1234567891011121314151617181920212223242526272829303132 |
- import numpy as np
- from numpy import sqrt, log, pi
- from scipy.special._testutils import FuncData
- from scipy.special import spence
- def test_consistency():
- # Make sure the implementation of spence for real arguments
- # agrees with the implementation of spence for imaginary arguments.
- x = np.logspace(-30, 300, 200)
- dataset = np.vstack((x + 0j, spence(x))).T
- FuncData(spence, dataset, 0, 1, rtol=1e-14).check()
- def test_special_points():
- # Check against known values of Spence's function.
- phi = (1 + sqrt(5))/2
- dataset = [(1, 0),
- (2, -pi**2/12),
- (0.5, pi**2/12 - log(2)**2/2),
- (0, pi**2/6),
- (-1, pi**2/4 - 1j*pi*log(2)),
- ((-1 + sqrt(5))/2, pi**2/15 - log(phi)**2),
- ((3 - sqrt(5))/2, pi**2/10 - log(phi)**2),
- (phi, -pi**2/15 + log(phi)**2/2),
- # Corrected from Zagier, "The Dilogarithm Function"
- ((3 + sqrt(5))/2, -pi**2/10 - log(phi)**2)]
- dataset = np.asarray(dataset)
- FuncData(spence, dataset, 0, 1, rtol=1e-14).check()
|