12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370 |
- import pytest
- import numpy as np
- from numpy.testing import assert_equal, assert_array_almost_equal
- from numpy.testing import assert_allclose
- from scipy.spatial.transform import Rotation, Slerp
- from scipy.stats import special_ortho_group
- from itertools import permutations
- import pickle
- import copy
- def test_generic_quat_matrix():
- x = np.array([[3, 4, 0, 0], [5, 12, 0, 0]])
- r = Rotation.from_quat(x)
- expected_quat = x / np.array([[5], [13]])
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_from_single_1d_quaternion():
- x = np.array([3, 4, 0, 0])
- r = Rotation.from_quat(x)
- expected_quat = x / 5
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_from_single_2d_quaternion():
- x = np.array([[3, 4, 0, 0]])
- r = Rotation.from_quat(x)
- expected_quat = x / 5
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_from_square_quat_matrix():
- # Ensure proper norm array broadcasting
- x = np.array([
- [3, 0, 0, 4],
- [5, 0, 12, 0],
- [0, 0, 0, 1],
- [0, 0, 0, -1]
- ])
- r = Rotation.from_quat(x)
- expected_quat = x / np.array([[5], [13], [1], [1]])
- assert_array_almost_equal(r.as_quat(), expected_quat)
- def test_malformed_1d_from_quat():
- with pytest.raises(ValueError):
- Rotation.from_quat(np.array([1, 2, 3]))
- def test_malformed_2d_from_quat():
- with pytest.raises(ValueError):
- Rotation.from_quat(np.array([
- [1, 2, 3, 4, 5],
- [4, 5, 6, 7, 8]
- ]))
- def test_zero_norms_from_quat():
- x = np.array([
- [3, 4, 0, 0],
- [0, 0, 0, 0],
- [5, 0, 12, 0]
- ])
- with pytest.raises(ValueError):
- Rotation.from_quat(x)
- def test_as_matrix_single_1d_quaternion():
- quat = [0, 0, 0, 1]
- mat = Rotation.from_quat(quat).as_matrix()
- # mat.shape == (3,3) due to 1d input
- assert_array_almost_equal(mat, np.eye(3))
- def test_as_matrix_single_2d_quaternion():
- quat = [[0, 0, 1, 1]]
- mat = Rotation.from_quat(quat).as_matrix()
- assert_equal(mat.shape, (1, 3, 3))
- expected_mat = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- assert_array_almost_equal(mat[0], expected_mat)
- def test_as_matrix_from_square_input():
- quats = [
- [0, 0, 1, 1],
- [0, 1, 0, 1],
- [0, 0, 0, 1],
- [0, 0, 0, -1]
- ]
- mat = Rotation.from_quat(quats).as_matrix()
- assert_equal(mat.shape, (4, 3, 3))
- expected0 = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- assert_array_almost_equal(mat[0], expected0)
- expected1 = np.array([
- [0, 0, 1],
- [0, 1, 0],
- [-1, 0, 0]
- ])
- assert_array_almost_equal(mat[1], expected1)
- assert_array_almost_equal(mat[2], np.eye(3))
- assert_array_almost_equal(mat[3], np.eye(3))
- def test_as_matrix_from_generic_input():
- quats = [
- [0, 0, 1, 1],
- [0, 1, 0, 1],
- [1, 2, 3, 4]
- ]
- mat = Rotation.from_quat(quats).as_matrix()
- assert_equal(mat.shape, (3, 3, 3))
- expected0 = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- assert_array_almost_equal(mat[0], expected0)
- expected1 = np.array([
- [0, 0, 1],
- [0, 1, 0],
- [-1, 0, 0]
- ])
- assert_array_almost_equal(mat[1], expected1)
- expected2 = np.array([
- [0.4, -2, 2.2],
- [2.8, 1, 0.4],
- [-1, 2, 2]
- ]) / 3
- assert_array_almost_equal(mat[2], expected2)
- def test_from_single_2d_matrix():
- mat = [
- [0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]
- ]
- expected_quat = [0.5, 0.5, 0.5, 0.5]
- assert_array_almost_equal(
- Rotation.from_matrix(mat).as_quat(),
- expected_quat)
- def test_from_single_3d_matrix():
- mat = np.array([
- [0, 0, 1],
- [1, 0, 0],
- [0, 1, 0]
- ]).reshape((1, 3, 3))
- expected_quat = np.array([0.5, 0.5, 0.5, 0.5]).reshape((1, 4))
- assert_array_almost_equal(
- Rotation.from_matrix(mat).as_quat(),
- expected_quat)
- def test_from_matrix_calculation():
- expected_quat = np.array([1, 1, 6, 1]) / np.sqrt(39)
- mat = np.array([
- [-0.8974359, -0.2564103, 0.3589744],
- [0.3589744, -0.8974359, 0.2564103],
- [0.2564103, 0.3589744, 0.8974359]
- ])
- assert_array_almost_equal(
- Rotation.from_matrix(mat).as_quat(),
- expected_quat)
- assert_array_almost_equal(
- Rotation.from_matrix(mat.reshape((1, 3, 3))).as_quat(),
- expected_quat.reshape((1, 4)))
- def test_matrix_calculation_pipeline():
- mat = special_ortho_group.rvs(3, size=10, random_state=0)
- assert_array_almost_equal(Rotation.from_matrix(mat).as_matrix(), mat)
- def test_from_matrix_ortho_output():
- rnd = np.random.RandomState(0)
- mat = rnd.random_sample((100, 3, 3))
- ortho_mat = Rotation.from_matrix(mat).as_matrix()
- mult_result = np.einsum('...ij,...jk->...ik', ortho_mat,
- ortho_mat.transpose((0, 2, 1)))
- eye3d = np.zeros((100, 3, 3))
- for i in range(3):
- eye3d[:, i, i] = 1.0
- assert_array_almost_equal(mult_result, eye3d)
- def test_from_1d_single_rotvec():
