123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- import numpy as np
- import itertools
- from numpy.testing import (assert_equal,
- assert_almost_equal,
- assert_array_equal,
- assert_array_almost_equal)
- import pytest
- from pytest import raises as assert_raises
- from scipy.spatial import SphericalVoronoi, distance
- from scipy.optimize import linear_sum_assignment
- from scipy.constants import golden as phi
- from scipy.special import gamma
- TOL = 1E-10
- def _generate_tetrahedron():
- return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]])
- def _generate_cube():
- return np.array(list(itertools.product([-1, 1.], repeat=3)))
- def _generate_octahedron():
- return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0],
- [0, +1, 0], [0, 0, -1], [0, 0, +1]])
- def _generate_dodecahedron():
- x1 = _generate_cube()
- x2 = np.array([[0, -phi, -1 / phi],
- [0, -phi, +1 / phi],
- [0, +phi, -1 / phi],
- [0, +phi, +1 / phi]])
- x3 = np.array([[-1 / phi, 0, -phi],
- [+1 / phi, 0, -phi],
- [-1 / phi, 0, +phi],
- [+1 / phi, 0, +phi]])
- x4 = np.array([[-phi, -1 / phi, 0],
- [-phi, +1 / phi, 0],
- [+phi, -1 / phi, 0],
- [+phi, +1 / phi, 0]])
- return np.concatenate((x1, x2, x3, x4))
- def _generate_icosahedron():
- x = np.array([[0, -1, -phi],
- [0, -1, +phi],
- [0, +1, -phi],
- [0, +1, +phi]])
- return np.concatenate([np.roll(x, i, axis=1) for i in range(3)])
- def _generate_polytope(name):
- polygons = ["triangle", "square", "pentagon", "hexagon", "heptagon",
- "octagon", "nonagon", "decagon", "undecagon", "dodecagon"]
- polyhedra = ["tetrahedron", "cube", "octahedron", "dodecahedron",
- "icosahedron"]
- if name not in polygons and name not in polyhedra:
- raise ValueError("unrecognized polytope")
- if name in polygons:
- n = polygons.index(name) + 3
- thetas = np.linspace(0, 2 * np.pi, n, endpoint=False)
- p = np.vstack([np.cos(thetas), np.sin(thetas)]).T
- elif name == "tetrahedron":
- p = _generate_tetrahedron()
- elif name == "cube":
- p = _generate_cube()
- elif name == "octahedron":
- p = _generate_octahedron()
- elif name == "dodecahedron":
- p = _generate_dodecahedron()
- elif name == "icosahedron":
- p = _generate_icosahedron()
- return p / np.linalg.norm(p, axis=1, keepdims=True)
- def _hypersphere_area(dim, radius):
- # https://en.wikipedia.org/wiki/N-sphere#Closed_forms
- return 2 * np.pi**(dim / 2) / gamma(dim / 2) * radius**(dim - 1)
- def _sample_sphere(n, dim, seed=None):
- # Sample points uniformly at random from the hypersphere
- rng = np.random.RandomState(seed=seed)
- points = rng.randn(n, dim)
- points /= np.linalg.norm(points, axis=1, keepdims=True)
- return points
- class TestSphericalVoronoi:
- def setup_method(self):
- self.points = np.array([
- [-0.78928481, -0.16341094, 0.59188373],
- [-0.66839141, 0.73309634, 0.12578818],
- [0.32535778, -0.92476944, -0.19734181],
- [-0.90177102, -0.03785291, -0.43055335],
- [0.71781344, 0.68428936, 0.12842096],
- [-0.96064876, 0.23492353, -0.14820556],
- [0.73181537, -0.22025898, -0.6449281],
- [0.79979205, 0.54555747, 0.25039913]]
- )
- def test_constructor(self):
- center = np.array([1, 2, 3])
- radius = 2
- s1 = SphericalVoronoi(self.points)
- # user input checks in SphericalVoronoi now require
- # the radius / center to match the generators so adjust
- # accordingly here
- s2 = SphericalVoronoi(self.points * radius, radius)
- s3 = SphericalVoronoi(self.points + center, center=center)
- s4 = SphericalVoronoi(self.points * radius + center, radius, center)
- assert_array_equal(s1.center, np.array([0, 0, 0]))
- assert_equal(s1.radius, 1)
- assert_array_equal(s2.center, np.array([0, 0, 0]))
- assert_equal(s2.radius, 2)
- assert_array_equal(s3.center, center)
- assert_equal(s3.radius, 1)
- assert_array_equal(s4.center, center)
- assert_equal(s4.radius, radius)
- # Test a non-sequence/-ndarray based array-like
- s5 = SphericalVoronoi(memoryview(self.points)) # type: ignore[arg-type]
- assert_array_equal(s5.center, np.array([0, 0, 0]))
- assert_equal(s5.radius, 1)
- def test_vertices_regions_translation_invariance(self):
- sv_origin = SphericalVoronoi(self.points)
- center = np.array([1, 1, 1])
- sv_translated = SphericalVoronoi(self.points + center, center=center)
- assert_equal(sv_origin.regions, sv_translated.regions)
- assert_array_almost_equal(sv_origin.vertices + center,
- sv_translated.vertices)
- def test_vertices_regions_scaling_invariance(self):
- sv_unit = SphericalVoronoi(self.points)
- sv_scaled = SphericalVoronoi(self.points * 2, 2)
- assert_equal(sv_unit.regions, sv_scaled.regions)
