', True): [],
  1548. } # beta_triggers
  1549. generated_assumptions = {'defined_facts': defined_facts, 'full_implications': full_implications,
  1550. 'prereq': prereq, 'beta_rules': beta_rules, 'beta_triggers': beta_triggers}