123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710 |
- """
- ========================================
- Special functions (:mod:`scipy.special`)
- ========================================
- .. currentmodule:: scipy.special
- Almost all of the functions below accept NumPy arrays as input
- arguments as well as single numbers. This means they follow
- broadcasting and automatic array-looping rules. Technically,
- they are `NumPy universal functions
- <https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-basics>`_.
- Functions which do not accept NumPy arrays are marked by a warning
- in the section description.
- .. seealso::
- `scipy.special.cython_special` -- Typed Cython versions of special functions
- Error handling
- ==============
- Errors are handled by returning NaNs or other appropriate values.
- Some of the special function routines can emit warnings or raise
- exceptions when an error occurs. By default this is disabled; to
- query and control the current error handling state the following
- functions are provided.
- .. autosummary::
- :toctree: generated/
- geterr -- Get the current way of handling special-function errors.
- seterr -- Set how special-function errors are handled.
- errstate -- Context manager for special-function error handling.
- SpecialFunctionWarning -- Warning that can be emitted by special functions.
- SpecialFunctionError -- Exception that can be raised by special functions.
- Available functions
- ===================
- Airy functions
- --------------
- .. autosummary::
- :toctree: generated/
- airy -- Airy functions and their derivatives.
- airye -- Exponentially scaled Airy functions and their derivatives.
- ai_zeros -- Compute `nt` zeros and values of the Airy function Ai and its derivative.
- bi_zeros -- Compute `nt` zeros and values of the Airy function Bi and its derivative.
- itairy -- Integrals of Airy functions
- Elliptic functions and integrals
- --------------------------------
- .. autosummary::
- :toctree: generated/
- ellipj -- Jacobian elliptic functions.
- ellipk -- Complete elliptic integral of the first kind.
- ellipkm1 -- Complete elliptic integral of the first kind around `m` = 1.
- ellipkinc -- Incomplete elliptic integral of the first kind.
- ellipe -- Complete elliptic integral of the second kind.
- ellipeinc -- Incomplete elliptic integral of the second kind.
- elliprc -- Degenerate symmetric integral RC.
- elliprd -- Symmetric elliptic integral of the second kind.
- elliprf -- Completely-symmetric elliptic integral of the first kind.
- elliprg -- Completely-symmetric elliptic integral of the second kind.
- elliprj -- Symmetric elliptic integral of the third kind.
- Bessel functions
- ----------------
- .. autosummary::
- :toctree: generated/
- jv -- Bessel function of the first kind of real order and \
- complex argument.
- jve -- Exponentially scaled Bessel function of order `v`.
- yn -- Bessel function of the second kind of integer order and \
- real argument.
- yv -- Bessel function of the second kind of real order and \
- complex argument.
- yve -- Exponentially scaled Bessel function of the second kind \
- of real order.
- kn -- Modified Bessel function of the second kind of integer \
- order `n`
- kv -- Modified Bessel function of the second kind of real order \
- `v`
- kve -- Exponentially scaled modified Bessel function of the \
- second kind.
- iv -- Modified Bessel function of the first kind of real order.
- ive -- Exponentially scaled modified Bessel function of the \
- first kind.
- hankel1 -- Hankel function of the first kind.
- hankel1e -- Exponentially scaled Hankel function of the first kind.
- hankel2 -- Hankel function of the second kind.
- hankel2e -- Exponentially scaled Hankel function of the second kind.
- wright_bessel -- Wright's generalized Bessel function.
- The following function does not accept NumPy arrays (it is not a
- universal function):
- .. autosummary::
- :toctree: generated/
- lmbda -- Jahnke-Emden Lambda function, Lambdav(x).
- Zeros of Bessel functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- jnjnp_zeros -- Compute zeros of integer-order Bessel functions Jn and Jn'.
- jnyn_zeros -- Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).
- jn_zeros -- Compute zeros of integer-order Bessel function Jn(x).
- jnp_zeros -- Compute zeros of integer-order Bessel function derivative Jn'(x).