- rotvec = [1, 0, 0]
- expected_quat = np.array([0.4794255, 0, 0, 0.8775826])
- result = Rotation.from_rotvec(rotvec)
- assert_array_almost_equal(result.as_quat(), expected_quat)
- def test_from_2d_single_rotvec():
- rotvec = [[1, 0, 0]]
- expected_quat = np.array([[0.4794255, 0, 0, 0.8775826]])
- result = Rotation.from_rotvec(rotvec)
- assert_array_almost_equal(result.as_quat(), expected_quat)
- def test_from_generic_rotvec():
- rotvec = [
- [1, 2, 2],
- [1, -1, 0.5],
- [0, 0, 0]
- ]
- expected_quat = np.array([
- [0.3324983, 0.6649967, 0.6649967, 0.0707372],
- [0.4544258, -0.4544258, 0.2272129, 0.7316889],
- [0, 0, 0, 1]
- ])
- assert_array_almost_equal(
- Rotation.from_rotvec(rotvec).as_quat(),
- expected_quat)
- def test_from_rotvec_small_angle():
- rotvec = np.array([
- [5e-4 / np.sqrt(3), -5e-4 / np.sqrt(3), 5e-4 / np.sqrt(3)],
- [0.2, 0.3, 0.4],
- [0, 0, 0]
- ])
- quat = Rotation.from_rotvec(rotvec).as_quat()
- # cos(theta/2) ~~ 1 for small theta
- assert_allclose(quat[0, 3], 1)
- # sin(theta/2) / theta ~~ 0.5 for small theta
- assert_allclose(quat[0, :3], rotvec[0] * 0.5)
- assert_allclose(quat[1, 3], 0.9639685)
- assert_allclose(
- quat[1, :3],
- np.array([
- 0.09879603932153465,
- 0.14819405898230198,
- 0.19759207864306931
- ]))
- assert_equal(quat[2], np.array([0, 0, 0, 1]))
- def test_degrees_from_rotvec():
- rotvec1 = [1.0 / np.cbrt(3), 1.0 / np.cbrt(3), 1.0 / np.cbrt(3)]
- rot1 = Rotation.from_rotvec(rotvec1, degrees=True)
- quat1 = rot1.as_quat()
- rotvec2 = np.deg2rad(rotvec1)
- rot2 = Rotation.from_rotvec(rotvec2)
- quat2 = rot2.as_quat()
- assert_allclose(quat1, quat2)
- def test_malformed_1d_from_rotvec():
- with pytest.raises(ValueError, match='Expected `rot_vec` to have shape'):
- Rotation.from_rotvec([1, 2])
- def test_malformed_2d_from_rotvec():
- with pytest.raises(ValueError, match='Expected `rot_vec` to have shape'):
- Rotation.from_rotvec([
- [1, 2, 3, 4],
- [5, 6, 7, 8]
- ])
- def test_as_generic_rotvec():
- quat = np.array([
- [1, 2, -1, 0.5],
- [1, -1, 1, 0.0003],
- [0, 0, 0, 1]
- ])
- quat /= np.linalg.norm(quat, axis=1)[:, None]
- rotvec = Rotation.from_quat(quat).as_rotvec()
- angle = np.linalg.norm(rotvec, axis=1)
- assert_allclose(quat[:, 3], np.cos(angle/2))
- assert_allclose(np.cross(rotvec, quat[:, :3]), np.zeros((3, 3)))
- def test_as_rotvec_single_1d_input():
- quat = np.array([1, 2, -3, 2])
- expected_rotvec = np.array([0.5772381, 1.1544763, -1.7317144])
- actual_rotvec = Rotation.from_quat(quat).as_rotvec()
- assert_equal(actual_rotvec.shape, (3,))
- assert_allclose(actual_rotvec, expected_rotvec)
- def test_as_rotvec_single_2d_input():
- quat = np.array([[1, 2, -3, 2]])
- expected_rotvec = np.array([[0.5772381, 1.1544763, -1.7317144]])
- actual_rotvec = Rotation.from_quat(quat).as_rotvec()
- assert_equal(actual_rotvec.shape, (1, 3))
- assert_allclose(actual_rotvec, expected_rotvec)
- def test_as_rotvec_degrees():
- # x->y, y->z, z->x
- mat = [[0, 0, 1], [1, 0, 0], [0, 1, 0]]
- rot = Rotation.from_matrix(mat)
- rotvec = rot.as_rotvec(degrees=True)
- angle = np.linalg.norm(rotvec)
- assert_allclose(angle, 120.0)
- assert_allclose(rotvec[0], rotvec[1])
- assert_allclose(rotvec[1], rotvec[2])
- def test_rotvec_calc_pipeline():
- # Include small angles
- rotvec = np.array([
- [0, 0, 0],
- [1, -1, 2],
- [-3e-4, 3.5e-4, 7.5e-5]
- ])
- assert_allclose(Rotation.from_rotvec(rotvec).as_rotvec(), rotvec)
- assert_allclose(Rotation.from_rotvec(rotvec, degrees=True).as_rotvec(degrees=True), rotvec)
- def test_from_1d_single_mrp():
- mrp = [0, 0, 1.0]
- expected_quat = np.array([0, 0, 1, 0])
- result = Rotation.from_mrp(mrp)
- assert_array_almost_equal(result.as_quat(), expected_quat)
- def test_from_2d_single_mrp():
- mrp = [[0, 0, 1.0]]
- expected_quat = np.array([[0, 0, 1, 0]])
- result = Rotation.from_mrp(mrp)
- assert_array_almost_equal(result.as_quat(), expected_quat)
- def test_from_generic_mrp():
- mrp = np.array([
- [1, 2, 2],
- [1, -1, 0.5],
- [0, 0, 0]])
- expected_quat = np.array([
- [0.2, 0.4, 0.4, -0.8],
- [0.61538462, -0.61538462, 0.30769231, -0.38461538],
- [0, 0, 0, 1]])
- assert_array_almost_equal(Rotation.from_mrp(mrp).as_quat(), expected_quat)
- def test_malformed_1d_from_mrp():
- with pytest.raises(ValueError, match='Expected `mrp` to have shape'):
- Rotation.from_mrp([1, 2])
- def test_malformed_2d_from_mrp():
- with pytest.raises(ValueError, match='Expected `mrp` to have shape'):
- Rotation.from_mrp([
- [1, 2, 3, 4],
- [5, 6, 7, 8]
- ])
- def test_as_generic_mrp():
- quat = np.array([
- [1, 2, -1, 0.5],
- [1, -1, 1, 0.0003],
- [0, 0, 0, 1]])
- quat /= np.linalg.norm(quat, axis=1)[:, None]
- expected_mrp = np.array([
- [0.33333333, 0.66666667, -0.33333333],
