12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178 |
- import os
- import copy
- import numpy as np
- from numpy.testing import (assert_equal, assert_almost_equal,
- assert_, assert_allclose, assert_array_equal)
- import pytest
- from pytest import raises as assert_raises
- import scipy.spatial._qhull as qhull
- from scipy.spatial import cKDTree as KDTree
- from scipy.spatial import Voronoi
- import itertools
- def sorted_tuple(x):
- return tuple(sorted(x))
- def sorted_unique_tuple(x):
- return tuple(np.unique(x))
- def assert_unordered_tuple_list_equal(a, b, tpl=tuple):
- if isinstance(a, np.ndarray):
- a = a.tolist()
- if isinstance(b, np.ndarray):
- b = b.tolist()
- a = list(map(tpl, a))
- a.sort()
- b = list(map(tpl, b))
- b.sort()
- assert_equal(a, b)
- np.random.seed(1234)
- points = [(0,0), (0,1), (1,0), (1,1), (0.5, 0.5), (0.5, 1.5)]
- pathological_data_1 = np.array([
- [-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79],
- [-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36],
- [-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57],
- [-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57],
- [-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79],
- [-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14],
- [-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57],
- [-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79],
- [-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14],
- [0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0],
- [0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14],
- [0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79],
- [0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57],
- [1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14],
- [1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79],
- [1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57],
- [2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57],
- [2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36],
- [3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79],
- [3.14,1.57], [3.14,2.36], [3.14,3.14],
- ])
- pathological_data_2 = np.array([
- [-1, -1], [-1, 0], [-1, 1],
- [0, -1], [0, 0], [0, 1],
- [1, -1 - np.finfo(np.float_).eps], [1, 0], [1, 1],
- ])
- bug_2850_chunks = [np.random.rand(10, 2),
- np.array([[0,0], [0,1], [1,0], [1,1]]) # add corners
- ]
- # same with some additional chunks
- bug_2850_chunks_2 = (bug_2850_chunks +
- [np.random.rand(10, 2),
- 0.25 + np.array([[0,0], [0,1], [1,0], [1,1]])])
- DATASETS = {
- 'some-points': np.asarray(points),
- 'random-2d': np.random.rand(30, 2),
- 'random-3d': np.random.rand(30, 3),
- 'random-4d': np.random.rand(30, 4),
- 'random-5d': np.random.rand(30, 5),
- 'random-6d': np.random.rand(10, 6),
- 'random-7d': np.random.rand(10, 7),
- 'random-8d': np.random.rand(10, 8),
- 'pathological-1': pathological_data_1,
- 'pathological-2': pathological_data_2
- }
- INCREMENTAL_DATASETS = {
- 'bug-2850': (bug_2850_chunks, None),
- 'bug-2850-2': (bug_2850_chunks_2, None),
- }
- def _add_inc_data(name, chunksize):
- """
- Generate incremental datasets from basic data sets
- """
- points = DATASETS[name]
- ndim = points.shape[1]
- opts = None
- nmin = ndim + 2
- if name == 'some-points':
- # since Qz is not allowed, use QJ
- opts = 'QJ Pp'
- elif name == 'pathological-1':
- # include enough points so that we get different x-coordinates
- nmin = 12
- chunks = [points[:nmin]]
- for j in range(nmin, len(points), chunksize):
- chunks.append(points[j:j+chunksize])
- new_name = "%s-chunk-%d" % (name, chunksize)
- assert new_name not in INCREMENTAL_DATASETS
- INCREMENTAL_DATASETS[new_name] = (chunks, opts)
- for name in DATASETS:
- for chunksize in 1, 4, 16:
- _add_inc_data(name, chunksize)
- class Test_Qhull:
- def test_swapping(self):
- # Check that Qhull state swapping works
- x = qhull._Qhull(b'v',
- np.array([[0,0],[0,1],[1,0],[1,1.],[0.5,0.5]]),
- b'Qz')
- xd = copy.deepcopy(x.get_voronoi_diagram())
- y = qhull._Qhull(b'v',
- np.array([[0,0],[0,1],[1,0],[1,2.]]),
- b'Qz')
- yd = copy.deepcopy(y.get_voronoi_diagram())
- xd2 = copy.deepcopy(x.get_voronoi_diagram())
- x.close()
- yd2 = copy.deepcopy(y.get_voronoi_diagram())
- y.close()
- assert_raises(RuntimeError, x.get_voronoi_diagram)
- assert_raises(RuntimeError, y.get_voronoi_diagram)
- assert_allclose(xd[0], xd2[0])
- assert_unordered_tuple_list_equal(xd[1], xd2[1], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(xd[2], xd2[2], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(xd[3], xd2[3], tpl=sorted_tuple)
- assert_array_equal(xd[4], xd2[4])
- assert_allclose(yd[0], yd2[0])
- assert_unordered_tuple_list_equal(yd[1], yd2[1], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(yd[2], yd2[2], tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(yd[3], yd2[3], tpl=sorted_tuple)
- assert_array_equal(yd[4], yd2[4])
- x.close()
- assert_raises(RuntimeError, x.get_voronoi_diagram)
- y.close()
- assert_raises(RuntimeError, y.get_voronoi_diagram)
- def test_issue_8051(self):
- points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],[2, 0], [2, 1], [2, 2]])
- Voronoi(points)
- class TestUtilities:
- """
- Check that utility functions work.