- yn_zeros -- Compute zeros of integer-order Bessel function Yn(x).
- ynp_zeros -- Compute zeros of integer-order Bessel function derivative Yn'(x).
- y0_zeros -- Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
- y1_zeros -- Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
- y1p_zeros -- Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.
- Faster versions of common Bessel functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- .. autosummary::
- :toctree: generated/
- j0 -- Bessel function of the first kind of order 0.
- j1 -- Bessel function of the first kind of order 1.
- y0 -- Bessel function of the second kind of order 0.
- y1 -- Bessel function of the second kind of order 1.
- i0 -- Modified Bessel function of order 0.
- i0e -- Exponentially scaled modified Bessel function of order 0.
- i1 -- Modified Bessel function of order 1.
- i1e -- Exponentially scaled modified Bessel function of order 1.
- k0 -- Modified Bessel function of the second kind of order 0, :math:`K_0`.
- k0e -- Exponentially scaled modified Bessel function K of order 0
- k1 -- Modified Bessel function of the second kind of order 1, :math:`K_1(x)`.
- k1e -- Exponentially scaled modified Bessel function K of order 1.
- Integrals of Bessel functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- .. autosummary::
- :toctree: generated/
- itj0y0 -- Integrals of Bessel functions of order 0.
- it2j0y0 -- Integrals related to Bessel functions of order 0.
- iti0k0 -- Integrals of modified Bessel functions of order 0.
- it2i0k0 -- Integrals related to modified Bessel functions of order 0.
- besselpoly -- Weighted integral of a Bessel function.
- Derivatives of Bessel functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- .. autosummary::
- :toctree: generated/
- jvp -- Compute nth derivative of Bessel function Jv(z) with respect to `z`.
- yvp -- Compute nth derivative of Bessel function Yv(z) with respect to `z`.
- kvp -- Compute nth derivative of real-order modified Bessel function Kv(z)
- ivp -- Compute nth derivative of modified Bessel function Iv(z) with respect to `z`.
- h1vp -- Compute nth derivative of Hankel function H1v(z) with respect to `z`.
- h2vp -- Compute nth derivative of Hankel function H2v(z) with respect to `z`.
- Spherical Bessel functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- .. autosummary::
- :toctree: generated/
- spherical_jn -- Spherical Bessel function of the first kind or its derivative.
- spherical_yn -- Spherical Bessel function of the second kind or its derivative.
- spherical_in -- Modified spherical Bessel function of the first kind or its derivative.
- spherical_kn -- Modified spherical Bessel function of the second kind or its derivative.
- Riccati-Bessel functions
- ^^^^^^^^^^^^^^^^^^^^^^^^
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- riccati_jn -- Compute Ricatti-Bessel function of the first kind and its derivative.
- riccati_yn -- Compute Ricatti-Bessel function of the second kind and its derivative.
- Struve functions
- ----------------
- .. autosummary::
- :toctree: generated/
- struve -- Struve function.
- modstruve -- Modified Struve function.
- itstruve0 -- Integral of the Struve function of order 0.
- it2struve0 -- Integral related to the Struve function of order 0.
- itmodstruve0 -- Integral of the modified Struve function of order 0.
- Raw statistical functions
- -------------------------
- .. seealso:: :mod:`scipy.stats`: Friendly versions of these functions.
- .. autosummary::
- :toctree: generated/
- bdtr -- Binomial distribution cumulative distribution function.
- bdtrc -- Binomial distribution survival function.
- bdtri -- Inverse function to `bdtr` with respect to `p`.
- bdtrik -- Inverse function to `bdtr` with respect to `k`.
- bdtrin -- Inverse function to `bdtr` with respect to `n`.
- btdtr -- Cumulative distribution function of the beta distribution.
- btdtri -- The `p`-th quantile of the beta distribution.
- btdtria -- Inverse of `btdtr` with respect to `a`.
- btdtrib -- btdtria(a, p, x).
- fdtr -- F cumulative distribution function.
- fdtrc -- F survival function.
- fdtri -- The `p`-th quantile of the F-distribution.