- [0.57725028, -0.57725028, 0.57725028],
- [0, 0, 0]])
- assert_array_almost_equal(Rotation.from_quat(quat).as_mrp(), expected_mrp)
- def test_past_180_degree_rotation():
- # ensure that a > 180 degree rotation is returned as a <180 rotation in MRPs
- # in this case 270 should be returned as -90
- expected_mrp = np.array([-np.tan(np.pi/2/4), 0.0, 0])
- assert_array_almost_equal(Rotation.from_euler('xyz', [270, 0, 0], degrees=True).as_mrp(), expected_mrp)
- def test_as_mrp_single_1d_input():
- quat = np.array([1, 2, -3, 2])
- expected_mrp = np.array([0.16018862, 0.32037724, -0.48056586])
- actual_mrp = Rotation.from_quat(quat).as_mrp()
- assert_equal(actual_mrp.shape, (3,))
- assert_allclose(actual_mrp, expected_mrp)
- def test_as_mrp_single_2d_input():
- quat = np.array([[1, 2, -3, 2]])
- expected_mrp = np.array([[0.16018862, 0.32037724, -0.48056586]])
- actual_mrp = Rotation.from_quat(quat).as_mrp()
- assert_equal(actual_mrp.shape, (1, 3))
- assert_allclose(actual_mrp, expected_mrp)
- def test_mrp_calc_pipeline():
- actual_mrp = np.array([
- [0, 0, 0],
- [1, -1, 2],
- [0.41421356, 0, 0],
- [0.1, 0.2, 0.1]])
- expected_mrp = np.array([
- [0, 0, 0],
- [-0.16666667, 0.16666667, -0.33333333],
- [0.41421356, 0, 0],
- [0.1, 0.2, 0.1]])
- assert_allclose(Rotation.from_mrp(actual_mrp).as_mrp(), expected_mrp)
- def test_from_euler_single_rotation():
- quat = Rotation.from_euler('z', 90, degrees=True).as_quat()
- expected_quat = np.array([0, 0, 1, 1]) / np.sqrt(2)
- assert_allclose(quat, expected_quat)
- def test_single_intrinsic_extrinsic_rotation():
- extrinsic = Rotation.from_euler('z', 90, degrees=True).as_matrix()
- intrinsic = Rotation.from_euler('Z', 90, degrees=True).as_matrix()
- assert_allclose(extrinsic, intrinsic)
- def test_from_euler_rotation_order():
- # Intrinsic rotation is same as extrinsic with order reversed
- rnd = np.random.RandomState(0)
- a = rnd.randint(low=0, high=180, size=(6, 3))
- b = a[:, ::-1]
- x = Rotation.from_euler('xyz', a, degrees=True).as_quat()
- y = Rotation.from_euler('ZYX', b, degrees=True).as_quat()
- assert_allclose(x, y)
- def test_from_euler_elementary_extrinsic_rotation():
- # Simple test to check if extrinsic rotations are implemented correctly
- mat = Rotation.from_euler('zx', [90, 90], degrees=True).as_matrix()
- expected_mat = np.array([
- [0, -1, 0],
- [0, 0, -1],
- [1, 0, 0]
- ])
- assert_array_almost_equal(mat, expected_mat)
- def test_from_euler_intrinsic_rotation_312():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- mat = Rotation.from_euler('ZXY', angles, degrees=True).as_matrix()
- assert_array_almost_equal(mat[0], np.array([
- [0.3061862, -0.2500000, 0.9185587],
- [0.8838835, 0.4330127, -0.1767767],
- [-0.3535534, 0.8660254, 0.3535534]
- ]))
- assert_array_almost_equal(mat[1], np.array([
- [0.5334936, -0.2500000, 0.8080127],
- [0.8080127, 0.4330127, -0.3995191],
- [-0.2500000, 0.8660254, 0.4330127]
- ]))
- assert_array_almost_equal(mat[2], np.array([
- [0.0473672, -0.6123725, 0.7891491],
- [0.6597396, 0.6123725, 0.4355958],
- [-0.7500000, 0.5000000, 0.4330127]
- ]))
- def test_from_euler_intrinsic_rotation_313():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- mat = Rotation.from_euler('ZXZ', angles, degrees=True).as_matrix()
- assert_array_almost_equal(mat[0], np.array([
- [0.43559574, -0.78914913, 0.4330127],
- [0.65973961, -0.04736717, -0.750000],
- [0.61237244, 0.61237244, 0.500000]
- ]))
- assert_array_almost_equal(mat[1], np.array([
- [0.6250000, -0.64951905, 0.4330127],
- [0.64951905, 0.1250000, -0.750000],
- [0.4330127, 0.750000, 0.500000]
- ]))
- assert_array_almost_equal(mat[2], np.array([
- [-0.1767767, -0.91855865, 0.35355339],
- [0.88388348, -0.30618622, -0.35355339],
- [0.4330127, 0.25000000, 0.8660254]
- ]))
- def test_from_euler_extrinsic_rotation_312():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- mat = Rotation.from_euler('zxy', angles, degrees=True).as_matrix()
- assert_array_almost_equal(mat[0], np.array([
- [0.91855865, 0.1767767, 0.35355339],
- [0.25000000, 0.4330127, -0.8660254],
- [-0.30618622, 0.88388348, 0.35355339]
- ]))
- assert_array_almost_equal(mat[1], np.array([
- [0.96650635, -0.0580127, 0.2500000],
- [0.25000000, 0.4330127, -0.8660254],
- [-0.0580127, 0.89951905, 0.4330127]
- ]))
- assert_array_almost_equal(mat[2], np.array([
- [0.65973961, -0.04736717, 0.7500000],
- [0.61237244, 0.61237244, -0.5000000],
- [-0.43559574, 0.78914913, 0.4330127]
- ]))
- def test_from_euler_extrinsic_rotation_313():
- angles = [
- [30, 60, 45],
- [30, 60, 30],
- [45, 30, 60]
- ]
- mat = Rotation.from_euler('zxz', angles, degrees=True).as_matrix()
- assert_array_almost_equal(mat[0], np.array([
- [0.43559574, -0.65973961, 0.61237244],