- """
- def test_find_simplex(self):
- # Simple check that simplex finding works
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- # +---+
- # |\ 0|
- # | \ |
- # |1 \|
- # +---+
- assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]])
- for p in [(0.25, 0.25, 1),
- (0.75, 0.75, 0),
- (0.3, 0.2, 1)]:
- i = tri.find_simplex(p[:2])
- assert_equal(i, p[2], err_msg='%r' % (p,))
- j = qhull.tsearch(tri, p[:2])
- assert_equal(i, j)
- def test_plane_distance(self):
- # Compare plane distance from hyperplane equations obtained from Qhull
- # to manually computed plane equations
- x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
- (0.99440079, 0.45182168)], dtype=np.double)
- p = np.array([0.99966555, 0.15685619], dtype=np.double)
- tri = qhull.Delaunay(x)
- z = tri.lift_points(x)
- pz = tri.lift_points(p)
- dist = tri.plane_distance(p)
- for j, v in enumerate(tri.simplices):
- x1 = z[v[0]]
- x2 = z[v[1]]
- x3 = z[v[2]]
- n = np.cross(x1 - x3, x2 - x3)
- n /= np.sqrt(np.dot(n, n))
- n *= -np.sign(n[2])
- d = np.dot(n, pz - x3)
- assert_almost_equal(dist[j], d)
- def test_convex_hull(self):
- # Simple check that the convex hull seems to works
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- # +---+
- # |\ 0|
- # | \ |
- # |1 \|
- # +---+
- assert_equal(tri.convex_hull, [[3, 2], [1, 2], [1, 0], [3, 0]])
- def test_volume_area(self):
- #Basic check that we get back the correct volume and area for a cube
- points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
- (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
- hull = qhull.ConvexHull(points)
- assert_allclose(hull.volume, 1., rtol=1e-14,
- err_msg="Volume of cube is incorrect")
- assert_allclose(hull.area, 6., rtol=1e-14,
- err_msg="Area of cube is incorrect")
- def test_random_volume_area(self):
- #Test that the results for a random 10-point convex are
- #coherent with the output of qconvex Qt s FA
- points = np.array([(0.362568364506, 0.472712355305, 0.347003084477),
- (0.733731893414, 0.634480295684, 0.950513180209),
- (0.511239955611, 0.876839441267, 0.418047827863),
- (0.0765906233393, 0.527373281342, 0.6509863541),
- (0.146694972056, 0.596725793348, 0.894860986685),
- (0.513808585741, 0.069576205858, 0.530890338876),
- (0.512343805118, 0.663537132612, 0.037689295973),
- (0.47282965018, 0.462176697655, 0.14061843691),
- (0.240584597123, 0.778660020591, 0.722913476339),
- (0.951271745935, 0.967000673944, 0.890661319684)])
- hull = qhull.ConvexHull(points)
- assert_allclose(hull.volume, 0.14562013, rtol=1e-07,
- err_msg="Volume of random polyhedron is incorrect")
- assert_allclose(hull.area, 1.6670425, rtol=1e-07,
- err_msg="Area of random polyhedron is incorrect")
- def test_incremental_volume_area_random_input(self):
- """Test that incremental mode gives the same volume/area as
- non-incremental mode and incremental mode with restart"""
- nr_points = 20
- dim = 3
- points = np.random.random((nr_points, dim))
- inc_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
- inc_restart_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True)
- for i in range(dim+1, nr_points):
- hull = qhull.ConvexHull(points[:i+1, :])
- inc_hull.add_points(points[i:i+1, :])
- inc_restart_hull.add_points(points[i:i+1, :], restart=True)
- assert_allclose(hull.volume, inc_hull.volume, rtol=1e-7)
- assert_allclose(hull.volume, inc_restart_hull.volume, rtol=1e-7)
- assert_allclose(hull.area, inc_hull.area, rtol=1e-7)
- assert_allclose(hull.area, inc_restart_hull.area, rtol=1e-7)
- def _check_barycentric_transforms(self, tri, err_msg="",
- unit_cube=False,
- unit_cube_tol=0):
- """Check that a triangulation has reasonable barycentric transforms"""
- vertices = tri.points[tri.simplices]