- fdtridfd -- Inverse to `fdtr` vs dfd.
- gdtr -- Gamma distribution cumulative distribution function.
- gdtrc -- Gamma distribution survival function.
- gdtria -- Inverse of `gdtr` vs a.
- gdtrib -- Inverse of `gdtr` vs b.
- gdtrix -- Inverse of `gdtr` vs x.
- nbdtr -- Negative binomial cumulative distribution function.
- nbdtrc -- Negative binomial survival function.
- nbdtri -- Inverse of `nbdtr` vs `p`.
- nbdtrik -- Inverse of `nbdtr` vs `k`.
- nbdtrin -- Inverse of `nbdtr` vs `n`.
- ncfdtr -- Cumulative distribution function of the non-central F distribution.
- ncfdtridfd -- Calculate degrees of freedom (denominator) for the noncentral F-distribution.
- ncfdtridfn -- Calculate degrees of freedom (numerator) for the noncentral F-distribution.
- ncfdtri -- Inverse cumulative distribution function of the non-central F distribution.
- ncfdtrinc -- Calculate non-centrality parameter for non-central F distribution.
- nctdtr -- Cumulative distribution function of the non-central `t` distribution.
- nctdtridf -- Calculate degrees of freedom for non-central t distribution.
- nctdtrit -- Inverse cumulative distribution function of the non-central t distribution.
- nctdtrinc -- Calculate non-centrality parameter for non-central t distribution.
- nrdtrimn -- Calculate mean of normal distribution given other params.
- nrdtrisd -- Calculate standard deviation of normal distribution given other params.
- pdtr -- Poisson cumulative distribution function.
- pdtrc -- Poisson survival function.
- pdtri -- Inverse to `pdtr` vs m.
- pdtrik -- Inverse to `pdtr` vs k.
- stdtr -- Student t distribution cumulative distribution function.
- stdtridf -- Inverse of `stdtr` vs df.
- stdtrit -- Inverse of `stdtr` vs `t`.
- chdtr -- Chi square cumulative distribution function.
- chdtrc -- Chi square survival function.
- chdtri -- Inverse to `chdtrc`.
- chdtriv -- Inverse to `chdtr` vs `v`.
- ndtr -- Gaussian cumulative distribution function.
- log_ndtr -- Logarithm of Gaussian cumulative distribution function.
- ndtri -- Inverse of `ndtr` vs x.
- ndtri_exp -- Inverse of `log_ndtr` vs x.
- chndtr -- Non-central chi square cumulative distribution function.
- chndtridf -- Inverse to `chndtr` vs `df`.
- chndtrinc -- Inverse to `chndtr` vs `nc`.
- chndtrix -- Inverse to `chndtr` vs `x`.
- smirnov -- Kolmogorov-Smirnov complementary cumulative distribution function.
- smirnovi -- Inverse to `smirnov`.
- kolmogorov -- Complementary cumulative distribution function of Kolmogorov distribution.
- kolmogi -- Inverse function to `kolmogorov`.
- tklmbda -- Tukey-Lambda cumulative distribution function.
- logit -- Logit ufunc for ndarrays.
- expit -- Logistic sigmoid function.
- log_expit -- Logarithm of the logistic sigmoid function.
- boxcox -- Compute the Box-Cox transformation.
- boxcox1p -- Compute the Box-Cox transformation of 1 + `x`.
- inv_boxcox -- Compute the inverse of the Box-Cox transformation.
- inv_boxcox1p -- Compute the inverse of the Box-Cox transformation.
- owens_t -- Owen's T Function.
- Information Theory functions
- ----------------------------
- .. autosummary::
- :toctree: generated/
- entr -- Elementwise function for computing entropy.
- rel_entr -- Elementwise function for computing relative entropy.
- kl_div -- Elementwise function for computing Kullback-Leibler divergence.
- huber -- Huber loss function.
- pseudo_huber -- Pseudo-Huber loss function.
- Gamma and related functions
- ---------------------------
- .. autosummary::
- :toctree: generated/
- gamma -- Gamma function.
