123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- from sympy.core.numbers import (Rational, pi)
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.functions.elementary.exponential import (exp, log)
- from sympy.codegen.cfunctions import (
- expm1, log1p, exp2, log2, fma, log10, Sqrt, Cbrt, hypot
- )
- from sympy.core.function import expand_log
- def test_expm1():
- # Eval
- assert expm1(0) == 0
- x = Symbol('x', real=True)
- # Expand and rewrite
- assert expm1(x).expand(func=True) - exp(x) == -1
- assert expm1(x).rewrite('tractable') - exp(x) == -1
- assert expm1(x).rewrite('exp') - exp(x) == -1
- # Precision
- assert not ((exp(1e-10).evalf() - 1) - 1e-10 - 5e-21) < 1e-22 # for comparison
- assert abs(expm1(1e-10).evalf() - 1e-10 - 5e-21) < 1e-22
- # Properties
- assert expm1(x).is_real
- assert expm1(x).is_finite
- # Diff
- assert expm1(42*x).diff(x) - 42*exp(42*x) == 0
- assert expm1(42*x).diff(x) - expm1(42*x).expand(func=True).diff(x) == 0
- def test_log1p():
- # Eval
- assert log1p(0) == 0
- d = S(10)
- assert expand_log(log1p(d**-1000) - log(d**1000 + 1) + log(d**1000)) == 0
- x = Symbol('x', real=True)
- # Expand and rewrite
- assert log1p(x).expand(func=True) - log(x + 1) == 0
- assert log1p(x).rewrite('tractable') - log(x + 1) == 0
- assert log1p(x).rewrite('log') - log(x + 1) == 0
- # Precision
- assert not abs(log(1e-99 + 1).evalf() - 1e-99) < 1e-100 # for comparison
- assert abs(expand_log(log1p(1e-99)).evalf() - 1e-99) < 1e-100
- # Properties
- assert log1p(-2**Rational(-1, 2)).is_real
- assert not log1p(-1).is_finite
- assert log1p(pi).is_finite
- assert not log1p(x).is_positive
- assert log1p(Symbol('y', positive=True)).is_positive
- assert not log1p(x).is_zero
- assert log1p(Symbol('z', zero=True)).is_zero
- assert not log1p(x).is_nonnegative
- assert log1p(Symbol('o', nonnegative=True)).is_nonnegative
- # Diff
- assert log1p(42*x).diff(x) - 42/(42*x + 1) == 0
- assert log1p(42*x).diff(x) - log1p(42*x).expand(func=True).diff(x) == 0
- def test_exp2():
- # Eval
- assert exp2(2) == 4
- x = Symbol('x', real=True)
- # Expand
- assert exp2(x).expand(func=True) - 2**x == 0
- # Diff
- assert exp2(42*x).diff(x) - 42*exp2(42*x)*log(2) == 0
- assert exp2(42*x).diff(x) - exp2(42*x).diff(x) == 0
- def test_log2():
- # Eval
- assert log2(8) == 3
- assert log2(pi) != log(pi)/log(2) # log2 should *save* (CPU) instructions
- x = Symbol('x', real=True)
- assert log2(x) != log(x)/log(2)
- assert log2(2**x) == x
- # Expand
- assert log2(x).expand(func=True) - log(x)/log(2) == 0
- # Diff
- assert log2(42*x).diff() - 1/(log(2)*x) == 0
- assert log2(42*x).diff() - log2(42*x).expand(func=True).diff(x) == 0
- def test_fma():
- x, y, z = symbols('x y z')
- # Expand
- assert fma(x, y, z).expand(func=True) - x*y - z == 0
- expr = fma(17*x, 42*y, 101*z)
- # Diff
- assert expr.diff(x) - expr.expand(func=True).diff(x) == 0
- assert expr.diff(y) - expr.expand(func=True).diff(y) == 0
- assert expr.diff(z) - expr.expand(func=True).diff(z) == 0
- assert expr.diff(x) - 17*42*y == 0
- assert expr.diff(y) - 17*42*x == 0
- assert expr.diff(z) - 101 == 0
- def test_log10():
- x = Symbol('x')
- # Expand
- assert log10(x).expand(func=True) - log(x)/log(10) == 0
- # Diff
- assert log10(42*x).diff(x) - 1/(log(10)*x) == 0
- assert log10(42*x).diff(x) - log10(42*x).expand(func=True).diff(x) == 0
- def test_Cbrt():
- x = Symbol('x')
- # Expand
- assert Cbrt(x).expand(func=True) - x**Rational(1, 3) == 0
- # Diff
- assert Cbrt(42*x).diff(x) - 42*(42*x)**(Rational(1, 3) - 1)/3 == 0
- assert Cbrt(42*x).diff(x) - Cbrt(42*x).expand(func=True).diff(x) == 0
- def test_Sqrt():
- x = Symbol('x')
- # Expand
- assert Sqrt(x).expand(func=True) - x**S.Half == 0
- # Diff
- assert Sqrt(42*x).diff(x) - 42*(42*x)**(S.Half - 1)/2 == 0
- assert Sqrt(42*x).diff(x) - Sqrt(42*x).expand(func=True).diff(x) == 0
- def test_hypot():
- x, y = symbols('x y')
- # Expand
- assert hypot(x, y).expand(func=True) - (x**2 + y**2)**S.Half == 0
- # Diff
- assert hypot(17*x, 42*y).diff(x).expand(func=True) - hypot(17*x, 42*y).expand(func=True).diff(x) == 0
- assert hypot(17*x, 42*y).diff(y).expand(func=True) - hypot(17*x, 42*y).expand(func=True).diff(y) == 0
- assert hypot(17*x, 42*y).diff(x).expand(func=True) - 2*17*17*x*((17*x)**2 + (42*y)**2)**Rational(-1, 2)/2 == 0
- assert hypot(17*x, 42*y).diff(y).expand(func=True) - 2*42*42*y*((17*x)**2 + (42*y)**2)**Rational(-1, 2)/2 == 0
|