- sc = 1/(tri.ndim + 1.0)
- centroids = vertices.sum(axis=1) * sc
- # Either: (i) the simplex has a `nan` barycentric transform,
- # or, (ii) the centroid is in the simplex
- def barycentric_transform(tr, x):
- r = tr[:,-1,:]
- Tinv = tr[:,:-1,:]
- return np.einsum('ijk,ik->ij', Tinv, x - r)
- eps = np.finfo(float).eps
- c = barycentric_transform(tri.transform, centroids)
- with np.errstate(invalid="ignore"):
- ok = np.isnan(c).all(axis=1) | (abs(c - sc)/sc < 0.1).all(axis=1)
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- # Invalid simplices must be (nearly) zero volume
- q = vertices[:,:-1,:] - vertices[:,-1,None,:]
- volume = np.array([np.linalg.det(q[k,:,:])
- for k in range(tri.nsimplex)])
- ok = np.isfinite(tri.transform[:,0,0]) | (volume < np.sqrt(eps))
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- # Also, find_simplex for the centroid should end up in some
- # simplex for the non-degenerate cases
- j = tri.find_simplex(centroids)
- ok = (j != -1) | np.isnan(tri.transform[:,0,0])
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- if unit_cube:
- # If in unit cube, no interior point should be marked out of hull
- at_boundary = (centroids <= unit_cube_tol).any(axis=1)
- at_boundary |= (centroids >= 1 - unit_cube_tol).any(axis=1)
- ok = (j != -1) | at_boundary
- assert_(ok.all(), "%s %s" % (err_msg, np.nonzero(~ok)))
- def test_degenerate_barycentric_transforms(self):
- # The triangulation should not produce invalid barycentric
- # transforms that stump the simplex finding
- data = np.load(os.path.join(os.path.dirname(__file__), 'data',
- 'degenerate_pointset.npz'))
- points = data['c']
- data.close()
- tri = qhull.Delaunay(points)
- # Check that there are not too many invalid simplices
- bad_count = np.isnan(tri.transform[:,0,0]).sum()
- assert_(bad_count < 23, bad_count)
- # Check the transforms
- self._check_barycentric_transforms(tri)
- @pytest.mark.slow
- def test_more_barycentric_transforms(self):
- # Triangulate some "nasty" grids
- eps = np.finfo(float).eps
- npoints = {2: 70, 3: 11, 4: 5, 5: 3}
- for ndim in range(2, 6):
- # Generate an uniform grid in n-d unit cube
- x = np.linspace(0, 1, npoints[ndim])
- grid = np.c_[list(map(np.ravel, np.broadcast_arrays(*np.ix_(*([x]*ndim)))))].T
- err_msg = "ndim=%d" % ndim
- # Check using regular grid
- tri = qhull.Delaunay(grid)
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True)
- # Check with eps-perturbations
- np.random.seed(1234)
- m = (np.random.rand(grid.shape[0]) < 0.2)
- grid[m,:] += 2*eps*(np.random.rand(*grid[m,:].shape) - 0.5)
- tri = qhull.Delaunay(grid)
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True,
- unit_cube_tol=2*eps)
- # Check with duplicated data
- tri = qhull.Delaunay(np.r_[grid, grid])
- self._check_barycentric_transforms(tri, err_msg=err_msg,
- unit_cube=True,
- unit_cube_tol=2*eps)
- class TestVertexNeighborVertices:
- def _check(self, tri):
- expected = [set() for j in range(tri.points.shape[0])]
- for s in tri.simplices:
- for a in s:
- for b in s:
- if a != b:
- expected[a].add(b)
- indptr, indices = tri.vertex_neighbor_vertices
- got = [set(map(int, indices[indptr[j]:indptr[j+1]]))
- for j in range(tri.points.shape[0])]
- assert_equal(got, expected, err_msg="%r != %r" % (got, expected))
- def test_triangle(self):
- points = np.array([(0,0), (0,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- self._check(tri)
- def test_rectangle(self):
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- self._check(tri)
- def test_complicated(self):
- points = np.array([(0,0), (0,1), (1,1), (1,0),
- (0.5, 0.5), (0.9, 0.5)], dtype=np.double)
- tri = qhull.Delaunay(points)
- self._check(tri)
- class TestDelaunay:
- """
- Check that triangulation works.
