123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568 |
- import numpy as np
- from numpy.testing import assert_allclose
- import pytest
- from pytest import raises as assert_raises
- from scipy.stats import (binned_statistic, binned_statistic_2d,
- binned_statistic_dd)
- from scipy._lib._util import check_random_state
- from .common_tests import check_named_results
- class TestBinnedStatistic:
- @classmethod
- def setup_class(cls):
- rng = check_random_state(9865)
- cls.x = rng.uniform(size=100)
- cls.y = rng.uniform(size=100)
- cls.v = rng.uniform(size=100)
- cls.X = rng.uniform(size=(100, 3))
- cls.w = rng.uniform(size=100)
- cls.u = rng.uniform(size=100) + 1e6
- def test_1d_count(self):
- x = self.x
- v = self.v
- count1, edges1, bc = binned_statistic(x, v, 'count', bins=10)
- count2, edges2 = np.histogram(x, bins=10)
- assert_allclose(count1, count2)
- assert_allclose(edges1, edges2)
- def test_gh5927(self):
- # smoke test for gh5927 - binned_statistic was using `is` for string
- # comparison
- x = self.x
- v = self.v
- statistics = ['mean', 'median', 'count', 'sum']
- for statistic in statistics:
- binned_statistic(x, v, statistic, bins=10)
- def test_big_number_std(self):
- # tests for numerical stability of std calculation
- # see issue gh-10126 for more
- x = self.x
- u = self.u
- stat1, edges1, bc = binned_statistic(x, u, 'std', bins=10)
- stat2, edges2, bc = binned_statistic(x, u, np.std, bins=10)
- assert_allclose(stat1, stat2)
- def test_empty_bins_std(self):
- # tests that std returns gives nan for empty bins
- x = self.x
- u = self.u
- print(binned_statistic(x, u, 'count', bins=1000))
- stat1, edges1, bc = binned_statistic(x, u, 'std', bins=1000)
- stat2, edges2, bc = binned_statistic(x, u, np.std, bins=1000)
- assert_allclose(stat1, stat2)
- def test_non_finite_inputs_and_int_bins(self):
- # if either `values` or `sample` contain np.inf or np.nan throw
- # see issue gh-9010 for more
- x = self.x
- u = self.u
- orig = u[0]
- u[0] = np.inf
- assert_raises(ValueError, binned_statistic, u, x, 'std', bins=10)
- # need to test for non-python specific ints, e.g. np.int8, np.int64
- assert_raises(ValueError, binned_statistic, u, x, 'std',
- bins=np.int64(10))
- u[0] = np.nan
- assert_raises(ValueError, binned_statistic, u, x, 'count', bins=10)
- # replace original value, u belongs the class
- u[0] = orig
- def test_1d_result_attributes(self):
- x = self.x
- v = self.v
- res = binned_statistic(x, v, 'count', bins=10)
- attributes = ('statistic', 'bin_edges', 'binnumber')
- check_named_results(res, attributes)
- def test_1d_sum(self):
- x = self.x
- v = self.v
- sum1, edges1, bc = binned_statistic(x, v, 'sum', bins=10)
- sum2, edges2 = np.histogram(x, bins=10, weights=v)
- assert_allclose(sum1, sum2)
- assert_allclose(edges1, edges2)
- def test_1d_mean(self):
- x = self.x
- v = self.v
- stat1, edges1, bc = binned_statistic(x, v, 'mean', bins=10)
- stat2, edges2, bc = binned_statistic(x, v, np.mean, bins=10)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_1d_std(self):
- x = self.x
- v = self.v
- stat1, edges1, bc = binned_statistic(x, v, 'std', bins=10)
- stat2, edges2, bc = binned_statistic(x, v, np.std, bins=10)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_1d_min(self):
- x = self.x
- v = self.v
- stat1, edges1, bc = binned_statistic(x, v, 'min', bins=10)
- stat2, edges2, bc = binned_statistic(x, v, np.min, bins=10)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_1d_max(self):
- x = self.x
- v = self.v
- stat1, edges1, bc = binned_statistic(x, v, 'max', bins=10)
- stat2, edges2, bc = binned_statistic(x, v, np.max, bins=10)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_1d_median(self):
- x = self.x
- v = self.v
- stat1, edges1, bc = binned_statistic(x, v, 'median', bins=10)
- stat2, edges2, bc = binned_statistic(x, v, np.median, bins=10)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_1d_bincode(self):