- gammaln -- Logarithm of the absolute value of the Gamma function for real inputs.
- loggamma -- Principal branch of the logarithm of the Gamma function.
- gammasgn -- Sign of the gamma function.
- gammainc -- Regularized lower incomplete gamma function.
- gammaincinv -- Inverse to `gammainc`.
- gammaincc -- Regularized upper incomplete gamma function.
- gammainccinv -- Inverse to `gammaincc`.
- beta -- Beta function.
- betaln -- Natural logarithm of absolute value of beta function.
- betainc -- Incomplete beta integral.
- betaincinv -- Inverse function to beta integral.
- psi -- The digamma function.
- rgamma -- Gamma function inverted.
- polygamma -- Polygamma function n.
- multigammaln -- Returns the log of multivariate gamma, also sometimes called the generalized gamma.
- digamma -- psi(x[, out]).
- poch -- Rising factorial (z)_m.
- Error function and Fresnel integrals
- ------------------------------------
- .. autosummary::
- :toctree: generated/
- erf -- Returns the error function of complex argument.
- erfc -- Complementary error function, ``1 - erf(x)``.
- erfcx -- Scaled complementary error function, ``exp(x**2) * erfc(x)``.
- erfi -- Imaginary error function, ``-i erf(i z)``.
- erfinv -- Inverse function for erf.
- erfcinv -- Inverse function for erfc.
- wofz -- Faddeeva function.
- dawsn -- Dawson's integral.
- fresnel -- Fresnel sin and cos integrals.
- fresnel_zeros -- Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).
- modfresnelp -- Modified Fresnel positive integrals.
- modfresnelm -- Modified Fresnel negative integrals.
- voigt_profile -- Voigt profile.
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- erf_zeros -- Compute nt complex zeros of error function erf(z).
- fresnelc_zeros -- Compute nt complex zeros of cosine Fresnel integral C(z).
- fresnels_zeros -- Compute nt complex zeros of sine Fresnel integral S(z).
- Legendre functions
- ------------------
- .. autosummary::
- :toctree: generated/
- lpmv -- Associated Legendre function of integer order and real degree.
- sph_harm -- Compute spherical harmonics.
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- clpmn -- Associated Legendre function of the first kind for complex arguments.
- lpn -- Legendre function of the first kind.
- lqn -- Legendre function of the second kind.
- lpmn -- Sequence of associated Legendre functions of the first kind.
- lqmn -- Sequence of associated Legendre functions of the second kind.
- Ellipsoidal harmonics
- ---------------------
- .. autosummary::
- :toctree: generated/
- ellip_harm -- Ellipsoidal harmonic functions E^p_n(l).
- ellip_harm_2 -- Ellipsoidal harmonic functions F^p_n(l).
- ellip_normal -- Ellipsoidal harmonic normalization constants gamma^p_n.
- Orthogonal polynomials
- ----------------------
- The following functions evaluate values of orthogonal polynomials:
- .. autosummary::
- :toctree: generated/
- assoc_laguerre -- Compute the generalized (associated) Laguerre polynomial of degree n and order k.
- eval_legendre -- Evaluate Legendre polynomial at a point.
- eval_chebyt -- Evaluate Chebyshev polynomial of the first kind at a point.
- eval_chebyu -- Evaluate Chebyshev polynomial of the second kind at a point.
- eval_chebyc -- Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a point.
- eval_chebys -- Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a point.
- eval_jacobi -- Evaluate Jacobi polynomial at a point.
- eval_laguerre -- Evaluate Laguerre polynomial at a point.
- eval_genlaguerre -- Evaluate generalized Laguerre polynomial at a point.
- eval_hermite -- Evaluate physicist's Hermite polynomial at a point.
- eval_hermitenorm -- Evaluate probabilist's (normalized) Hermite polynomial at a point.
- eval_gegenbauer -- Evaluate Gegenbauer polynomial at a point.
- eval_sh_legendre -- Evaluate shifted Legendre polynomial at a point.
- eval_sh_chebyt -- Evaluate shifted Chebyshev polynomial of the first kind at a point.