- """
- def test_masked_array_fails(self):
- masked_array = np.ma.masked_all(1)
- assert_raises(ValueError, qhull.Delaunay, masked_array)
- def test_array_with_nans_fails(self):
- points_with_nan = np.array([(0,0), (0,1), (1,1), (1,np.nan)], dtype=np.double)
- assert_raises(ValueError, qhull.Delaunay, points_with_nan)
- def test_nd_simplex(self):
- # simple smoke test: triangulate a n-dimensional simplex
- for nd in range(2, 8):
- points = np.zeros((nd+1, nd))
- for j in range(nd):
- points[j,j] = 1.0
- points[-1,:] = 1.0
- tri = qhull.Delaunay(points)
- tri.simplices.sort()
- assert_equal(tri.simplices, np.arange(nd+1, dtype=int)[None, :])
- assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:])
- def test_2d_square(self):
- # simple smoke test: 2d square
- points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
- tri = qhull.Delaunay(points)
- assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]])
- assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]])
- def test_duplicate_points(self):
- x = np.array([0, 1, 0, 1], dtype=np.float64)
- y = np.array([0, 0, 1, 1], dtype=np.float64)
- xp = np.r_[x, x]
- yp = np.r_[y, y]
- # shouldn't fail on duplicate points
- qhull.Delaunay(np.c_[x, y])
- qhull.Delaunay(np.c_[xp, yp])
- def test_pathological(self):
- # both should succeed
- points = DATASETS['pathological-1']
- tri = qhull.Delaunay(points)
- assert_equal(tri.points[tri.simplices].max(), points.max())
- assert_equal(tri.points[tri.simplices].min(), points.min())
- points = DATASETS['pathological-2']
- tri = qhull.Delaunay(points)
- assert_equal(tri.points[tri.simplices].max(), points.max())
- assert_equal(tri.points[tri.simplices].min(), points.min())
- def test_joggle(self):
- # Check that the option QJ indeed guarantees that all input points
- # occur as vertices of the triangulation
- points = np.random.rand(10, 2)
- points = np.r_[points, points] # duplicate input data
- tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp")
- assert_array_equal(np.unique(tri.simplices.ravel()),
- np.arange(len(points)))
- def test_coplanar(self):
- # Check that the coplanar point output option indeed works
- points = np.random.rand(10, 2)
- points = np.r_[points, points] # duplicate input data
- tri = qhull.Delaunay(points)
- assert_(len(np.unique(tri.simplices.ravel())) == len(points)//2)
- assert_(len(tri.coplanar) == len(points)//2)
- assert_(len(np.unique(tri.coplanar[:,2])) == len(points)//2)
- assert_(np.all(tri.vertex_to_simplex >= 0))
- def test_furthest_site(self):
- points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
- tri = qhull.Delaunay(points, furthest_site=True)
- expected = np.array([(1, 4, 0), (4, 2, 0)]) # from Qhull
- assert_array_equal(tri.simplices, expected)
- @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
- def test_incremental(self, name):
- # Test incremental construction of the triangulation
- chunks, opts = INCREMENTAL_DATASETS[name]
- points = np.concatenate(chunks, axis=0)
- obj = qhull.Delaunay(chunks[0], incremental=True,
- qhull_options=opts)
- for chunk in chunks[1:]:
- obj.add_points(chunk)
- obj2 = qhull.Delaunay(points)
- obj3 = qhull.Delaunay(chunks[0], incremental=True,
- qhull_options=opts)
- if len(chunks) > 1:
- obj3.add_points(np.concatenate(chunks[1:], axis=0),
- restart=True)
- # Check that the incremental mode agrees with upfront mode
- if name.startswith('pathological'):
- # XXX: These produce valid but different triangulations.
- # They look OK when plotted, but how to check them?
- assert_array_equal(np.unique(obj.simplices.ravel()),
- np.arange(points.shape[0]))
- assert_array_equal(np.unique(obj2.simplices.ravel()),
- np.arange(points.shape[0]))
- else:
- assert_unordered_tuple_list_equal(obj.simplices, obj2.simplices,
- tpl=sorted_tuple)
- assert_unordered_tuple_list_equal(obj2.simplices, obj3.simplices,
- tpl=sorted_tuple)
- def test_vertices_deprecation(self):
- tri = qhull.Delaunay([(0, 0), (0, 1), (1, 0)])
- msg = ("Delaunay attribute 'vertices' is deprecated in favour of "
- "'simplices' and will be removed in Scipy 1.11.0.")
- with pytest.warns(DeprecationWarning, match=msg):
- tri.vertices
- def assert_hulls_equal(points, facets_1, facets_2):
- # Check that two convex hulls constructed from the same point set
- # are equal
- facets_1 = set(map(sorted_tuple, facets_1))
- facets_2 = set(map(sorted_tuple, facets_2))
- if facets_1 != facets_2 and points.shape[1] == 2:
- # The direct check fails for the pathological cases
- # --- then the convex hull from Delaunay differs (due
- # to rounding error etc.) from the hull computed
- # otherwise, by the question whether (tricoplanar)
- # points that lie almost exactly on the hull are
- # included as vertices of the hull or not.
- #
- # So we check the result, and accept it if the Delaunay
- # hull line segments are a subset of the usual hull.