- [0.78914913, -0.04736717, -0.61237244],
- [0.4330127, 0.75000000, 0.500000]
- ]))
- assert_array_almost_equal(mat[1], np.array([
- [0.62500000, -0.64951905, 0.4330127],
- [0.64951905, 0.12500000, -0.750000],
- [0.4330127, 0.75000000, 0.500000]
- ]))
- assert_array_almost_equal(mat[2], np.array([
- [-0.1767767, -0.88388348, 0.4330127],
- [0.91855865, -0.30618622, -0.250000],
- [0.35355339, 0.35355339, 0.8660254]
- ]))
- def test_as_euler_asymmetric_axes():
- rnd = np.random.RandomState(0)
- n = 10
- angles = np.empty((n, 3))
- angles[:, 0] = rnd.uniform(low=-np.pi, high=np.pi, size=(n,))
- angles[:, 1] = rnd.uniform(low=-np.pi / 2, high=np.pi / 2, size=(n,))
- angles[:, 2] = rnd.uniform(low=-np.pi, high=np.pi, size=(n,))
- for seq_tuple in permutations('xyz'):
- # Extrinsic rotations
- seq = ''.join(seq_tuple)
- assert_allclose(angles, Rotation.from_euler(seq, angles).as_euler(seq))
- # Intrinsic rotations
- seq = seq.upper()
- assert_allclose(angles, Rotation.from_euler(seq, angles).as_euler(seq))
- def test_as_euler_symmetric_axes():
- rnd = np.random.RandomState(0)
- n = 10
- angles = np.empty((n, 3))
- angles[:, 0] = rnd.uniform(low=-np.pi, high=np.pi, size=(n,))
- angles[:, 1] = rnd.uniform(low=0, high=np.pi, size=(n,))
- angles[:, 2] = rnd.uniform(low=-np.pi, high=np.pi, size=(n,))
- for axis1 in ['x', 'y', 'z']:
- for axis2 in ['x', 'y', 'z']:
- if axis1 == axis2:
- continue
- # Extrinsic rotations
- seq = axis1 + axis2 + axis1
- assert_allclose(
- angles, Rotation.from_euler(seq, angles).as_euler(seq))
- # Intrinsic rotations
- seq = seq.upper()
- assert_allclose(
- angles, Rotation.from_euler(seq, angles).as_euler(seq))
- def test_as_euler_degenerate_asymmetric_axes():
- # Since we cannot check for angle equality, we check for rotation matrix
- # equality
- angles = np.array([
- [45, 90, 35],
- [35, -90, 20],
- [35, 90, 25],
- [25, -90, 15]
- ])
- with pytest.warns(UserWarning, match="Gimbal lock"):
- for seq_tuple in permutations('xyz'):
- # Extrinsic rotations
- seq = ''.join(seq_tuple)
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- mat_expected = rotation.as_matrix()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- mat_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_matrix()
- assert_array_almost_equal(mat_expected, mat_estimated)
- # Intrinsic rotations
- seq = seq.upper()
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- mat_expected = rotation.as_matrix()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- mat_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_matrix()
- assert_array_almost_equal(mat_expected, mat_estimated)
- def test_as_euler_degenerate_symmetric_axes():
- # Since we cannot check for angle equality, we check for rotation matrix
- # equality
- angles = np.array([
- [15, 0, 60],
- [35, 0, 75],
- [60, 180, 35],
- [15, -180, 25],
- ])
- with pytest.warns(UserWarning, match="Gimbal lock"):
- for axis1 in ['x', 'y', 'z']:
- for axis2 in ['x', 'y', 'z']:
- if axis1 == axis2:
- continue
- # Extrinsic rotations
- seq = axis1 + axis2 + axis1
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- mat_expected = rotation.as_matrix()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- mat_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_matrix()
- assert_array_almost_equal(mat_expected, mat_estimated)
- # Intrinsic rotations
- seq = seq.upper()
- rotation = Rotation.from_euler(seq, angles, degrees=True)
- mat_expected = rotation.as_matrix()
- angle_estimates = rotation.as_euler(seq, degrees=True)
- mat_estimated = Rotation.from_euler(
- seq, angle_estimates, degrees=True
- ).as_matrix()
- assert_array_almost_equal(mat_expected, mat_estimated)
- def test_inv():
- rnd = np.random.RandomState(0)
- n = 10
- p = Rotation.random(num=n, random_state=rnd)
- q = p.inv()
- p_mat = p.as_matrix()
- q_mat = q.as_matrix()
- result1 = np.einsum('...ij,...jk->...ik', p_mat, q_mat)
- result2 = np.einsum('...ij,...jk->...ik', q_mat, p_mat)
- eye3d = np.empty((n, 3, 3))
- eye3d[:] = np.eye(3)
- assert_array_almost_equal(result1, eye3d)
- assert_array_almost_equal(result2, eye3d)
- def test_inv_single_rotation():
- rnd = np.random.RandomState(0)
- p = Rotation.random(random_state=rnd)
- q = p.inv()
- p_mat = p.as_matrix()
- q_mat = q.as_matrix()
- res1 = np.dot(p_mat, q_mat)
- res2 = np.dot(q_mat, p_mat)
- eye = np.eye(3)
- assert_array_almost_equal(res1, eye)
- assert_array_almost_equal(res2, eye)
- x = Rotation.random(num=1, random_state=rnd)
- y = x.inv()
- x_matrix = x.as_matrix()
- y_matrix = y.as_matrix()
- result1 = np.einsum('...ij,...jk->...ik', x_matrix, y_matrix)
- result2 = np.einsum('...ij,...jk->...ik', y_matrix, x_matrix)
- eye3d = np.empty((1, 3, 3))
