123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- import pytest
- import numpy as np
- from numpy.testing import assert_array_almost_equal
- from scipy.spatial.transform import Rotation
- from scipy.optimize import linear_sum_assignment
- from scipy.spatial.distance import cdist
- from scipy.constants import golden as phi
- from scipy.spatial import cKDTree
- TOL = 1E-12
- NS = range(1, 13)
- NAMES = ["I", "O", "T"] + ["C%d" % n for n in NS] + ["D%d" % n for n in NS]
- SIZES = [60, 24, 12] + list(NS) + [2 * n for n in NS]
- def _calculate_rmsd(P, Q):
- """Calculates the root-mean-square distance between the points of P and Q.
- The distance is taken as the minimum over all possible matchings. It is
- zero if P and Q are identical and non-zero if not.
- """
- distance_matrix = cdist(P, Q, metric='sqeuclidean')
- matching = linear_sum_assignment(distance_matrix)
- return np.sqrt(distance_matrix[matching].sum())
- def _generate_pyramid(n, axis):
- thetas = np.linspace(0, 2 * np.pi, n + 1)[:-1]
- P = np.vstack([np.zeros(n), np.cos(thetas), np.sin(thetas)]).T
- P = np.concatenate((P, [[1, 0, 0]]))
- return np.roll(P, axis, axis=1)
- def _generate_prism(n, axis):
- thetas = np.linspace(0, 2 * np.pi, n + 1)[:-1]
- bottom = np.vstack([-np.ones(n), np.cos(thetas), np.sin(thetas)]).T
- top = np.vstack([+np.ones(n), np.cos(thetas), np.sin(thetas)]).T
- P = np.concatenate((bottom, top))
- return np.roll(P, axis, axis=1)
- def _generate_icosahedron():
- x = np.array([[0, -1, -phi],
- [0, -1, +phi],
- [0, +1, -phi],
- [0, +1, +phi]])
- return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
- def _generate_octahedron():
- return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
- [0, +1, 0], [0, 0, -1], [0, 0, +1]])
- def _generate_tetrahedron():
- return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
- @pytest.mark.parametrize("name", [-1, None, True, np.array(['C3'])])
- def test_group_type(name):
- with pytest.raises(ValueError,
- match="must be a string"):
- Rotation.create_group(name)
- @pytest.mark.parametrize("name", ["Q", " ", "CA", "C ", "DA", "D ", "I2", ""])
- def test_group_name(name):
- with pytest.raises(ValueError,
- match="must be one of 'I', 'O', 'T', 'Dn', 'Cn'"):
- Rotation.create_group(name)
- @pytest.mark.parametrize("name", ["C0", "D0"])
- def test_group_order_positive(name):
- with pytest.raises(ValueError,
- match="Group order must be positive"):
- Rotation.create_group(name)
- @pytest.mark.parametrize("axis", ['A', 'b', 0, 1, 2, 4, False, None])
- def test_axis_valid(axis):
- with pytest.raises(ValueError,
- match="`axis` must be one of"):
- Rotation.create_group("C1", axis)
- def test_icosahedral():
- """The icosahedral group fixes the rotations of an icosahedron. Here we
- test that the icosahedron is invariant after application of the elements
- of the rotation group."""
- P = _generate_icosahedron()
- for g in Rotation.create_group("I"):
- g = Rotation.from_quat(g.as_quat())
- assert _calculate_rmsd(P, g.apply(P)) < TOL
- def test_octahedral():
- """Test that the octahedral group correctly fixes the rotations of an
- octahedron."""
- P = _generate_octahedron()
- for g in Rotation.create_group("O"):
- assert _calculate_rmsd(P, g.apply(P)) < TOL
- def test_tetrahedral():
- """Test that the tetrahedral group correctly fixes the rotations of a
- tetrahedron."""
- P = _generate_tetrahedron()
- for g in Rotation.create_group("T"):
- assert _calculate_rmsd(P, g.apply(P)) < TOL
- @pytest.mark.parametrize("n", NS)
- @pytest.mark.parametrize("axis", 'XYZ')
- def test_dicyclic(n, axis):
- """Test that the dicyclic group correctly fixes the rotations of a
- prism."""
- P = _generate_prism(n, axis='XYZ'.index(axis))
- for g in Rotation.create_group("D%d" % n, axis=axis):
- assert _calculate_rmsd(P, g.apply(P)) < TOL
- @pytest.mark.parametrize("n", NS)
- @pytest.mark.parametrize("axis", 'XYZ')
- def test_cyclic(n, axis):
- """Test that the cyclic group correctly fixes the rotations of a
- pyramid."""
- P = _generate_pyramid(n, axis='XYZ'.index(axis))
- for g in Rotation.create_group("C%d" % n, axis=axis):
- assert _calculate_rmsd(P, g.apply(P)) < TOL
- @pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
- def test_group_sizes(name, size):
- assert len(Rotation.create_group(name)) == size
- @pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
- def test_group_no_duplicates(name, size):
- g = Rotation.create_group(name)
- kdtree = cKDTree(g.as_quat())
- assert len(kdtree.query_pairs(1E-3)) == 0
- @pytest.mark.parametrize("name, size", zip(NAMES, SIZES))
- def test_group_symmetry(name, size):
- g = Rotation.create_group(name)
- q = np.concatenate((-g.as_quat(), g.as_quat()))
- distance = np.sort(cdist(q, q))
- deltas = np.max(distance, axis=0) - np.min(distance, axis=0)
- assert (deltas < TOL).all()
- @pytest.mark.parametrize("name", NAMES)
- def test_reduction(name):
- """Test that the elements of the rotation group are correctly
- mapped onto the identity rotation."""
- g = Rotation.create_group(name)
- f = g.reduce(g)
- assert_array_almost_equal(f.magnitude(), np.zeros(len(g)))
- @pytest.mark.parametrize("name", NAMES)
- def test_single_reduction(name):
- g = Rotation.create_group(name)
- f = g[-1].reduce(g)
- assert_array_almost_equal(f.magnitude(), 0)
- assert f.as_quat().shape == (4,)
|