- eval_sh_chebyu -- Evaluate shifted Chebyshev polynomial of the second kind at a point.
- eval_sh_jacobi -- Evaluate shifted Jacobi polynomial at a point.
- The following functions compute roots and quadrature weights for
- orthogonal polynomials:
- .. autosummary::
- :toctree: generated/
- roots_legendre -- Gauss-Legendre quadrature.
- roots_chebyt -- Gauss-Chebyshev (first kind) quadrature.
- roots_chebyu -- Gauss-Chebyshev (second kind) quadrature.
- roots_chebyc -- Gauss-Chebyshev (first kind) quadrature.
- roots_chebys -- Gauss-Chebyshev (second kind) quadrature.
- roots_jacobi -- Gauss-Jacobi quadrature.
- roots_laguerre -- Gauss-Laguerre quadrature.
- roots_genlaguerre -- Gauss-generalized Laguerre quadrature.
- roots_hermite -- Gauss-Hermite (physicst's) quadrature.
- roots_hermitenorm -- Gauss-Hermite (statistician's) quadrature.
- roots_gegenbauer -- Gauss-Gegenbauer quadrature.
- roots_sh_legendre -- Gauss-Legendre (shifted) quadrature.
- roots_sh_chebyt -- Gauss-Chebyshev (first kind, shifted) quadrature.
- roots_sh_chebyu -- Gauss-Chebyshev (second kind, shifted) quadrature.
- roots_sh_jacobi -- Gauss-Jacobi (shifted) quadrature.
- The functions below, in turn, return the polynomial coefficients in
- ``orthopoly1d`` objects, which function similarly as `numpy.poly1d`.
- The ``orthopoly1d`` class also has an attribute ``weights``, which returns
- the roots, weights, and total weights for the appropriate form of Gaussian
- quadrature. These are returned in an ``n x 3`` array with roots in the first
- column, weights in the second column, and total weights in the final column.
- Note that ``orthopoly1d`` objects are converted to `~numpy.poly1d` when doing
- arithmetic, and lose information of the original orthogonal polynomial.
- .. autosummary::
- :toctree: generated/
- legendre -- Legendre polynomial.
- chebyt -- Chebyshev polynomial of the first kind.
- chebyu -- Chebyshev polynomial of the second kind.
- chebyc -- Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
- chebys -- Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
- jacobi -- Jacobi polynomial.
- laguerre -- Laguerre polynomial.
- genlaguerre -- Generalized (associated) Laguerre polynomial.
- hermite -- Physicist's Hermite polynomial.
- hermitenorm -- Normalized (probabilist's) Hermite polynomial.
- gegenbauer -- Gegenbauer (ultraspherical) polynomial.
- sh_legendre -- Shifted Legendre polynomial.
- sh_chebyt -- Shifted Chebyshev polynomial of the first kind.
- sh_chebyu -- Shifted Chebyshev polynomial of the second kind.
- sh_jacobi -- Shifted Jacobi polynomial.
- .. warning::
- Computing values of high-order polynomials (around ``order > 20``) using
- polynomial coefficients is numerically unstable. To evaluate polynomial
- values, the ``eval_*`` functions should be used instead.
- Hypergeometric functions
- ------------------------
- .. autosummary::
- :toctree: generated/
- hyp2f1 -- Gauss hypergeometric function 2F1(a, b; c; z).
- hyp1f1 -- Confluent hypergeometric function 1F1(a, b; x).
- hyperu -- Confluent hypergeometric function U(a, b, x) of the second kind.
- hyp0f1 -- Confluent hypergeometric limit function 0F1.
- Parabolic cylinder functions
- ----------------------------
- .. autosummary::
- :toctree: generated/
- pbdv -- Parabolic cylinder function D.
- pbvv -- Parabolic cylinder function V.
- pbwa -- Parabolic cylinder function W.
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- pbdv_seq -- Parabolic cylinder functions Dv(x) and derivatives.
- pbvv_seq -- Parabolic cylinder functions Vv(x) and derivatives.