- eye3d[:] = np.eye(3)
- assert_array_almost_equal(result1, eye3d)
- assert_array_almost_equal(result2, eye3d)
- def test_identity_magnitude():
- n = 10
- assert_allclose(Rotation.identity(n).magnitude(), 0)
- assert_allclose(Rotation.identity(n).inv().magnitude(), 0)
- def test_single_identity_magnitude():
- assert Rotation.identity().magnitude() == 0
- assert Rotation.identity().inv().magnitude() == 0
- def test_identity_invariance():
- n = 10
- p = Rotation.random(n, random_state=0)
- result = p * Rotation.identity(n)
- assert_array_almost_equal(p.as_quat(), result.as_quat())
- result = result * p.inv()
- assert_array_almost_equal(result.magnitude(), np.zeros(n))
- def test_single_identity_invariance():
- n = 10
- p = Rotation.random(n, random_state=0)
- result = p * Rotation.identity()
- assert_array_almost_equal(p.as_quat(), result.as_quat())
- result = result * p.inv()
- assert_array_almost_equal(result.magnitude(), np.zeros(n))
- def test_magnitude():
- r = Rotation.from_quat(np.eye(4))
- result = r.magnitude()
- assert_array_almost_equal(result, [np.pi, np.pi, np.pi, 0])
- r = Rotation.from_quat(-np.eye(4))
- result = r.magnitude()
- assert_array_almost_equal(result, [np.pi, np.pi, np.pi, 0])
- def test_magnitude_single_rotation():
- r = Rotation.from_quat(np.eye(4))
- result1 = r[0].magnitude()
- assert_allclose(result1, np.pi)
- result2 = r[3].magnitude()
- assert_allclose(result2, 0)
- def test_mean():
- axes = np.concatenate((-np.eye(3), np.eye(3)))
- thetas = np.linspace(0, np.pi / 2, 100)
- for t in thetas:
- r = Rotation.from_rotvec(t * axes)
- assert_allclose(r.mean().magnitude(), 0, atol=1E-10)
- def test_weighted_mean():
- # test that doubling a weight is equivalent to including a rotation twice.
- axes = np.array([[0, 0, 0], [1, 0, 0], [1, 0, 0]])
- thetas = np.linspace(0, np.pi / 2, 100)
- for t in thetas:
- rw = Rotation.from_rotvec(t * axes[:2])
- mw = rw.mean(weights=[1, 2])
- r = Rotation.from_rotvec(t * axes)
- m = r.mean()
- assert_allclose((m * mw.inv()).magnitude(), 0, atol=1E-10)
- def test_mean_invalid_weights():
- with pytest.raises(ValueError, match="non-negative"):
- r = Rotation.from_quat(np.eye(4))
- r.mean(weights=-np.ones(4))
- def test_reduction_no_indices():
- result = Rotation.identity().reduce(return_indices=False)
- assert isinstance(result, Rotation)
- def test_reduction_none_indices():
- result = Rotation.identity().reduce(return_indices=True)
- assert type(result) == tuple
- assert len(result) == 3
- reduced, left_best, right_best = result
- assert left_best is None
- assert right_best is None
- def test_reduction_scalar_calculation():
- rng = np.random.RandomState(0)
- l = Rotation.random(5, random_state=rng)
- r = Rotation.random(10, random_state=rng)
- p = Rotation.random(7, random_state=rng)
- reduced, left_best, right_best = p.reduce(l, r, return_indices=True)
- # Loop implementation of the vectorized calculation in Rotation.reduce
- scalars = np.zeros((len(l), len(p), len(r)))
- for i, li in enumerate(l):
- for j, pj in enumerate(p):
- for k, rk in enumerate(r):
- scalars[i, j, k] = np.abs((li * pj * rk).as_quat()[3])
- scalars = np.reshape(np.moveaxis(scalars, 1, 0), (scalars.shape[1], -1))
- max_ind = np.argmax(np.reshape(scalars, (len(p), -1)), axis=1)
- left_best_check = max_ind // len(r)
- right_best_check = max_ind % len(r)
- assert (left_best == left_best_check).all()
- assert (right_best == right_best_check).all()
- reduced_check = l[left_best_check] * p * r[right_best_check]
- mag = (reduced.inv() * reduced_check).magnitude()
- assert_array_almost_equal(mag, np.zeros(len(p)))
- def test_apply_single_rotation_single_point():
- mat = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- r_1d = Rotation.from_matrix(mat)
- r_2d = Rotation.from_matrix(np.expand_dims(mat, axis=0))
- v_1d = np.array([1, 2, 3])
- v_2d = np.expand_dims(v_1d, axis=0)
- v1d_rotated = np.array([-2, 1, 3])
- v2d_rotated = np.expand_dims(v1d_rotated, axis=0)
- assert_allclose(r_1d.apply(v_1d), v1d_rotated)
- assert_allclose(r_1d.apply(v_2d), v2d_rotated)
- assert_allclose(r_2d.apply(v_1d), v2d_rotated)
- assert_allclose(r_2d.apply(v_2d), v2d_rotated)
- v1d_inverse = np.array([2, -1, 3])
- v2d_inverse = np.expand_dims(v1d_inverse, axis=0)
- assert_allclose(r_1d.apply(v_1d, inverse=True), v1d_inverse)
- assert_allclose(r_1d.apply(v_2d, inverse=True), v2d_inverse)
- assert_allclose(r_2d.apply(v_1d, inverse=True), v2d_inverse)
- assert_allclose(r_2d.apply(v_2d, inverse=True), v2d_inverse)
- def test_apply_single_rotation_multiple_points():
- mat = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- r1 = Rotation.from_matrix(mat)
- r2 = Rotation.from_matrix(np.expand_dims(mat, axis=0))