- assert_array_almost_equal(sv_unit.vertices * 2,
- sv_scaled.vertices)
- def test_old_radius_api_error(self):
- with pytest.raises(ValueError, match='`radius` is `None`. *'):
- SphericalVoronoi(self.points, radius=None)
- def test_sort_vertices_of_regions(self):
- sv = SphericalVoronoi(self.points)
- unsorted_regions = sv.regions
- sv.sort_vertices_of_regions()
- assert_equal(sorted(sv.regions), sorted(unsorted_regions))
- def test_sort_vertices_of_regions_flattened(self):
- expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1],
- [4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5],
- [1, 4, 8, 11, 9], [0, 3, 10, 9, 1]])
- expected = list(itertools.chain(*sorted(expected))) # type: ignore
- sv = SphericalVoronoi(self.points)
- sv.sort_vertices_of_regions()
- actual = list(itertools.chain(*sorted(sv.regions)))
- assert_array_equal(actual, expected)
- def test_sort_vertices_of_regions_dimensionality(self):
- points = np.array([[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 1],
- [0.5, 0.5, 0.5, 0.5]])
- with pytest.raises(TypeError, match="three-dimensional"):
- sv = SphericalVoronoi(points)
- sv.sort_vertices_of_regions()
- def test_num_vertices(self):
- # for any n >= 3, a spherical Voronoi diagram has 2n - 4
- # vertices; this is a direct consequence of Euler's formula
- # as explained by Dinis and Mamede (2010) Proceedings of the
- # 2010 International Symposium on Voronoi Diagrams in Science
- # and Engineering
- sv = SphericalVoronoi(self.points)
- expected = self.points.shape[0] * 2 - 4
- actual = sv.vertices.shape[0]
- assert_equal(actual, expected)
- def test_voronoi_circles(self):
- sv = SphericalVoronoi(self.points)
- for vertex in sv.vertices:
- distances = distance.cdist(sv.points, np.array([vertex]))
- closest = np.array(sorted(distances)[0:3])
- assert_almost_equal(closest[0], closest[1], 7, str(vertex))
- assert_almost_equal(closest[0], closest[2], 7, str(vertex))
- def test_duplicate_point_handling(self):
- # an exception should be raised for degenerate generators
- # related to Issue# 7046
- self.degenerate = np.concatenate((self.points, self.points))
- with assert_raises(ValueError):
- SphericalVoronoi(self.degenerate)
- def test_incorrect_radius_handling(self):
- # an exception should be raised if the radius provided
- # cannot possibly match the input generators
- with assert_raises(ValueError):
- SphericalVoronoi(self.points, radius=0.98)
- def test_incorrect_center_handling(self):
- # an exception should be raised if the center provided
- # cannot possibly match the input generators
- with assert_raises(ValueError):
- SphericalVoronoi(self.points, center=[0.1, 0, 0])
- @pytest.mark.parametrize("dim", range(2, 6))
- @pytest.mark.parametrize("shift", [False, True])
- def test_single_hemisphere_handling(self, dim, shift):
- n = 10
- points = _sample_sphere(n, dim, seed=0)
- points[:, 0] = np.abs(points[:, 0])
- center = (np.arange(dim) + 1) * shift
- sv = SphericalVoronoi(points + center, center=center)
- dots = np.einsum('ij,ij->i', sv.vertices - center,
- sv.points[sv._simplices[:, 0]] - center)
- circumradii = np.arccos(np.clip(dots, -1, 1))
- assert np.max(circumradii) > np.pi / 2
- @pytest.mark.parametrize("n", [1, 2, 10])
- @pytest.mark.parametrize("dim", range(2, 6))
- @pytest.mark.parametrize("shift", [False, True])
- def test_rank_deficient(self, n, dim, shift):
- center = (np.arange(dim) + 1) * shift
- points = _sample_sphere(n, dim - 1, seed=0)
- points = np.hstack([points, np.zeros((n, 1))])
- with pytest.raises(ValueError, match="Rank of input points"):
- SphericalVoronoi(points + center, center=center)
- @pytest.mark.parametrize("dim", range(2, 6))
- def test_higher_dimensions(self, dim):
- n = 100
- points = _sample_sphere(n, dim, seed=0)
- sv = SphericalVoronoi(points)
- assert sv.vertices.shape[1] == dim
- assert len(sv.regions) == n
- # verify Euler characteristic
- cell_counts = []
- simplices = np.sort(sv._simplices)
- for i in range(1, dim + 1):
- cells = []
- for indices in itertools.combinations(range(dim), i):
- cells.append(simplices[:, list(indices)])
- cells = np.unique(np.concatenate(cells), axis=0)
- cell_counts.append(len(cells))
- expected_euler = 1 + (-1)**(dim-1)
- actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)])
- assert expected_euler == actual_euler
- @pytest.mark.parametrize("dim", range(2, 6))
- def test_cross_polytope_regions(self, dim):
- # The hypercube is the dual of the cross-polytope, so the voronoi
- # vertices of the cross-polytope lie on the points of the hypercube.