- x = self.x[:20]
- v = self.v[:20]
- count1, edges1, bc = binned_statistic(x, v, 'count', bins=3)
- bc2 = np.array([3, 2, 1, 3, 2, 3, 3, 3, 3, 1, 1, 3, 3, 1, 2, 3, 1,
- 1, 2, 1])
- bcount = [(bc == i).sum() for i in np.unique(bc)]
- assert_allclose(bc, bc2)
- assert_allclose(bcount, count1)
- def test_1d_range_keyword(self):
- # Regression test for gh-3063, range can be (min, max) or [(min, max)]
- np.random.seed(9865)
- x = np.arange(30)
- data = np.random.random(30)
- mean, bins, _ = binned_statistic(x[:15], data[:15])
- mean_range, bins_range, _ = binned_statistic(x, data, range=[(0, 14)])
- mean_range2, bins_range2, _ = binned_statistic(x, data, range=(0, 14))
- assert_allclose(mean, mean_range)
- assert_allclose(bins, bins_range)
- assert_allclose(mean, mean_range2)
- assert_allclose(bins, bins_range2)
- def test_1d_multi_values(self):
- x = self.x
- v = self.v
- w = self.w
- stat1v, edges1v, bc1v = binned_statistic(x, v, 'mean', bins=10)
- stat1w, edges1w, bc1w = binned_statistic(x, w, 'mean', bins=10)
- stat2, edges2, bc2 = binned_statistic(x, [v, w], 'mean', bins=10)
- assert_allclose(stat2[0], stat1v)
- assert_allclose(stat2[1], stat1w)
- assert_allclose(edges1v, edges2)
- assert_allclose(bc1v, bc2)
- def test_2d_count(self):
- x = self.x
- y = self.y
- v = self.v
- count1, binx1, biny1, bc = binned_statistic_2d(
- x, y, v, 'count', bins=5)
- count2, binx2, biny2 = np.histogram2d(x, y, bins=5)
- assert_allclose(count1, count2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_result_attributes(self):
- x = self.x
- y = self.y
- v = self.v
- res = binned_statistic_2d(x, y, v, 'count', bins=5)
- attributes = ('statistic', 'x_edge', 'y_edge', 'binnumber')
- check_named_results(res, attributes)
- def test_2d_sum(self):
- x = self.x
- y = self.y
- v = self.v
- sum1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'sum', bins=5)
- sum2, binx2, biny2 = np.histogram2d(x, y, bins=5, weights=v)
- assert_allclose(sum1, sum2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_mean(self):
- x = self.x
- y = self.y
- v = self.v
- stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'mean', bins=5)
- stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.mean, bins=5)
- assert_allclose(stat1, stat2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_mean_unicode(self):
- x = self.x
- y = self.y
- v = self.v
- stat1, binx1, biny1, bc = binned_statistic_2d(
- x, y, v, 'mean', bins=5)
- stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.mean, bins=5)
- assert_allclose(stat1, stat2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_std(self):
- x = self.x
- y = self.y
- v = self.v
- stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'std', bins=5)
- stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.std, bins=5)
- assert_allclose(stat1, stat2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_min(self):
- x = self.x
- y = self.y
- v = self.v
- stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'min', bins=5)
- stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.min, bins=5)
- assert_allclose(stat1, stat2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_max(self):
- x = self.x
- y = self.y
- v = self.v
- stat1, binx1, biny1, bc = binned_statistic_2d(x, y, v, 'max', bins=5)
- stat2, binx2, biny2, bc = binned_statistic_2d(x, y, v, np.max, bins=5)
- assert_allclose(stat1, stat2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_median(self):
- x = self.x
- y = self.y
- v = self.v
- stat1, binx1, biny1, bc = binned_statistic_2d(
- x, y, v, 'median', bins=5)
- stat2, binx2, biny2, bc = binned_statistic_2d(
- x, y, v, np.median, bins=5)
- assert_allclose(stat1, stat2)
- assert_allclose(binx1, binx2)
- assert_allclose(biny1, biny2)
- def test_2d_bincode(self):
- x = self.x[:20]
- y = self.y[:20]