- pbdn_seq -- Parabolic cylinder functions Dn(z) and derivatives.
- Mathieu and related functions
- -----------------------------
- .. autosummary::
- :toctree: generated/
- mathieu_a -- Characteristic value of even Mathieu functions.
- mathieu_b -- Characteristic value of odd Mathieu functions.
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- mathieu_even_coef -- Fourier coefficients for even Mathieu and modified Mathieu functions.
- mathieu_odd_coef -- Fourier coefficients for even Mathieu and modified Mathieu functions.
- The following return both function and first derivative:
- .. autosummary::
- :toctree: generated/
- mathieu_cem -- Even Mathieu function and its derivative.
- mathieu_sem -- Odd Mathieu function and its derivative.
- mathieu_modcem1 -- Even modified Mathieu function of the first kind and its derivative.
- mathieu_modcem2 -- Even modified Mathieu function of the second kind and its derivative.
- mathieu_modsem1 -- Odd modified Mathieu function of the first kind and its derivative.
- mathieu_modsem2 -- Odd modified Mathieu function of the second kind and its derivative.
- Spheroidal wave functions
- -------------------------
- .. autosummary::
- :toctree: generated/
- pro_ang1 -- Prolate spheroidal angular function of the first kind and its derivative.
- pro_rad1 -- Prolate spheroidal radial function of the first kind and its derivative.
- pro_rad2 -- Prolate spheroidal radial function of the secon kind and its derivative.
- obl_ang1 -- Oblate spheroidal angular function of the first kind and its derivative.
- obl_rad1 -- Oblate spheroidal radial function of the first kind and its derivative.
- obl_rad2 -- Oblate spheroidal radial function of the second kind and its derivative.
- pro_cv -- Characteristic value of prolate spheroidal function.
- obl_cv -- Characteristic value of oblate spheroidal function.
- pro_cv_seq -- Characteristic values for prolate spheroidal wave functions.
- obl_cv_seq -- Characteristic values for oblate spheroidal wave functions.
- The following functions require pre-computed characteristic value:
- .. autosummary::
- :toctree: generated/
- pro_ang1_cv -- Prolate spheroidal angular function pro_ang1 for precomputed characteristic value.
- pro_rad1_cv -- Prolate spheroidal radial function pro_rad1 for precomputed characteristic value.
- pro_rad2_cv -- Prolate spheroidal radial function pro_rad2 for precomputed characteristic value.
- obl_ang1_cv -- Oblate spheroidal angular function obl_ang1 for precomputed characteristic value.
- obl_rad1_cv -- Oblate spheroidal radial function obl_rad1 for precomputed characteristic value.
- obl_rad2_cv -- Oblate spheroidal radial function obl_rad2 for precomputed characteristic value.
- Kelvin functions
- ----------------
- .. autosummary::
- :toctree: generated/
- kelvin -- Kelvin functions as complex numbers.
- kelvin_zeros -- Compute nt zeros of all Kelvin functions.
- ber -- Kelvin function ber.
- bei -- Kelvin function bei
- berp -- Derivative of the Kelvin function `ber`.
- beip -- Derivative of the Kelvin function `bei`.
- ker -- Kelvin function ker.
- kei -- Kelvin function ker.
- kerp -- Derivative of the Kelvin function ker.
- keip -- Derivative of the Kelvin function kei.
- The following functions do not accept NumPy arrays (they are not
- universal functions):
- .. autosummary::
- :toctree: generated/
- ber_zeros -- Compute nt zeros of the Kelvin function ber(x).
- bei_zeros -- Compute nt zeros of the Kelvin function bei(x).
- berp_zeros -- Compute nt zeros of the Kelvin function ber'(x).
- beip_zeros -- Compute nt zeros of the Kelvin function bei'(x).
- ker_zeros -- Compute nt zeros of the Kelvin function ker(x).
- kei_zeros -- Compute nt zeros of the Kelvin function kei(x).
- kerp_zeros -- Compute nt zeros of the Kelvin function ker'(x).
