123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378 |
- from sympy.assumptions.ask import Q
- from sympy.assumptions.assume import assuming
- from sympy.core.numbers import (I, pi)
- from sympy.core.relational import (Eq, Gt)
- from sympy.core.singleton import S
- from sympy.core.symbol import symbols
- from sympy.functions.elementary.complexes import Abs
- from sympy.logic.boolalg import Implies
- from sympy.matrices.expressions.matexpr import MatrixSymbol
- from sympy.assumptions.cnf import CNF, Literal
- from sympy.assumptions.satask import (satask, extract_predargs,
- get_relevant_clsfacts)
- from sympy.testing.pytest import raises, XFAIL
- x, y, z = symbols('x y z')
- def test_satask():
- # No relevant facts
- assert satask(Q.real(x), Q.real(x)) is True
- assert satask(Q.real(x), ~Q.real(x)) is False
- assert satask(Q.real(x)) is None
- assert satask(Q.real(x), Q.positive(x)) is True
- assert satask(Q.positive(x), Q.real(x)) is None
- assert satask(Q.real(x), ~Q.positive(x)) is None
- assert satask(Q.positive(x), ~Q.real(x)) is False
- raises(ValueError, lambda: satask(Q.real(x), Q.real(x) & ~Q.real(x)))
- with assuming(Q.positive(x)):
- assert satask(Q.real(x)) is True
- assert satask(~Q.positive(x)) is False
- raises(ValueError, lambda: satask(Q.real(x), ~Q.positive(x)))
- assert satask(Q.zero(x), Q.nonzero(x)) is False
- assert satask(Q.positive(x), Q.zero(x)) is False
- assert satask(Q.real(x), Q.zero(x)) is True
- assert satask(Q.zero(x), Q.zero(x*y)) is None
- assert satask(Q.zero(x*y), Q.zero(x))
- def test_zero():
- """
- Everything in this test doesn't work with the ask handlers, and most
- things would be very difficult or impossible to make work under that
- model.
- """
- assert satask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True
- assert satask(Q.zero(x*y), Q.zero(x) | Q.zero(y)) is True
- assert satask(Implies(Q.zero(x), Q.zero(x*y))) is True
- # This one in particular requires computing the fixed-point of the
- # relevant facts, because going from Q.nonzero(x*y) -> ~Q.zero(x*y) and
- # Q.zero(x*y) -> Equivalent(Q.zero(x*y), Q.zero(x) | Q.zero(y)) takes two
- # steps.
- assert satask(Q.zero(x) | Q.zero(y), Q.nonzero(x*y)) is False
- assert satask(Q.zero(x), Q.zero(x**2)) is True
- def test_zero_positive():
- assert satask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False
- assert satask(Q.positive(x) & Q.positive(y), Q.zero(x + y)) is False
- assert satask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True
- assert satask(Q.positive(x) & Q.positive(y), Q.nonzero(x + y)) is None
- # This one requires several levels of forward chaining
- assert satask(Q.zero(x*(x + y)), Q.positive(x) & Q.positive(y)) is False
- assert satask(Q.positive(pi*x*y + 1), Q.positive(x) & Q.positive(y)) is True
- assert satask(Q.positive(pi*x*y - 5), Q.positive(x) & Q.positive(y)) is None
- def test_zero_pow():
- assert satask(Q.zero(x**y), Q.zero(x) & Q.positive(y)) is True
- assert satask(Q.zero(x**y), Q.nonzero(x) & Q.zero(y)) is False
- assert satask(Q.zero(x), Q.zero(x**y)) is True
- assert satask(Q.zero(x**y), Q.zero(x)) is None
- @XFAIL
- # Requires correct Q.square calculation first
- def test_invertible():
- A = MatrixSymbol('A', 5, 5)
- B = MatrixSymbol('B', 5, 5)
- assert satask(Q.invertible(A*B), Q.invertible(A) & Q.invertible(B)) is True
- assert satask(Q.invertible(A), Q.invertible(A*B)) is True
- assert satask(Q.invertible(A) & Q.invertible(B), Q.invertible(A*B)) is True
- def test_prime():
- assert satask(Q.prime(5)) is True
- assert satask(Q.prime(6)) is False
- assert satask(Q.prime(-5)) is False
- assert satask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None
- assert satask(Q.prime(x*y), Q.prime(x) & Q.prime(y)) is False
- def test_old_assump():