- v = self.v[:20]
- count1, binx1, biny1, bc = binned_statistic_2d(
- x, y, v, 'count', bins=3)
- bc2 = np.array([17, 11, 6, 16, 11, 17, 18, 17, 17, 7, 6, 18, 16,
- 6, 11, 16, 6, 6, 11, 8])
- bcount = [(bc == i).sum() for i in np.unique(bc)]
- assert_allclose(bc, bc2)
- count1adj = count1[count1.nonzero()]
- assert_allclose(bcount, count1adj)
- def test_2d_multi_values(self):
- x = self.x
- y = self.y
- v = self.v
- w = self.w
- stat1v, binx1v, biny1v, bc1v = binned_statistic_2d(
- x, y, v, 'mean', bins=8)
- stat1w, binx1w, biny1w, bc1w = binned_statistic_2d(
- x, y, w, 'mean', bins=8)
- stat2, binx2, biny2, bc2 = binned_statistic_2d(
- x, y, [v, w], 'mean', bins=8)
- assert_allclose(stat2[0], stat1v)
- assert_allclose(stat2[1], stat1w)
- assert_allclose(binx1v, binx2)
- assert_allclose(biny1w, biny2)
- assert_allclose(bc1v, bc2)
- def test_2d_binnumbers_unraveled(self):
- x = self.x
- y = self.y
- v = self.v
- stat, edgesx, bcx = binned_statistic(x, v, 'mean', bins=20)
- stat, edgesy, bcy = binned_statistic(y, v, 'mean', bins=10)
- stat2, edgesx2, edgesy2, bc2 = binned_statistic_2d(
- x, y, v, 'mean', bins=(20, 10), expand_binnumbers=True)
- bcx3 = np.searchsorted(edgesx, x, side='right')
- bcy3 = np.searchsorted(edgesy, y, side='right')
- # `numpy.searchsorted` is non-inclusive on right-edge, compensate
- bcx3[x == x.max()] -= 1
- bcy3[y == y.max()] -= 1
- assert_allclose(bcx, bc2[0])
- assert_allclose(bcy, bc2[1])
- assert_allclose(bcx3, bc2[0])
- assert_allclose(bcy3, bc2[1])
- def test_dd_count(self):
- X = self.X
- v = self.v
- count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3)
- count2, edges2 = np.histogramdd(X, bins=3)
- assert_allclose(count1, count2)
- assert_allclose(edges1, edges2)
- def test_dd_result_attributes(self):
- X = self.X
- v = self.v
- res = binned_statistic_dd(X, v, 'count', bins=3)
- attributes = ('statistic', 'bin_edges', 'binnumber')
- check_named_results(res, attributes)
- def test_dd_sum(self):
- X = self.X
- v = self.v
- sum1, edges1, bc = binned_statistic_dd(X, v, 'sum', bins=3)
- sum2, edges2 = np.histogramdd(X, bins=3, weights=v)
- sum3, edges3, bc = binned_statistic_dd(X, v, np.sum, bins=3)
- assert_allclose(sum1, sum2)
- assert_allclose(edges1, edges2)
- assert_allclose(sum1, sum3)
- assert_allclose(edges1, edges3)
- def test_dd_mean(self):
- X = self.X
- v = self.v
- stat1, edges1, bc = binned_statistic_dd(X, v, 'mean', bins=3)
- stat2, edges2, bc = binned_statistic_dd(X, v, np.mean, bins=3)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_dd_std(self):
- X = self.X
- v = self.v
- stat1, edges1, bc = binned_statistic_dd(X, v, 'std', bins=3)
- stat2, edges2, bc = binned_statistic_dd(X, v, np.std, bins=3)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_dd_min(self):
- X = self.X
- v = self.v
- stat1, edges1, bc = binned_statistic_dd(X, v, 'min', bins=3)
- stat2, edges2, bc = binned_statistic_dd(X, v, np.min, bins=3)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_dd_max(self):
- X = self.X
- v = self.v
- stat1, edges1, bc = binned_statistic_dd(X, v, 'max', bins=3)
- stat2, edges2, bc = binned_statistic_dd(X, v, np.max, bins=3)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_dd_median(self):
- X = self.X
- v = self.v
- stat1, edges1, bc = binned_statistic_dd(X, v, 'median', bins=3)
- stat2, edges2, bc = binned_statistic_dd(X, v, np.median, bins=3)
- assert_allclose(stat1, stat2)
- assert_allclose(edges1, edges2)
- def test_dd_bincode(self):
- X = self.X[:20]
- v = self.v[:20]
- count1, edges1, bc = binned_statistic_dd(X, v, 'count', bins=3)
- bc2 = np.array([63, 33, 86, 83, 88, 67, 57, 33, 42, 41, 82, 83, 92,
- 32, 36, 91, 43, 87, 81, 81])
- bcount = [(bc == i).sum() for i in np.unique(bc)]
- assert_allclose(bc, bc2)
- count1adj = count1[count1.nonzero()]
- assert_allclose(bcount, count1adj)
- def test_dd_multi_values(self):
