test_numpy_nodes.py 1.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950
  1. from itertools import product
  2. from sympy.core.singleton import S
  3. from sympy.core.symbol import symbols
  4. from sympy.functions.elementary.exponential import (exp, log)
  5. from sympy.printing.repr import srepr
  6. from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
  7. x, y, z = symbols('x y z')
  8. def test_logaddexp():
  9. lae_xy = logaddexp(x, y)
  10. ref_xy = log(exp(x) + exp(y))
  11. for wrt, deriv_order in product([x, y, z], range(3)):
  12. assert (
  13. lae_xy.diff(wrt, deriv_order) -
  14. ref_xy.diff(wrt, deriv_order)
  15. ).rewrite(log).simplify() == 0
  16. one_third_e = 1*exp(1)/3
  17. two_thirds_e = 2*exp(1)/3
  18. logThirdE = log(one_third_e)
  19. logTwoThirdsE = log(two_thirds_e)
  20. lae_sum_to_e = logaddexp(logThirdE, logTwoThirdsE)
  21. assert lae_sum_to_e.rewrite(log) == 1
  22. assert lae_sum_to_e.simplify() == 1
  23. was = logaddexp(2, 3)
  24. assert srepr(was) == srepr(was.simplify()) # cannot simplify with 2, 3
  25. def test_logaddexp2():
  26. lae2_xy = logaddexp2(x, y)
  27. ref2_xy = log(2**x + 2**y)/log(2)
  28. for wrt, deriv_order in product([x, y, z], range(3)):
  29. assert (
  30. lae2_xy.diff(wrt, deriv_order) -
  31. ref2_xy.diff(wrt, deriv_order)
  32. ).rewrite(log).cancel() == 0
  33. def lb(x):
  34. return log(x)/log(2)
  35. two_thirds = S.One*2/3
  36. four_thirds = 2*two_thirds
  37. lbTwoThirds = lb(two_thirds)
  38. lbFourThirds = lb(four_thirds)
  39. lae2_sum_to_2 = logaddexp2(lbTwoThirds, lbFourThirds)
  40. assert lae2_sum_to_2.rewrite(log) == 1
  41. assert lae2_sum_to_2.simplify() == 1
  42. was = logaddexp2(x, y)
  43. assert srepr(was) == srepr(was.simplify()) # cannot simplify with x, y