- assert satask(Q.positive(1)) is True
- assert satask(Q.positive(-1)) is False
- assert satask(Q.positive(0)) is False
- assert satask(Q.positive(I)) is False
- assert satask(Q.positive(pi)) is True
- assert satask(Q.negative(1)) is False
- assert satask(Q.negative(-1)) is True
- assert satask(Q.negative(0)) is False
- assert satask(Q.negative(I)) is False
- assert satask(Q.negative(pi)) is False
- assert satask(Q.zero(1)) is False
- assert satask(Q.zero(-1)) is False
- assert satask(Q.zero(0)) is True
- assert satask(Q.zero(I)) is False
- assert satask(Q.zero(pi)) is False
- assert satask(Q.nonzero(1)) is True
- assert satask(Q.nonzero(-1)) is True
- assert satask(Q.nonzero(0)) is False
- assert satask(Q.nonzero(I)) is False
- assert satask(Q.nonzero(pi)) is True
- assert satask(Q.nonpositive(1)) is False
- assert satask(Q.nonpositive(-1)) is True
- assert satask(Q.nonpositive(0)) is True
- assert satask(Q.nonpositive(I)) is False
- assert satask(Q.nonpositive(pi)) is False
- assert satask(Q.nonnegative(1)) is True
- assert satask(Q.nonnegative(-1)) is False
- assert satask(Q.nonnegative(0)) is True
- assert satask(Q.nonnegative(I)) is False
- assert satask(Q.nonnegative(pi)) is True
- def test_rational_irrational():
- assert satask(Q.irrational(2)) is False
- assert satask(Q.rational(2)) is True
- assert satask(Q.irrational(pi)) is True
- assert satask(Q.rational(pi)) is False
- assert satask(Q.irrational(I)) is False
- assert satask(Q.rational(I)) is False
- assert satask(Q.irrational(x*y*z), Q.irrational(x) & Q.irrational(y) &
- Q.rational(z)) is None
- assert satask(Q.irrational(x*y*z), Q.irrational(x) & Q.rational(y) &
- Q.rational(z)) is True
- assert satask(Q.irrational(pi*x*y), Q.rational(x) & Q.rational(y)) is True
- assert satask(Q.irrational(x + y + z), Q.irrational(x) & Q.irrational(y) &
- Q.rational(z)) is None
- assert satask(Q.irrational(x + y + z), Q.irrational(x) & Q.rational(y) &
- Q.rational(z)) is True
- assert satask(Q.irrational(pi + x + y), Q.rational(x) & Q.rational(y)) is True
- assert satask(Q.irrational(x*y*z), Q.rational(x) & Q.rational(y) &
- Q.rational(z)) is False
- assert satask(Q.rational(x*y*z), Q.rational(x) & Q.rational(y) &
- Q.rational(z)) is True
- assert satask(Q.irrational(x + y + z), Q.rational(x) & Q.rational(y) &
- Q.rational(z)) is False
- assert satask(Q.rational(x + y + z), Q.rational(x) & Q.rational(y) &
- Q.rational(z)) is True
- def test_even_satask():
- assert satask(Q.even(2)) is True
- assert satask(Q.even(3)) is False
- assert satask(Q.even(x*y), Q.even(x) & Q.odd(y)) is True
- assert satask(Q.even(x*y), Q.even(x) & Q.integer(y)) is True
- assert satask(Q.even(x*y), Q.even(x) & Q.even(y)) is True
- assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False
- assert satask(Q.even(x*y), Q.even(x)) is None
- assert satask(Q.even(x*y), Q.odd(x) & Q.integer(y)) is None
- assert satask(Q.even(x*y), Q.odd(x) & Q.odd(y)) is False
- assert satask(Q.even(abs(x)), Q.even(x)) is True
- assert satask(Q.even(abs(x)), Q.odd(x)) is False
- assert satask(Q.even(x), Q.even(abs(x))) is None # x could be complex
- def test_odd_satask():
- assert satask(Q.odd(2)) is False
- assert satask(Q.odd(3)) is True
- assert satask(Q.odd(x*y), Q.even(x) & Q.odd(y)) is False
- assert satask(Q.odd(x*y), Q.even(x) & Q.integer(y)) is False
- assert satask(Q.odd(x*y), Q.even(x) & Q.even(y)) is False
- assert satask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True
- assert satask(Q.odd(x*y), Q.even(x)) is None
- assert satask(Q.odd(x*y), Q.odd(x) & Q.integer(y)) is None
- assert satask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True
- assert satask(Q.odd(abs(x)), Q.even(x)) is False
- assert satask(Q.odd(abs(x)), Q.odd(x)) is True
- assert satask(Q.odd(x), Q.odd(abs(x))) is None # x could be complex