- v = np.array([[1, 2, 3], [4, 5, 6]])
- v_rotated = np.array([[-2, 1, 3], [-5, 4, 6]])
- assert_allclose(r1.apply(v), v_rotated)
- assert_allclose(r2.apply(v), v_rotated)
- v_inverse = np.array([[2, -1, 3], [5, -4, 6]])
- assert_allclose(r1.apply(v, inverse=True), v_inverse)
- assert_allclose(r2.apply(v, inverse=True), v_inverse)
- def test_apply_multiple_rotations_single_point():
- mat = np.empty((2, 3, 3))
- mat[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- mat[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_matrix(mat)
- v1 = np.array([1, 2, 3])
- v2 = np.expand_dims(v1, axis=0)
- v_rotated = np.array([[-2, 1, 3], [1, -3, 2]])
- assert_allclose(r.apply(v1), v_rotated)
- assert_allclose(r.apply(v2), v_rotated)
- v_inverse = np.array([[2, -1, 3], [1, 3, -2]])
- assert_allclose(r.apply(v1, inverse=True), v_inverse)
- assert_allclose(r.apply(v2, inverse=True), v_inverse)
- def test_apply_multiple_rotations_multiple_points():
- mat = np.empty((2, 3, 3))
- mat[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- mat[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_matrix(mat)
- v = np.array([[1, 2, 3], [4, 5, 6]])
- v_rotated = np.array([[-2, 1, 3], [4, -6, 5]])
- assert_allclose(r.apply(v), v_rotated)
- v_inverse = np.array([[2, -1, 3], [4, 6, -5]])
- assert_allclose(r.apply(v, inverse=True), v_inverse)
- def test_getitem():
- mat = np.empty((2, 3, 3))
- mat[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- mat[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_matrix(mat)
- assert_allclose(r[0].as_matrix(), mat[0], atol=1e-15)
- assert_allclose(r[1].as_matrix(), mat[1], atol=1e-15)
- assert_allclose(r[:-1].as_matrix(), np.expand_dims(mat[0], axis=0), atol=1e-15)
- def test_getitem_single():
- with pytest.raises(TypeError, match='not subscriptable'):
- Rotation.identity()[0]
- def test_setitem_single():
- r = Rotation.identity()
- with pytest.raises(TypeError, match='not subscriptable'):
- r[0] = Rotation.identity()
- def test_setitem_slice():
- rng = np.random.RandomState(seed=0)
- r1 = Rotation.random(10, random_state=rng)
- r2 = Rotation.random(5, random_state=rng)
- r1[1:6] = r2
- assert_equal(r1[1:6].as_quat(), r2.as_quat())
- def test_setitem_integer():
- rng = np.random.RandomState(seed=0)
- r1 = Rotation.random(10, random_state=rng)
- r2 = Rotation.random(random_state=rng)
- r1[1] = r2
- assert_equal(r1[1].as_quat(), r2.as_quat())
- def test_setitem_wrong_type():
- r = Rotation.random(10, random_state=0)
- with pytest.raises(TypeError, match='Rotation object'):
- r[0] = 1
- def test_n_rotations():
- mat = np.empty((2, 3, 3))
- mat[0] = np.array([
- [0, -1, 0],
- [1, 0, 0],
- [0, 0, 1]
- ])
- mat[1] = np.array([
- [1, 0, 0],
- [0, 0, -1],
- [0, 1, 0]
- ])
- r = Rotation.from_matrix(mat)
- assert_equal(len(r), 2)
- assert_equal(len(r[:-1]), 1)
- def test_align_vectors_no_rotation():
- x = np.array([[1, 2, 3], [4, 5, 6]])
- y = x.copy()
- r, rmsd = Rotation.align_vectors(x, y)
- assert_array_almost_equal(r.as_matrix(), np.eye(3))
- assert_allclose(rmsd, 0, atol=1e-6)
- def test_align_vectors_no_noise():
- rnd = np.random.RandomState(0)
- c = Rotation.random(random_state=rnd)
- b = rnd.normal(size=(5, 3))
- a = c.apply(b)
- est, rmsd = Rotation.align_vectors(a, b)
- assert_allclose(c.as_quat(), est.as_quat())
- assert_allclose(rmsd, 0, atol=1e-7)
- def test_align_vectors_improper_rotation():
- # Tests correct logic for issue #10444
- x = np.array([[0.89299824, -0.44372674, 0.0752378],
- [0.60221789, -0.47564102, -0.6411702]])
- y = np.array([[0.02386536, -0.82176463, 0.5693271],
- [-0.27654929, -0.95191427, -0.1318321]])
- est, rmsd = Rotation.align_vectors(x, y)
- assert_allclose(x, est.apply(y), atol=1e-6)
- assert_allclose(rmsd, 0, atol=1e-7)
- def test_align_vectors_scaled_weights():
- rng = np.random.RandomState(0)
- c = Rotation.random(random_state=rng)
- b = rng.normal(size=(5, 3))
- a = c.apply(b)
- est1, rmsd1, cov1 = Rotation.align_vectors(a, b, np.ones(5), True)
- est2, rmsd2, cov2 = Rotation.align_vectors(a, b, 2 * np.ones(5), True)
- assert_allclose(est1.as_matrix(), est2.as_matrix())
- assert_allclose(np.sqrt(2) * rmsd1, rmsd2)
- assert_allclose(cov1, cov2)
- def test_align_vectors_noise():
- rnd = np.random.RandomState(0)
- n_vectors = 100
- rot = Rotation.random(random_state=rnd)
- vectors = rnd.normal(size=(n_vectors, 3))
- result = rot.apply(vectors)
- # The paper adds noise as independently distributed angular errors
- sigma = np.deg2rad(1)
- tolerance = 1.5 * sigma
- noise = Rotation.from_rotvec(
- rnd.normal(
- size=(n_vectors, 3),
- scale=sigma
- )
- )
- # Attitude errors must preserve norm. Hence apply individual random
- # rotations to each vector.
