123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- from sympy.combinatorics.free_groups import free_group, FreeGroup
- from sympy.core import Symbol
- from sympy.testing.pytest import raises
- from sympy.core.numbers import oo
- F, x, y, z = free_group("x, y, z")
- def test_FreeGroup__init__():
- x, y, z = map(Symbol, "xyz")
- assert len(FreeGroup("x, y, z").generators) == 3
- assert len(FreeGroup(x).generators) == 1
- assert len(FreeGroup(("x", "y", "z"))) == 3
- assert len(FreeGroup((x, y, z)).generators) == 3
- def test_free_group():
- G, a, b, c = free_group("a, b, c")
- assert F.generators == (x, y, z)
- assert x*z**2 in F
- assert x in F
- assert y*z**-1 in F
- assert (y*z)**0 in F
- assert a not in F
- assert a**0 not in F
- assert len(F) == 3
- assert str(F) == '<free group on the generators (x, y, z)>'
- assert not F == G
- assert F.order() is oo
- assert F.is_abelian == False
- assert F.center() == {F.identity}
- (e,) = free_group("")
- assert e.order() == 1
- assert e.generators == ()
- assert e.elements == {e.identity}
- assert e.is_abelian == True
- def test_FreeGroup__hash__():
- assert hash(F)
- def test_FreeGroup__eq__():
- assert free_group("x, y, z")[0] == free_group("x, y, z")[0]
- assert free_group("x, y, z")[0] is free_group("x, y, z")[0]
- assert free_group("x, y, z")[0] != free_group("a, x, y")[0]
- assert free_group("x, y, z")[0] is not free_group("a, x, y")[0]
- assert free_group("x, y")[0] != free_group("x, y, z")[0]
- assert free_group("x, y")[0] is not free_group("x, y, z")[0]
- assert free_group("x, y, z")[0] != free_group("x, y")[0]
- assert free_group("x, y, z")[0] is not free_group("x, y")[0]
- def test_FreeGroup__getitem__():
- assert F[0:] == FreeGroup("x, y, z")
- assert F[1:] == FreeGroup("y, z")
- assert F[2:] == FreeGroup("z")
- def test_FreeGroupElm__hash__():
- assert hash(x*y*z)
- def test_FreeGroupElm_copy():
- f = x*y*z**3
- g = f.copy()
- h = x*y*z**7
- assert f == g
- assert f != h
- def test_FreeGroupElm_inverse():
- assert x.inverse() == x**-1
- assert (x*y).inverse() == y**-1*x**-1
- assert (y*x*y**-1).inverse() == y*x**-1*y**-1
- assert (y**2*x**-1).inverse() == x*y**-2
- def test_FreeGroupElm_type_error():
- raises(TypeError, lambda: 2/x)
- raises(TypeError, lambda: x**2 + y**2)
- raises(TypeError, lambda: x/2)
- def test_FreeGroupElm_methods():
- assert (x**0).order() == 1
- assert (y**2).order() is oo
- assert (x**-1*y).commutator(x) == y**-1*x**-1*y*x
- assert len(x**2*y**-1) == 3
- assert len(x**-1*y**3*z) == 5
- def test_FreeGroupElm_eliminate_word():
- w = x**5*y*x**2*y**-4*x
- assert w.eliminate_word( x, x**2 ) == x**10*y*x**4*y**-4*x**2
- w3 = x**2*y**3*x**-1*y
- assert w3.eliminate_word(x, x**2) == x**4*y**3*x**-2*y
- assert w3.eliminate_word(x, y) == y**5
- assert w3.eliminate_word(x, y**4) == y**8
- assert w3.eliminate_word(y, x**-1) == x**-3
- assert w3.eliminate_word(x, y*z) == y*z*y*z*y**3*z**-1
- assert (y**-3).eliminate_word(y, x**-1*z**-1) == z*x*z*x*z*x