- def test_integer():
- assert satask(Q.integer(1)) is True
- assert satask(Q.integer(S.Half)) is False
- assert satask(Q.integer(x + y), Q.integer(x) & Q.integer(y)) is True
- assert satask(Q.integer(x + y), Q.integer(x)) is None
- assert satask(Q.integer(x + y), Q.integer(x) & ~Q.integer(y)) is False
- assert satask(Q.integer(x + y + z), Q.integer(x) & Q.integer(y) &
- ~Q.integer(z)) is False
- assert satask(Q.integer(x + y + z), Q.integer(x) & ~Q.integer(y) &
- ~Q.integer(z)) is None
- assert satask(Q.integer(x + y + z), Q.integer(x) & ~Q.integer(y)) is None
- assert satask(Q.integer(x + y), Q.integer(x) & Q.irrational(y)) is False
- assert satask(Q.integer(x*y), Q.integer(x) & Q.integer(y)) is True
- assert satask(Q.integer(x*y), Q.integer(x)) is None
- assert satask(Q.integer(x*y), Q.integer(x) & ~Q.integer(y)) is None
- assert satask(Q.integer(x*y), Q.integer(x) & ~Q.rational(y)) is False
- assert satask(Q.integer(x*y*z), Q.integer(x) & Q.integer(y) &
- ~Q.rational(z)) is False
- assert satask(Q.integer(x*y*z), Q.integer(x) & ~Q.rational(y) &
- ~Q.rational(z)) is None
- assert satask(Q.integer(x*y*z), Q.integer(x) & ~Q.rational(y)) is None
- assert satask(Q.integer(x*y), Q.integer(x) & Q.irrational(y)) is False
- def test_abs():
- assert satask(Q.nonnegative(abs(x))) is True
- assert satask(Q.positive(abs(x)), ~Q.zero(x)) is True
- assert satask(Q.zero(x), ~Q.zero(abs(x))) is False
- assert satask(Q.zero(x), Q.zero(abs(x))) is True
- assert satask(Q.nonzero(x), ~Q.zero(abs(x))) is None # x could be complex
- assert satask(Q.zero(abs(x)), Q.zero(x)) is True
- def test_imaginary():
- assert satask(Q.imaginary(2*I)) is True
- assert satask(Q.imaginary(x*y), Q.imaginary(x)) is None
- assert satask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True
- assert satask(Q.imaginary(x), Q.real(x)) is False
- assert satask(Q.imaginary(1)) is False
- assert satask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False
- assert satask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False
- def test_real():
- assert satask(Q.real(x*y), Q.real(x) & Q.real(y)) is True
- assert satask(Q.real(x + y), Q.real(x) & Q.real(y)) is True
- assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.real(z)) is True
- assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y)) is None
- assert satask(Q.real(x*y*z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False
- assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True
- assert satask(Q.real(x + y + z), Q.real(x) & Q.real(y)) is None
- def test_pos_neg():
- assert satask(~Q.positive(x), Q.negative(x)) is True
- assert satask(~Q.negative(x), Q.positive(x)) is True
- assert satask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True
- assert satask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True
- assert satask(Q.positive(x + y), Q.negative(x) & Q.negative(y)) is False
- assert satask(Q.negative(x + y), Q.positive(x) & Q.positive(y)) is False
- def test_pow_pos_neg():
- assert satask(Q.nonnegative(x**2), Q.positive(x)) is True
- assert satask(Q.nonpositive(x**2), Q.positive(x)) is False
- assert satask(Q.positive(x**2), Q.positive(x)) is True
- assert satask(Q.negative(x**2), Q.positive(x)) is False
- assert satask(Q.real(x**2), Q.positive(x)) is True
- assert satask(Q.nonnegative(x**2), Q.negative(x)) is True
- assert satask(Q.nonpositive(x**2), Q.negative(x)) is False
- assert satask(Q.positive(x**2), Q.negative(x)) is True
- assert satask(Q.negative(x**2), Q.negative(x)) is False
- assert satask(Q.real(x**2), Q.negative(x)) is True
- assert satask(Q.nonnegative(x**2), Q.nonnegative(x)) is True
- assert satask(Q.nonpositive(x**2), Q.nonnegative(x)) is None
- assert satask(Q.positive(x**2), Q.nonnegative(x)) is None