- noisy_result = noise.apply(result)
- est, rmsd, cov = Rotation.align_vectors(noisy_result, vectors,
- return_sensitivity=True)
- # Use rotation compositions to find out closeness
- error_vector = (rot * est.inv()).as_rotvec()
- assert_allclose(error_vector[0], 0, atol=tolerance)
- assert_allclose(error_vector[1], 0, atol=tolerance)
- assert_allclose(error_vector[2], 0, atol=tolerance)
- # Check error bounds using covariance matrix
- cov *= sigma
- assert_allclose(cov[0, 0], 0, atol=tolerance)
- assert_allclose(cov[1, 1], 0, atol=tolerance)
- assert_allclose(cov[2, 2], 0, atol=tolerance)
- assert_allclose(rmsd, np.sum((noisy_result - est.apply(vectors))**2)**0.5)
- def test_align_vectors_single_vector():
- with pytest.warns(UserWarning, match="Optimal rotation is not"):
- r_estimate, rmsd = Rotation.align_vectors([[1, -1, 1]], [[1, 1, -1]])
- assert_allclose(rmsd, 0, atol=1e-16)
- def test_align_vectors_invalid_input():
- with pytest.raises(ValueError, match="Expected input `a` to have shape"):
- Rotation.align_vectors([1, 2, 3], [[1, 2, 3]])
- with pytest.raises(ValueError, match="Expected input `b` to have shape"):
- Rotation.align_vectors([[1, 2, 3]], [1, 2, 3])
- with pytest.raises(ValueError, match="Expected inputs `a` and `b` "
- "to have same shapes"):
- Rotation.align_vectors([[1, 2, 3],[4, 5, 6]], [[1, 2, 3]])
- with pytest.raises(ValueError,
- match="Expected `weights` to be 1 dimensional"):
- Rotation.align_vectors([[1, 2, 3]], [[1, 2, 3]], weights=[[1]])
- with pytest.raises(ValueError,
- match="Expected `weights` to have number of values"):
- Rotation.align_vectors([[1, 2, 3]], [[1, 2, 3]], weights=[1, 2])
- with pytest.raises(ValueError,
- match="`weights` may not contain negative values"):
- Rotation.align_vectors([[1, 2, 3]], [[1, 2, 3]], weights=[-1])
- def test_random_rotation_shape():
- rnd = np.random.RandomState(0)
- assert_equal(Rotation.random(random_state=rnd).as_quat().shape, (4,))
- assert_equal(Rotation.random(None, random_state=rnd).as_quat().shape, (4,))
- assert_equal(Rotation.random(1, random_state=rnd).as_quat().shape, (1, 4))
- assert_equal(Rotation.random(5, random_state=rnd).as_quat().shape, (5, 4))
- def test_slerp():
- rnd = np.random.RandomState(0)
- key_rots = Rotation.from_quat(rnd.uniform(size=(5, 4)))
- key_quats = key_rots.as_quat()
- key_times = [0, 1, 2, 3, 4]
- interpolator = Slerp(key_times, key_rots)
- times = [0, 0.5, 0.25, 1, 1.5, 2, 2.75, 3, 3.25, 3.60, 4]
- interp_rots = interpolator(times)
- interp_quats = interp_rots.as_quat()
- # Dot products are affected by sign of quaternions
- interp_quats[interp_quats[:, -1] < 0] *= -1
- # Checking for quaternion equality, perform same operation
- key_quats[key_quats[:, -1] < 0] *= -1
- # Equality at keyframes, including both endpoints
- assert_allclose(interp_quats[0], key_quats[0])
- assert_allclose(interp_quats[3], key_quats[1])
- assert_allclose(interp_quats[5], key_quats[2])
- assert_allclose(interp_quats[7], key_quats[3])
- assert_allclose(interp_quats[10], key_quats[4])
- # Constant angular velocity between keyframes. Check by equating
- # cos(theta) between quaternion pairs with equal time difference.