- #assert w3.eliminate_word(x, y*x) == y*x*y*x**2*y*x*y*x*y*x*z**3
- #assert w3.eliminate_word(x, x*y) == x*y*x**2*y*x*y*x*y*x*y*z**3
- def test_FreeGroupElm_array_form():
- assert (x*z).array_form == ((Symbol('x'), 1), (Symbol('z'), 1))
- assert (x**2*z*y*x**-2).array_form == \
- ((Symbol('x'), 2), (Symbol('z'), 1), (Symbol('y'), 1), (Symbol('x'), -2))
- assert (x**-2*y**-1).array_form == ((Symbol('x'), -2), (Symbol('y'), -1))
- def test_FreeGroupElm_letter_form():
- assert (x**3).letter_form == (Symbol('x'), Symbol('x'), Symbol('x'))
- assert (x**2*z**-2*x).letter_form == \
- (Symbol('x'), Symbol('x'), -Symbol('z'), -Symbol('z'), Symbol('x'))
- def test_FreeGroupElm_ext_rep():
- assert (x**2*z**-2*x).ext_rep == \
- (Symbol('x'), 2, Symbol('z'), -2, Symbol('x'), 1)
- assert (x**-2*y**-1).ext_rep == (Symbol('x'), -2, Symbol('y'), -1)
- assert (x*z).ext_rep == (Symbol('x'), 1, Symbol('z'), 1)
- def test_FreeGroupElm__mul__pow__():
- x1 = x.group.dtype(((Symbol('x'), 1),))
- assert x**2 == x1*x
- assert (x**2*y*x**-2)**4 == x**2*y**4*x**-2
- assert (x**2)**2 == x**4
- assert (x**-1)**-1 == x
- assert (x**-1)**0 == F.identity
- assert (y**2)**-2 == y**-4
- assert x**2*x**-1 == x
- assert x**2*y**2*y**-1 == x**2*y
- assert x*x**-1 == F.identity
- assert x/x == F.identity
- assert x/x**2 == x**-1
- assert (x**2*y)/(x**2*y**-1) == x**2*y**2*x**-2
- assert (x**2*y)/(y**-1*x**2) == x**2*y*x**-2*y
- assert x*(x**-1*y*z*y**-1) == y*z*y**-1
- assert x**2*(x**-2*y**-1*z**2*y) == y**-1*z**2*y
- def test_FreeGroupElm__len__():
- assert len(x**5*y*x**2*y**-4*x) == 13
- assert len(x**17) == 17
- assert len(y**0) == 0
- def test_FreeGroupElm_comparison():
- assert not (x*y == y*x)
- assert x**0 == y**0
- assert x**2 < y**3
- assert not x**3 < y**2
- assert x*y < x**2*y
- assert x**2*y**2 < y**4
- assert not y**4 < y**-4
- assert not y**4 < x**-4
- assert y**-2 < y**2
- assert x**2 <= y**2
- assert x**2 <= x**2
- assert not y*z > z*y
- assert x > x**-1
- assert not x**2 >= y**2
- def test_FreeGroupElm_syllables():
- w = x**5*y*x**2*y**-4*x
- assert w.number_syllables() == 5
- assert w.exponent_syllable(2) == 2
- assert w.generator_syllable(3) == Symbol('y')
- assert w.sub_syllables(1, 2) == y
- assert w.sub_syllables(3, 3) == F.identity
- def test_FreeGroup_exponents():
- w1 = x**2*y**3
- assert w1.exponent_sum(x) == 2
- assert w1.exponent_sum(x**-1) == -2
- assert w1.generator_count(x) == 2
- w2 = x**2*y**4*x**-3
- assert w2.exponent_sum(x) == -1
- assert w2.generator_count(x) == 5
- def test_FreeGroup_generators():
- assert (x**2*y**4*z**-1).contains_generators() == {x, y, z}
- assert (x**-1*y**3).contains_generators() == {x, y}
- def test_FreeGroupElm_words():
- w = x**5*y*x**2*y**-4*x
- assert w.subword(2, 6) == x**3*y
- assert w.subword(3, 2) == F.identity
- assert w.subword(6, 10) == x**2*y**-2
- assert w.substituted_word(0, 7, y**-1) == y**-1*x*y**-4*x
- assert w.substituted_word(0, 7, y**2*x) == y**2*x**2*y**-4*x
|