- assert satask(Q.negative(x**2), Q.nonnegative(x)) is False
- assert satask(Q.real(x**2), Q.nonnegative(x)) is True
- assert satask(Q.nonnegative(x**2), Q.nonpositive(x)) is True
- assert satask(Q.nonpositive(x**2), Q.nonpositive(x)) is None
- assert satask(Q.positive(x**2), Q.nonpositive(x)) is None
- assert satask(Q.negative(x**2), Q.nonpositive(x)) is False
- assert satask(Q.real(x**2), Q.nonpositive(x)) is True
- assert satask(Q.nonnegative(x**3), Q.positive(x)) is True
- assert satask(Q.nonpositive(x**3), Q.positive(x)) is False
- assert satask(Q.positive(x**3), Q.positive(x)) is True
- assert satask(Q.negative(x**3), Q.positive(x)) is False
- assert satask(Q.real(x**3), Q.positive(x)) is True
- assert satask(Q.nonnegative(x**3), Q.negative(x)) is False
- assert satask(Q.nonpositive(x**3), Q.negative(x)) is True
- assert satask(Q.positive(x**3), Q.negative(x)) is False
- assert satask(Q.negative(x**3), Q.negative(x)) is True
- assert satask(Q.real(x**3), Q.negative(x)) is True
- assert satask(Q.nonnegative(x**3), Q.nonnegative(x)) is True
- assert satask(Q.nonpositive(x**3), Q.nonnegative(x)) is None
- assert satask(Q.positive(x**3), Q.nonnegative(x)) is None
- assert satask(Q.negative(x**3), Q.nonnegative(x)) is False
- assert satask(Q.real(x**3), Q.nonnegative(x)) is True
- assert satask(Q.nonnegative(x**3), Q.nonpositive(x)) is None
- assert satask(Q.nonpositive(x**3), Q.nonpositive(x)) is True
- assert satask(Q.positive(x**3), Q.nonpositive(x)) is False
- assert satask(Q.negative(x**3), Q.nonpositive(x)) is None
- assert satask(Q.real(x**3), Q.nonpositive(x)) is True
- # If x is zero, x**negative is not real.
- assert satask(Q.nonnegative(x**-2), Q.nonpositive(x)) is None
- assert satask(Q.nonpositive(x**-2), Q.nonpositive(x)) is None
- assert satask(Q.positive(x**-2), Q.nonpositive(x)) is None
- assert satask(Q.negative(x**-2), Q.nonpositive(x)) is None
- assert satask(Q.real(x**-2), Q.nonpositive(x)) is None
- # We could deduce things for negative powers if x is nonzero, but it
- # isn't implemented yet.
- def test_prime_composite():
- assert satask(Q.prime(x), Q.composite(x)) is False
- assert satask(Q.composite(x), Q.prime(x)) is False
- assert satask(Q.composite(x), ~Q.prime(x)) is None
- assert satask(Q.prime(x), ~Q.composite(x)) is None
- # since 1 is neither prime nor composite the following should hold
- assert satask(Q.prime(x), Q.integer(x) & Q.positive(x) & ~Q.composite(x)) is None
- assert satask(Q.prime(2)) is True
- assert satask(Q.prime(4)) is False
- assert satask(Q.prime(1)) is False
- assert satask(Q.composite(1)) is False
- def test_extract_predargs():
- props = CNF.from_prop(Q.zero(Abs(x*y)) & Q.zero(x*y))
- assump = CNF.from_prop(Q.zero(x))
- context = CNF.from_prop(Q.zero(y))
- assert extract_predargs(props) == {Abs(x*y), x*y}
- assert extract_predargs(props, assump) == {Abs(x*y), x*y, x}
- assert extract_predargs(props, assump, context) == {Abs(x*y), x*y, x, y}
- props = CNF.from_prop(Eq(x, y))
- assump = CNF.from_prop(Gt(y, z))
- assert extract_predargs(props, assump) == {x, y, z}
- def test_get_relevant_clsfacts():
- exprs = {Abs(x*y)}
- exprs, facts = get_relevant_clsfacts(exprs)
- assert exprs == {x*y}
- assert facts.clauses == \
- {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}),
- frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}),
- frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}),
- frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}),
- frozenset({Literal(Q.even(Abs(x*y)), False),
- Literal(Q.odd(Abs(x*y)), False),
- Literal(Q.odd(x*y), True)}),
- frozenset({Literal(Q.even(Abs(x*y)), False),
- Literal(Q.even(x*y), True),
- Literal(Q.odd(Abs(x*y)), False)}),
- frozenset({Literal(Q.positive(Abs(x*y)), False),
- Literal(Q.zero(Abs(x*y)), False)})}
|