- eps = 1000 * np.finfo(float).eps
- for a, b in facets_1:
- for ap, bp in facets_2:
- t = points[bp] - points[ap]
- t /= np.linalg.norm(t) # tangent
- n = np.array([-t[1], t[0]]) # normal
- # check that the two line segments are parallel
- # to the same line
- c1 = np.dot(n, points[b] - points[ap])
- c2 = np.dot(n, points[a] - points[ap])
- if not np.allclose(np.dot(c1, n), 0):
- continue
- if not np.allclose(np.dot(c2, n), 0):
- continue
- # Check that the segment (a, b) is contained in (ap, bp)
- c1 = np.dot(t, points[a] - points[ap])
- c2 = np.dot(t, points[b] - points[ap])
- c3 = np.dot(t, points[bp] - points[ap])
- if c1 < -eps or c1 > c3 + eps:
- continue
- if c2 < -eps or c2 > c3 + eps:
- continue
- # OK:
- break
- else:
- raise AssertionError("comparison fails")
- # it was OK
- return
- assert_equal(facets_1, facets_2)
- class TestConvexHull:
- def test_masked_array_fails(self):
- masked_array = np.ma.masked_all(1)
- assert_raises(ValueError, qhull.ConvexHull, masked_array)
- def test_array_with_nans_fails(self):
- points_with_nan = np.array([(0,0), (1,1), (2,np.nan)], dtype=np.double)
- assert_raises(ValueError, qhull.ConvexHull, points_with_nan)
- @pytest.mark.parametrize("name", sorted(DATASETS))
- def test_hull_consistency_tri(self, name):
- # Check that a convex hull returned by qhull in ndim
- # and the hull constructed from ndim delaunay agree
- points = DATASETS[name]
- tri = qhull.Delaunay(points)
- hull = qhull.ConvexHull(points)
- assert_hulls_equal(points, tri.convex_hull, hull.simplices)
- # Check that the hull extremes are as expected
- if points.shape[1] == 2:
- assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
- else:
- assert_equal(np.unique(hull.simplices), hull.vertices)
- @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
- def test_incremental(self, name):
- # Test incremental construction of the convex hull
- chunks, _ = INCREMENTAL_DATASETS[name]
- points = np.concatenate(chunks, axis=0)
- obj = qhull.ConvexHull(chunks[0], incremental=True)
- for chunk in chunks[1:]:
- obj.add_points(chunk)
- obj2 = qhull.ConvexHull(points)
- obj3 = qhull.ConvexHull(chunks[0], incremental=True)
- if len(chunks) > 1:
- obj3.add_points(np.concatenate(chunks[1:], axis=0),
- restart=True)
- # Check that the incremental mode agrees with upfront mode
- assert_hulls_equal(points, obj.simplices, obj2.simplices)
- assert_hulls_equal(points, obj.simplices, obj3.simplices)
- def test_vertices_2d(self):
- # The vertices should be in counterclockwise order in 2-D
- np.random.seed(1234)
- points = np.random.rand(30, 2)
- hull = qhull.ConvexHull(points)
- assert_equal(np.unique(hull.simplices), np.sort(hull.vertices))
- # Check counterclockwiseness
- x, y = hull.points[hull.vertices].T
- angle = np.arctan2(y - y.mean(), x - x.mean())
- assert_(np.all(np.diff(np.unwrap(angle)) > 0))
- def test_volume_area(self):
- # Basic check that we get back the correct volume and area for a cube
- points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0),
- (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)])
- tri = qhull.ConvexHull(points)
- assert_allclose(tri.volume, 1., rtol=1e-14)
- assert_allclose(tri.area, 6., rtol=1e-14)
- @pytest.mark.parametrize("incremental", [False, True])
- def test_good2d(self, incremental):
- # Make sure the QGn option gives the correct value of "good".
- points = np.array([[0.2, 0.2],
- [0.2, 0.4],
- [0.4, 0.4],
- [0.4, 0.2],
- [0.3, 0.6]])
- hull = qhull.ConvexHull(points=points,
- incremental=incremental,
- qhull_options='QG4')
- expected = np.array([False, True, False, False], dtype=bool)
- actual = hull.good
- assert_equal(actual, expected)
- @pytest.mark.parametrize("visibility", [
- "QG4", # visible=True
- "QG-4", # visible=False
- ])
- @pytest.mark.parametrize("new_gen, expected", [
- # add generator that places QG4 inside hull
- # so all facets are invisible
- (np.array([[0.3, 0.7]]),
- np.array([False, False, False, False, False], dtype=bool)),
- # adding a generator on the opposite side of the square
- # should preserve the single visible facet & add one invisible
- # facet
- (np.array([[0.3, -0.7]]),
- np.array([False, True, False, False, False], dtype=bool)),
- # split the visible facet on top of the square into two
- # visible facets, with visibility at the end of the array
- # because add_points concatenates
- (np.array([[0.3, 0.41]]),
- np.array([False, False, False, True, True], dtype=bool)),
- # with our current Qhull options, coplanarity will not count
- # for visibility; this case shifts one visible & one invisible
- # facet & adds a coplanar facet
- # simplex at index position 2 is the shifted visible facet
- # the final simplex is the coplanar facet
- (np.array([[0.5, 0.6], [0.6, 0.6]]),
- np.array([False, False, True, False, False], dtype=bool)),
- # place the new generator such that it envelops the query
- # point within the convex hull, but only just barely within
- # the double precision limit
- # NOTE: testing exact degeneracy is less predictable than this
- # scenario, perhaps because of the default Qt option we have
- # enabled for Qhull to handle precision matters
- (np.array([[0.3, 0.6 + 1e-16]]),
- np.array([False, False, False, False, False], dtype=bool)),
- ])
- def test_good2d_incremental_changes(self, new_gen, expected,
- visibility):
- # use the usual square convex hull
- # generators from test_good2d
- points = np.array([[0.2, 0.2],
- [0.2, 0.4],
- [0.4, 0.4],
- [0.4, 0.2],
- [0.3, 0.6]])
- hull = qhull.ConvexHull(points=points,
- incremental=True,
- qhull_options=visibility)
- hull.add_points(new_gen)
- actual = hull.good
- if '-' in visibility:
- expected = np.invert(expected)
- assert_equal(actual, expected)
- @pytest.mark.parametrize("incremental", [False, True])
- def test_good2d_no_option(self, incremental):
- # handle case where good attribue doesn't exist
- # because Qgn or Qg-n wasn't specified
- points = np.array([[0.2, 0.2],
- [0.2, 0.4],
- [0.4, 0.4],
- [0.4, 0.2],
- [0.3, 0.6]])
- hull = qhull.ConvexHull(points=points,
- incremental=incremental)
- actual = hull.good
- assert actual is None
- # preserve None after incremental addition
- if incremental:
- hull.add_points(np.zeros((1, 2)))
- actual = hull.good
- assert actual is None
- @pytest.mark.parametrize("incremental", [False, True])
- def test_good2d_inside(self, incremental):
- # Make sure the QGn option gives the correct value of "good".