- keip_zeros -- Compute nt zeros of the Kelvin function kei'(x).
- Combinatorics
- -------------
- .. autosummary::
- :toctree: generated/
- comb -- The number of combinations of N things taken k at a time.
- perm -- Permutations of N things taken k at a time, i.e., k-permutations of N.
- Lambert W and related functions
- -------------------------------
- .. autosummary::
- :toctree: generated/
- lambertw -- Lambert W function.
- wrightomega -- Wright Omega function.
- Other special functions
- -----------------------
- .. autosummary::
- :toctree: generated/
- agm -- Arithmetic, Geometric Mean.
- bernoulli -- Bernoulli numbers B0..Bn (inclusive).
- binom -- Binomial coefficient
- diric -- Periodic sinc function, also called the Dirichlet function.
- euler -- Euler numbers E0..En (inclusive).
- expn -- Exponential integral E_n.
- exp1 -- Exponential integral E_1 of complex argument z.
- expi -- Exponential integral Ei.
- factorial -- The factorial of a number or array of numbers.
- factorial2 -- Double factorial.
- factorialk -- Multifactorial of n of order k, n(!!...!).
- shichi -- Hyperbolic sine and cosine integrals.
- sici -- Sine and cosine integrals.
- softmax -- Softmax function.
- log_softmax -- Logarithm of softmax function.
- spence -- Spence's function, also known as the dilogarithm.
- zeta -- Riemann zeta function.
- zetac -- Riemann zeta function minus 1.
- Convenience functions
- ---------------------
- .. autosummary::
- :toctree: generated/
- cbrt -- Cube root of `x`.
- exp10 -- 10**x.
- exp2 -- 2**x.
- radian -- Convert from degrees to radians.
- cosdg -- Cosine of the angle `x` given in degrees.
- sindg -- Sine of angle given in degrees.
- tandg -- Tangent of angle x given in degrees.
- cotdg -- Cotangent of the angle `x` given in degrees.
- log1p -- Calculates log(1+x) for use when `x` is near zero.
- expm1 -- ``exp(x) - 1`` for use when `x` is near zero.
- cosm1 -- ``cos(x) - 1`` for use when `x` is near zero.
- powm1 -- ``x**y - 1`` for use when `y` is near zero or `x` is near 1.
- round -- Round to nearest integer.
- xlogy -- Compute ``x*log(y)`` so that the result is 0 if ``x = 0``.
- xlog1py -- Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``.
- logsumexp -- Compute the log of the sum of exponentials of input elements.
- exprel -- Relative error exponential, (exp(x)-1)/x, for use when `x` is near zero.
- sinc -- Return the sinc function.
- """
- from ._sf_error import SpecialFunctionWarning, SpecialFunctionError
- from . import _ufuncs
- from ._ufuncs import *
- from . import _basic
- from ._basic import *
- from ._logsumexp import logsumexp, softmax, log_softmax
- from . import _orthogonal
- from ._orthogonal import *
- from ._spfun_stats import multigammaln
- from ._ellip_harm import (
- ellip_harm,
- ellip_harm_2,
- ellip_normal
- )
- from ._lambertw import lambertw
- from ._spherical_bessel import (
- spherical_jn,
- spherical_yn,
- spherical_in,
- spherical_kn
- )
- # Deprecated namespaces, to be removed in v2.0.0
- from . import add_newdocs, basic, orthogonal, specfun, sf_error, spfun_stats
- __all__ = _ufuncs.__all__ + _basic.__all__ + _orthogonal.__all__ + [
- 'SpecialFunctionWarning',
- 'SpecialFunctionError',
- 'logsumexp',
- 'softmax',
- 'log_softmax',
- 'multigammaln',
- 'ellip_harm',
- 'ellip_harm_2',
- 'ellip_normal',
- 'lambertw',
- 'spherical_jn',
- 'spherical_yn',
- 'spherical_in',
- 'spherical_kn',
- ]
- from scipy._lib._testutils import PytestTester
- test = PytestTester(__name__)
- del PytestTester
|