- cos_theta1 = np.sum(interp_quats[0] * interp_quats[2])
- cos_theta2 = np.sum(interp_quats[2] * interp_quats[1])
- assert_allclose(cos_theta1, cos_theta2)
- cos_theta4 = np.sum(interp_quats[3] * interp_quats[4])
- cos_theta5 = np.sum(interp_quats[4] * interp_quats[5])
- assert_allclose(cos_theta4, cos_theta5)
- # theta1: 0 -> 0.25, theta3 : 0.5 -> 1
- # Use double angle formula for double the time difference
- cos_theta3 = np.sum(interp_quats[1] * interp_quats[3])
- assert_allclose(cos_theta3, 2 * (cos_theta1**2) - 1)
- # Miscellaneous checks
- assert_equal(len(interp_rots), len(times))
- def test_slerp_single_rot():
- with pytest.raises(ValueError, match="must be a sequence of rotations"):
- r = Rotation.from_quat([1, 2, 3, 4])
- Slerp([1], r)
- def test_slerp_time_dim_mismatch():
- with pytest.raises(ValueError,
- match="times to be specified in a 1 dimensional array"):
- rnd = np.random.RandomState(0)
- r = Rotation.from_quat(rnd.uniform(size=(2, 4)))
- t = np.array([[1],
- [2]])
- Slerp(t, r)
- def test_slerp_num_rotations_mismatch():
- with pytest.raises(ValueError, match="number of rotations to be equal to "
- "number of timestamps"):
- rnd = np.random.RandomState(0)
- r = Rotation.from_quat(rnd.uniform(size=(5, 4)))
- t = np.arange(7)
- Slerp(t, r)
- def test_slerp_equal_times():
- with pytest.raises(ValueError, match="strictly increasing order"):
- rnd = np.random.RandomState(0)
- r = Rotation.from_quat(rnd.uniform(size=(5, 4)))
- t = [0, 1, 2, 2, 4]
- Slerp(t, r)
- def test_slerp_decreasing_times():
- with pytest.raises(ValueError, match="strictly increasing order"):
- rnd = np.random.RandomState(0)
- r = Rotation.from_quat(rnd.uniform(size=(5, 4)))
- t = [0, 1, 3, 2, 4]
- Slerp(t, r)
- def test_slerp_call_time_dim_mismatch():
- rnd = np.random.RandomState(0)
- r = Rotation.from_quat(rnd.uniform(size=(5, 4)))
- t = np.arange(5)
- s = Slerp(t, r)
- with pytest.raises(ValueError,
- match="`times` must be at most 1-dimensional."):
- interp_times = np.array([[3.5],
- [4.2]])
- s(interp_times)
- def test_slerp_call_time_out_of_range():
- rnd = np.random.RandomState(0)
- r = Rotation.from_quat(rnd.uniform(size=(5, 4)))
- t = np.arange(5) + 1
- s = Slerp(t, r)
- with pytest.raises(ValueError, match="times must be within the range"):
- s([0, 1, 2])
- with pytest.raises(ValueError, match="times must be within the range"):
- s([1, 2, 6])
- def test_slerp_call_scalar_time():
- r = Rotation.from_euler('X', [0, 80], degrees=True)
- s = Slerp([0, 1], r)
- r_interpolated = s(0.25)
- r_interpolated_expected = Rotation.from_euler('X', 20, degrees=True)
- delta = r_interpolated * r_interpolated_expected.inv()
- assert_allclose(delta.magnitude(), 0, atol=1e-16)
- def test_multiplication_stability():
- qs = Rotation.random(50, random_state=0)
- rs = Rotation.random(1000, random_state=1)
- for q in qs:
- rs *= q * rs
- assert_allclose(np.linalg.norm(rs.as_quat(), axis=1), 1)
- def test_rotation_within_numpy_array():
- single = Rotation.random(random_state=0)
- multiple = Rotation.random(2, random_state=1)
- array = np.array(single)
- assert_equal(array.shape, ())
- array = np.array(multiple)
- assert_equal(array.shape, (2,))
- assert_allclose(array[0].as_matrix(), multiple[0].as_matrix())
- assert_allclose(array[1].as_matrix(), multiple[1].as_matrix())
- array = np.array([single])
- assert_equal(array.shape, (1,))
- assert_equal(array[0], single)
- array = np.array([multiple])
- assert_equal(array.shape, (1, 2))
- assert_allclose(array[0, 0].as_matrix(), multiple[0].as_matrix())
- assert_allclose(array[0, 1].as_matrix(), multiple[1].as_matrix())
- array = np.array([single, multiple], dtype=object)
- assert_equal(array.shape, (2,))
- assert_equal(array[0], single)
- assert_equal(array[1], multiple)
- array = np.array([multiple, multiple, multiple])
- assert_equal(array.shape, (3, 2))
- def test_pickling():
- r = Rotation.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)])
- pkl = pickle.dumps(r)
- unpickled = pickle.loads(pkl)
- assert_allclose(r.as_matrix(), unpickled.as_matrix(), atol=1e-15)
- def test_deepcopy():
- r = Rotation.from_quat([0, 0, np.sin(np.pi/4), np.cos(np.pi/4)])
- r1 = copy.deepcopy(r)
- assert_allclose(r.as_matrix(), r1.as_matrix(), atol=1e-15)
- def test_as_euler_contiguous():
- r = Rotation.from_quat([0, 0, 0, 1])
- e1 = r.as_euler('xyz') # extrinsic euler rotation
- e2 = r.as_euler('XYZ') # intrinsic
- assert e1.flags['C_CONTIGUOUS'] is True
- assert e2.flags['C_CONTIGUOUS'] is True
- assert all(i >= 0 for i in e1.strides)
- assert all(i >= 0 for i in e2.strides)
- def test_concatenate():
- rotation = Rotation.random(10, random_state=0)
- sizes = [1, 2, 3, 1, 3]
- starts = [0] + list(np.cumsum(sizes))
- split = [rotation[i:i + n] for i, n in zip(starts, sizes)]
- result = Rotation.concatenate(split)
- assert_equal(rotation.as_quat(), result.as_quat())
- def test_concatenate_wrong_type():
- with pytest.raises(TypeError, match='Rotation objects only'):
- Rotation.concatenate([Rotation.identity(), 1, None])
- # Regression test for gh-16663
- def test_len_and_bool():
- rotation_multi_empty = Rotation(np.empty((0, 4)))
- rotation_multi_one = Rotation([[0, 0, 0, 1]])
- rotation_multi = Rotation([[0, 0, 0, 1], [0, 0, 0, 1]])
- rotation_single = Rotation([0, 0, 0, 1])
- assert len(rotation_multi_empty) == 0
- assert len(rotation_multi_one) == 1
- assert len(rotation_multi) == 2
- with pytest.raises(TypeError, match="Single rotation has no len()."):
- len(rotation_single)
- # Rotation should always be truthy. See gh-16663
- assert rotation_multi_empty
- assert rotation_multi_one
- assert rotation_multi
- assert rotation_single
|