- # When point n is inside the convex hull of the rest, good is
- # all False.
- points = np.array([[0.2, 0.2],
- [0.2, 0.4],
- [0.4, 0.4],
- [0.4, 0.2],
- [0.3, 0.3]])
- hull = qhull.ConvexHull(points=points,
- incremental=incremental,
- qhull_options='QG4')
- expected = np.array([False, False, False, False], dtype=bool)
- actual = hull.good
- assert_equal(actual, expected)
- @pytest.mark.parametrize("incremental", [False, True])
- def test_good3d(self, incremental):
- # Make sure the QGn option gives the correct value of "good"
- # for a 3d figure
- points = np.array([[0.0, 0.0, 0.0],
- [0.90029516, -0.39187448, 0.18948093],
- [0.48676420, -0.72627633, 0.48536925],
- [0.57651530, -0.81179274, -0.09285832],
- [0.67846893, -0.71119562, 0.18406710]])
- hull = qhull.ConvexHull(points=points,
- incremental=incremental,
- qhull_options='QG0')
- expected = np.array([True, False, False, False], dtype=bool)
- assert_equal(hull.good, expected)
- class TestVoronoi:
- @pytest.mark.parametrize("qhull_opts, extra_pts", [
- # option Qz (default for SciPy) will add
- # an extra point at infinity
- ("Qbb Qc Qz", 1),
- ("Qbb Qc", 0),
- ])
- @pytest.mark.parametrize("n_pts", [50, 100])
- @pytest.mark.parametrize("ndim", [2, 3])
- def test_point_region_structure(self,
- qhull_opts,
- n_pts,
- extra_pts,
- ndim):
- # see gh-16773
- rng = np.random.default_rng(7790)
- points = rng.random((n_pts, ndim))
- vor = Voronoi(points, qhull_options=qhull_opts)
- pt_region = vor.point_region
- assert pt_region.max() == n_pts - 1 + extra_pts
- assert pt_region.size == len(vor.regions) - extra_pts
- assert len(vor.regions) == n_pts + extra_pts
- assert vor.points.shape[0] == n_pts
- # if there is an empty sublist in the Voronoi
- # regions data structure, it should never be
- # indexed because it corresponds to an internally
- # added point at infinity and is not a member of the
- # generators (input points)
- if extra_pts:
- sublens = [len(x) for x in vor.regions]
- # only one point at infinity (empty region)
- # is allowed
- assert sublens.count(0) == 1
- assert sublens.index(0) not in pt_region
- def test_masked_array_fails(self):
- masked_array = np.ma.masked_all(1)
- assert_raises(ValueError, qhull.Voronoi, masked_array)
- def test_simple(self):
- # Simple case with known Voronoi diagram
- points = [(0, 0), (0, 1), (0, 2),
- (1, 0), (1, 1), (1, 2),
- (2, 0), (2, 1), (2, 2)]
- # qhull v o Fv Qbb Qc Qz < dat
- output = """
- 2
- 5 10 1
- -10.101 -10.101
- 0.5 0.5
- 0.5 1.5
- 1.5 0.5
- 1.5 1.5
- 2 0 1
- 3 2 0 1
- 2 0 2
- 3 3 0 1
- 4 1 2 4 3
- 3 4 0 2
- 2 0 3
- 3 4 0 3
- 2 0 4
- 0
- 12
- 4 0 3 0 1
- 4 0 1 0 1
- 4 1 4 1 2
- 4 1 2 0 2
- 4 2 5 0 2
- 4 3 4 1 3
- 4 3 6 0 3
- 4 4 5 2 4
- 4 4 7 3 4
- 4 5 8 0 4
- 4 6 7 0 3
- 4 7 8 0 4
- """
- self._compare_qvoronoi(points, output)
- def _compare_qvoronoi(self, points, output, **kw):
- """Compare to output from 'qvoronoi o Fv < data' to Voronoi()"""
- # Parse output
- output = [list(map(float, x.split())) for x in output.strip().splitlines()]
- nvertex = int(output[1][0])
- vertices = list(map(tuple, output[3:2+nvertex])) # exclude inf
- nregion = int(output[1][1])
- regions = [[int(y)-1 for y in x[1:]]
- for x in output[2+nvertex:2+nvertex+nregion]]
- ridge_points = [[int(y) for y in x[1:3]]
- for x in output[3+nvertex+nregion:]]
- ridge_vertices = [[int(y)-1 for y in x[3:]]
- for x in output[3+nvertex+nregion:]]
- # Compare results
- vor = qhull.Voronoi(points, **kw)
- def sorttuple(x):
- return tuple(sorted(x))
- assert_allclose(vor.vertices, vertices)
- assert_equal(set(map(tuple, vor.regions)),
- set(map(tuple, regions)))
- p1 = list(zip(list(map(sorttuple, ridge_points)), list(map(sorttuple, ridge_vertices))))
- p2 = list(zip(list(map(sorttuple, vor.ridge_points.tolist())),
- list(map(sorttuple, vor.ridge_vertices))))
- p1.sort()
- p2.sort()
- assert_equal(p1, p2)
- @pytest.mark.parametrize("name", sorted(DATASETS))
- def test_ridges(self, name):
- # Check that the ridges computed by Voronoi indeed separate
- # the regions of nearest neighborhood, by comparing the result
- # to KDTree.