- X = self.X
- v = self.v
- w = self.w
- for stat in ["count", "sum", "mean", "std", "min", "max", "median",
- np.std]:
- stat1v, edges1v, bc1v = binned_statistic_dd(X, v, stat, bins=8)
- stat1w, edges1w, bc1w = binned_statistic_dd(X, w, stat, bins=8)
- stat2, edges2, bc2 = binned_statistic_dd(X, [v, w], stat, bins=8)
- assert_allclose(stat2[0], stat1v)
- assert_allclose(stat2[1], stat1w)
- assert_allclose(edges1v, edges2)
- assert_allclose(edges1w, edges2)
- assert_allclose(bc1v, bc2)
- def test_dd_binnumbers_unraveled(self):
- X = self.X
- v = self.v
- stat, edgesx, bcx = binned_statistic(X[:, 0], v, 'mean', bins=15)
- stat, edgesy, bcy = binned_statistic(X[:, 1], v, 'mean', bins=20)
- stat, edgesz, bcz = binned_statistic(X[:, 2], v, 'mean', bins=10)
- stat2, edges2, bc2 = binned_statistic_dd(
- X, v, 'mean', bins=(15, 20, 10), expand_binnumbers=True)
- assert_allclose(bcx, bc2[0])
- assert_allclose(bcy, bc2[1])
- assert_allclose(bcz, bc2[2])
- def test_dd_binned_statistic_result(self):
- # NOTE: tests the reuse of bin_edges from previous call
- x = np.random.random((10000, 3))
- v = np.random.random((10000))
- bins = np.linspace(0, 1, 10)
- bins = (bins, bins, bins)
- result = binned_statistic_dd(x, v, 'mean', bins=bins)
- stat = result.statistic
- result = binned_statistic_dd(x, v, 'mean',
- binned_statistic_result=result)
- stat2 = result.statistic
- assert_allclose(stat, stat2)
- def test_dd_zero_dedges(self):
- x = np.random.random((10000, 3))
- v = np.random.random((10000))
- bins = np.linspace(0, 1, 10)
- bins = np.append(bins, 1)
- bins = (bins, bins, bins)
- with assert_raises(ValueError, match='difference is numerically 0'):
- binned_statistic_dd(x, v, 'mean', bins=bins)
- def test_dd_range_errors(self):
- # Test that descriptive exceptions are raised as appropriate for bad
- # values of the `range` argument. (See gh-12996)
- with assert_raises(ValueError,
- match='In range, start must be <= stop'):
- binned_statistic_dd([self.y], self.v,
- range=[[1, 0]])
- with assert_raises(
- ValueError,
- match='In dimension 1 of range, start must be <= stop'):
- binned_statistic_dd([self.x, self.y], self.v,
- range=[[1, 0], [0, 1]])
- with assert_raises(
- ValueError,
- match='In dimension 2 of range, start must be <= stop'):
- binned_statistic_dd([self.x, self.y], self.v,
- range=[[0, 1], [1, 0]])
- with assert_raises(
- ValueError,
- match='range given for 1 dimensions; 2 required'):
- binned_statistic_dd([self.x, self.y], self.v,
- range=[[0, 1]])
- def test_binned_statistic_float32(self):
- X = np.array([0, 0.42358226], dtype=np.float32)
- stat, _, _ = binned_statistic(X, None, 'count', bins=5)
- assert_allclose(stat, np.array([1, 0, 0, 0, 1], dtype=np.float64))
- def test_gh14332(self):
- # Test the wrong output when the `sample` is close to bin edge
- x = []
- size = 20
- for i in range(size):
- x += [1-0.1**i]
- bins = np.linspace(0,1,11)
- sum1, edges1, bc = binned_statistic_dd(x, np.ones(len(x)),
- bins=[bins], statistic='sum')
- sum2, edges2 = np.histogram(x, bins=bins)
- assert_allclose(sum1, sum2)
- assert_allclose(edges1[0], edges2)
- @pytest.mark.parametrize("dtype", [np.float64, np.complex128])
- @pytest.mark.parametrize("statistic", [np.mean, np.median, np.sum, np.std,
- np.min, np.max, 'count',
- lambda x: (x**2).sum(),
- lambda x: (x**2).sum() * 1j])
- def test_dd_all(self, dtype, statistic):
- def ref_statistic(x):
- return len(x) if statistic == 'count' else statistic(x)
- rng = np.random.default_rng(3704743126639371)
- n = 10
- x = rng.random(size=n)
- i = x >= 0.5
- v = rng.random(size=n)
- if dtype is np.complex128:
- v = v + rng.random(size=n)*1j
- stat, _, _ = binned_statistic_dd(x, v, statistic, bins=2)
- ref = np.array([ref_statistic(v[~i]), ref_statistic(v[i])])
- assert_allclose(stat, ref)
- assert stat.dtype == np.result_type(ref.dtype, np.float64)
|