| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 | Metadata-Version: 2.1Name: seabornVersion: 0.13.0Summary: Statistical data visualizationAuthor-email: Michael Waskom <mwaskom@gmail.com>Requires-Python: >=3.8Description-Content-Type: text/markdownClassifier: Intended Audience :: Science/ResearchClassifier: Programming Language :: Python :: 3.8Classifier: Programming Language :: Python :: 3.9Classifier: Programming Language :: Python :: 3.10Classifier: Programming Language :: Python :: 3.11Classifier: License :: OSI Approved :: BSD LicenseClassifier: Topic :: Scientific/Engineering :: VisualizationClassifier: Topic :: Multimedia :: GraphicsClassifier: Operating System :: OS IndependentClassifier: Framework :: MatplotlibRequires-Dist: numpy>=1.20,!=1.24.0Requires-Dist: pandas>=1.2Requires-Dist: matplotlib>=3.3,!=3.6.1Requires-Dist: pytest ; extra == "dev"Requires-Dist: pytest-cov ; extra == "dev"Requires-Dist: pytest-xdist ; extra == "dev"Requires-Dist: flake8 ; extra == "dev"Requires-Dist: mypy ; extra == "dev"Requires-Dist: pandas-stubs ; extra == "dev"Requires-Dist: pre-commit ; extra == "dev"Requires-Dist: flit ; extra == "dev"Requires-Dist: numpydoc ; extra == "docs"Requires-Dist: nbconvert ; extra == "docs"Requires-Dist: ipykernel ; extra == "docs"Requires-Dist: sphinx<6.0.0 ; extra == "docs"Requires-Dist: sphinx-copybutton ; extra == "docs"Requires-Dist: sphinx-issues ; extra == "docs"Requires-Dist: sphinx-design ; extra == "docs"Requires-Dist: pyyaml ; extra == "docs"Requires-Dist: pydata_sphinx_theme==0.10.0rc2 ; extra == "docs"Requires-Dist: scipy>=1.7 ; extra == "stats"Requires-Dist: statsmodels>=0.12 ; extra == "stats"Project-URL: Docs, http://seaborn.pydata.orgProject-URL: Source, https://github.com/mwaskom/seabornProvides-Extra: devProvides-Extra: docsProvides-Extra: stats<img src="https://raw.githubusercontent.com/mwaskom/seaborn/master/doc/_static/logo-wide-lightbg.svg"><br>--------------------------------------seaborn: statistical data visualization=======================================[](https://pypi.org/project/seaborn/)[](https://github.com/mwaskom/seaborn/blob/master/LICENSE)[](https://doi.org/10.21105/joss.03021)[](https://github.com/mwaskom/seaborn/actions)[](https://codecov.io/gh/mwaskom/seaborn)Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics.Documentation-------------Online documentation is available at [seaborn.pydata.org](https://seaborn.pydata.org).The docs include a [tutorial](https://seaborn.pydata.org/tutorial.html), [example gallery](https://seaborn.pydata.org/examples/index.html), [API reference](https://seaborn.pydata.org/api.html), [FAQ](https://seaborn.pydata.org/faq), and other useful information.To build the documentation locally, please refer to [`doc/README.md`](doc/README.md).Dependencies------------Seaborn supports Python 3.8+.Installation requires [numpy](https://numpy.org/), [pandas](https://pandas.pydata.org/), and [matplotlib](https://matplotlib.org/). Some advanced statistical functionality requires [scipy](https://www.scipy.org/) and/or [statsmodels](https://www.statsmodels.org/).Installation------------The latest stable release (and required dependencies) can be installed from PyPI:    pip install seabornIt is also possible to include optional statistical dependencies:    pip install seaborn[stats]Seaborn can also be installed with conda:    conda install seabornNote that the main anaconda repository lags PyPI in adding new releases, but conda-forge (`-c conda-forge`) typically updates quickly.Citing------A paper describing seaborn has been published in the [Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.03021). The paper provides an introduction to the key features of the library, and it can be used as a citation if seaborn proves integral to a scientific publication.Testing-------Testing seaborn requires installing additional dependencies; they can be installed with the `dev` extra (e.g., `pip install .[dev]`).To test the code, run `make test` in the source directory. This will exercise the unit tests (using [pytest](https://docs.pytest.org/)) and generate a coverage report.Code style is enforced with `flake8` using the settings in the [`setup.cfg`](./setup.cfg) file. Run `make lint` to check. Alternately, you can use `pre-commit` to automatically run lint checks on any files you are committing: just run `pre-commit install` to set it up, and then commit as usual going forward.Development-----------Seaborn development takes place on Github: https://github.com/mwaskom/seabornPlease submit bugs that you encounter to the [issue tracker](https://github.com/mwaskom/seaborn/issues) with a reproducible example demonstrating the problem. Questions about usage are more at home on StackOverflow, where there is a [seaborn tag](https://stackoverflow.com/questions/tagged/seaborn).
 |