- points = DATASETS[name]
- tree = KDTree(points)
- vor = qhull.Voronoi(points)
- for p, v in vor.ridge_dict.items():
- # consider only finite ridges
- if not np.all(np.asarray(v) >= 0):
- continue
- ridge_midpoint = vor.vertices[v].mean(axis=0)
- d = 1e-6 * (points[p[0]] - ridge_midpoint)
- dist, k = tree.query(ridge_midpoint + d, k=1)
- assert_equal(k, p[0])
- dist, k = tree.query(ridge_midpoint - d, k=1)
- assert_equal(k, p[1])
- def test_furthest_site(self):
- points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
- # qhull v o Fv Qbb Qc Qu < dat
- output = """
- 2
- 3 5 1
- -10.101 -10.101
- 0.6000000000000001 0.5
- 0.5 0.6000000000000001
- 3 0 2 1
- 2 0 1
- 2 0 2
- 0
- 3 0 2 1
- 5
- 4 0 2 0 2
- 4 0 4 1 2
- 4 0 1 0 1
- 4 1 4 0 1
- 4 2 4 0 2
- """
- self._compare_qvoronoi(points, output, furthest_site=True)
- def test_furthest_site_flag(self):
- points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)]
- vor = Voronoi(points)
- assert_equal(vor.furthest_site,False)
- vor = Voronoi(points,furthest_site=True)
- assert_equal(vor.furthest_site,True)
- @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS))
- def test_incremental(self, name):
- # Test incremental construction of the triangulation
- if INCREMENTAL_DATASETS[name][0][0].shape[1] > 3:
- # too slow (testing of the result --- qhull is still fast)
- return
- chunks, opts = INCREMENTAL_DATASETS[name]
- points = np.concatenate(chunks, axis=0)
- obj = qhull.Voronoi(chunks[0], incremental=True,
- qhull_options=opts)
- for chunk in chunks[1:]:
- obj.add_points(chunk)
- obj2 = qhull.Voronoi(points)
- obj3 = qhull.Voronoi(chunks[0], incremental=True,
- qhull_options=opts)
- if len(chunks) > 1:
- obj3.add_points(np.concatenate(chunks[1:], axis=0),
- restart=True)
- # -- Check that the incremental mode agrees with upfront mode
- assert_equal(len(obj.point_region), len(obj2.point_region))
- assert_equal(len(obj.point_region), len(obj3.point_region))
- # The vertices may be in different order or duplicated in
- # the incremental map
- for objx in obj, obj3:
- vertex_map = {-1: -1}
- for i, v in enumerate(objx.vertices):
- for j, v2 in enumerate(obj2.vertices):
- if np.allclose(v, v2):
- vertex_map[i] = j
- def remap(x):
- if hasattr(x, '__len__'):
- return tuple(set([remap(y) for y in x]))
- try:
- return vertex_map[x]
- except KeyError as e:
- raise AssertionError("incremental result has spurious vertex at %r"
- % (objx.vertices[x],)) from e
- def simplified(x):
- items = set(map(sorted_tuple, x))
- if () in items:
- items.remove(())
- items = [x for x in items if len(x) > 1]
- items.sort()
- return items
- assert_equal(
- simplified(remap(objx.regions)),
- simplified(obj2.regions)
- )
- assert_equal(
- simplified(remap(objx.ridge_vertices)),
- simplified(obj2.ridge_vertices)
- )
- # XXX: compare ridge_points --- not clear exactly how to do this
- class Test_HalfspaceIntersection:
- def assert_unordered_allclose(self, arr1, arr2, rtol=1e-7):
- """Check that every line in arr1 is only once in arr2"""
- assert_equal(arr1.shape, arr2.shape)
- truths = np.zeros((arr1.shape[0],), dtype=bool)
- for l1 in arr1:
- indexes = np.nonzero((abs(arr2 - l1) < rtol).all(axis=1))[0]
- assert_equal(indexes.shape, (1,))
- truths[indexes[0]] = True
- assert_(truths.all())
- @pytest.mark.parametrize("dt", [np.float64, int])
- def test_cube_halfspace_intersection(self, dt):
- halfspaces = np.array([[-1, 0, 0],
- [0, -1, 0],
- [1, 0, -2],
- [0, 1, -2]], dtype=dt)
- feasible_point = np.array([1, 1], dtype=dt)
- points = np.array([[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0]])
- hull = qhull.HalfspaceIntersection(halfspaces, feasible_point)
- assert_allclose(hull.intersections, points)
- def test_self_dual_polytope_intersection(self):
- fname = os.path.join(os.path.dirname(__file__), 'data',
- 'selfdual-4d-polytope.txt')
- ineqs = np.genfromtxt(fname)
- halfspaces = -np.hstack((ineqs[:, 1:], ineqs[:, :1]))
- feas_point = np.array([0., 0., 0., 0.])