- # generate points of the cross-polytope
- points = np.concatenate((-np.eye(dim), np.eye(dim)))
- sv = SphericalVoronoi(points)
- assert all([len(e) == 2**(dim - 1) for e in sv.regions])
- # generate points of the hypercube
- expected = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
- expected = expected.astype(np.float64) / np.sqrt(dim)
- # test that Voronoi vertices are correctly placed
- dist = distance.cdist(sv.vertices, expected)
- res = linear_sum_assignment(dist)
- assert dist[res].sum() < TOL
- @pytest.mark.parametrize("dim", range(2, 6))
- def test_hypercube_regions(self, dim):
- # The cross-polytope is the dual of the hypercube, so the voronoi
- # vertices of the hypercube lie on the points of the cross-polytope.
- # generate points of the hypercube
- points = np.vstack(list(itertools.product([-1, 1], repeat=dim)))
- points = points.astype(np.float64) / np.sqrt(dim)
- sv = SphericalVoronoi(points)
- # generate points of the cross-polytope
- expected = np.concatenate((-np.eye(dim), np.eye(dim)))
- # test that Voronoi vertices are correctly placed
- dist = distance.cdist(sv.vertices, expected)
- res = linear_sum_assignment(dist)
- assert dist[res].sum() < TOL
- @pytest.mark.parametrize("n", [10, 500])
- @pytest.mark.parametrize("dim", [2, 3])
- @pytest.mark.parametrize("radius", [0.5, 1, 2])
- @pytest.mark.parametrize("shift", [False, True])
- @pytest.mark.parametrize("single_hemisphere", [False, True])
- def test_area_reconstitution(self, n, dim, radius, shift,
- single_hemisphere):
- points = _sample_sphere(n, dim, seed=0)
- # move all points to one side of the sphere for single-hemisphere test
- if single_hemisphere:
- points[:, 0] = np.abs(points[:, 0])
- center = (np.arange(dim) + 1) * shift
- points = radius * points + center
- sv = SphericalVoronoi(points, radius=radius, center=center)
- areas = sv.calculate_areas()
- assert_almost_equal(areas.sum(), _hypersphere_area(dim, radius))
- @pytest.mark.parametrize("poly", ["triangle", "dodecagon",
- "tetrahedron", "cube", "octahedron",
- "dodecahedron", "icosahedron"])
- def test_equal_area_reconstitution(self, poly):
- points = _generate_polytope(poly)
- n, dim = points.shape
- sv = SphericalVoronoi(points)
- areas = sv.calculate_areas()
- assert_almost_equal(areas, _hypersphere_area(dim, 1) / n)
- def test_area_unsupported_dimension(self):
- dim = 4
- points = np.concatenate((-np.eye(dim), np.eye(dim)))
- sv = SphericalVoronoi(points)
- with pytest.raises(TypeError, match="Only supported"):
- sv.calculate_areas()
- @pytest.mark.parametrize("radius", [1, 1.])
- @pytest.mark.parametrize("center", [None, (1, 2, 3), (1., 2., 3.)])
- def test_attribute_types(self, radius, center):
- points = radius * self.points
- if center is not None:
- points += center
- sv = SphericalVoronoi(points, radius=radius, center=center)
- assert sv.points.dtype is np.dtype(np.float64)
- assert sv.center.dtype is np.dtype(np.float64)
- assert isinstance(sv.radius, float)
- def test_region_types(self):
- # Tests that region integer type does not change
- # See Issue #13412
- sv = SphericalVoronoi(self.points)
- dtype = type(sv.regions[0][0])
- sv.sort_vertices_of_regions()
- assert type(sv.regions[0][0]) == dtype
- sv.sort_vertices_of_regions()
- assert type(sv.regions[0][0]) == dtype
|