- hs = qhull.HalfspaceIntersection(halfspaces, feas_point)
- assert_equal(hs.intersections.shape, (24, 4))
- assert_almost_equal(hs.dual_volume, 32.0)
- assert_equal(len(hs.dual_facets), 24)
- for facet in hs.dual_facets:
- assert_equal(len(facet), 6)
- dists = halfspaces[:, -1] + halfspaces[:, :-1].dot(feas_point)
- self.assert_unordered_allclose((halfspaces[:, :-1].T/dists).T, hs.dual_points)
- points = itertools.permutations([0., 0., 0.5, -0.5])
- for point in points:
- assert_equal(np.sum((hs.intersections == point).all(axis=1)), 1)
- def test_wrong_feasible_point(self):
- halfspaces = np.array([[-1.0, 0.0, 0.0],
- [0.0, -1.0, 0.0],
- [1.0, 0.0, -1.0],
- [0.0, 1.0, -1.0]])
- feasible_point = np.array([0.5, 0.5, 0.5])
- #Feasible point is (ndim,) instead of (ndim-1,)
- assert_raises(ValueError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- feasible_point = np.array([[0.5], [0.5]])
- #Feasible point is (ndim-1, 1) instead of (ndim-1,)
- assert_raises(ValueError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- feasible_point = np.array([[0.5, 0.5]])
- #Feasible point is (1, ndim-1) instead of (ndim-1,)
- assert_raises(ValueError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- feasible_point = np.array([-0.5, -0.5])
- #Feasible point is outside feasible region
- assert_raises(qhull.QhullError, qhull.HalfspaceIntersection, halfspaces, feasible_point)
- def test_incremental(self):
- #Cube
- halfspaces = np.array([[0., 0., -1., -0.5],
- [0., -1., 0., -0.5],
- [-1., 0., 0., -0.5],
- [1., 0., 0., -0.5],
- [0., 1., 0., -0.5],
- [0., 0., 1., -0.5]])
- #Cut each summit
- extra_normals = np.array([[1., 1., 1.],
- [1., 1., -1.],
- [1., -1., 1.],
- [1, -1., -1.]])
- offsets = np.array([[-1.]]*8)
- extra_halfspaces = np.hstack((np.vstack((extra_normals, -extra_normals)),
- offsets))
- feas_point = np.array([0., 0., 0.])
- inc_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True)
- inc_res_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True)
- for i, ehs in enumerate(extra_halfspaces):
- inc_hs.add_halfspaces(ehs[np.newaxis, :])
- inc_res_hs.add_halfspaces(ehs[np.newaxis, :], restart=True)
- total = np.vstack((halfspaces, extra_halfspaces[:i+1, :]))
- hs = qhull.HalfspaceIntersection(total, feas_point)
- assert_allclose(inc_hs.halfspaces, inc_res_hs.halfspaces)
- assert_allclose(inc_hs.halfspaces, hs.halfspaces)
- #Direct computation and restart should have points in same order
- assert_allclose(hs.intersections, inc_res_hs.intersections)
- #Incremental will have points in different order than direct computation
- self.assert_unordered_allclose(inc_hs.intersections, hs.intersections)
- inc_hs.close()
- def test_cube(self):
- # Halfspaces of the cube:
- halfspaces = np.array([[-1., 0., 0., 0.], # x >= 0
- [1., 0., 0., -1.], # x <= 1
- [0., -1., 0., 0.], # y >= 0
- [0., 1., 0., -1.], # y <= 1
- [0., 0., -1., 0.], # z >= 0
- [0., 0., 1., -1.]]) # z <= 1
- point = np.array([0.5, 0.5, 0.5])
- hs = qhull.HalfspaceIntersection(halfspaces, point)
- # qhalf H0.5,0.5,0.5 o < input.txt
- qhalf_points = np.array([
- [-2, 0, 0],
- [2, 0, 0],
- [0, -2, 0],
- [0, 2, 0],
- [0, 0, -2],
- [0, 0, 2]])
- qhalf_facets = [
- [2, 4, 0],
- [4, 2, 1],
- [5, 2, 0],
- [2, 5, 1],
- [3, 4, 1],
- [4, 3, 0],
- [5, 3, 1],
- [3, 5, 0]]
- assert len(qhalf_facets) == len(hs.dual_facets)
- for a, b in zip(qhalf_facets, hs.dual_facets):
- assert set(a) == set(b) # facet orientation can differ
- assert_allclose(hs.dual_points, qhalf_points)
|