test__procrustes.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. import numpy as np
  2. from numpy.testing import assert_allclose, assert_equal, assert_almost_equal
  3. from pytest import raises as assert_raises
  4. from scipy.spatial import procrustes
  5. class TestProcrustes:
  6. def setup_method(self):
  7. """creates inputs"""
  8. # an L
  9. self.data1 = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
  10. # a larger, shifted, mirrored L
  11. self.data2 = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
  12. # an L shifted up 1, right 1, and with point 4 shifted an extra .5
  13. # to the right
  14. # pointwise distance disparity with data1: 3*(2) + (1 + 1.5^2)
  15. self.data3 = np.array([[2, 4], [2, 3], [2, 2], [3, 2.5]], 'd')
  16. # data4, data5 are standardized (trace(A*A') = 1).
  17. # procrustes should return an identical copy if they are used
  18. # as the first matrix argument.
  19. shiftangle = np.pi / 8
  20. self.data4 = np.array([[1, 0], [0, 1], [-1, 0],
  21. [0, -1]], 'd') / np.sqrt(4)
  22. self.data5 = np.array([[np.cos(shiftangle), np.sin(shiftangle)],
  23. [np.cos(np.pi / 2 - shiftangle),
  24. np.sin(np.pi / 2 - shiftangle)],
  25. [-np.cos(shiftangle),
  26. -np.sin(shiftangle)],
  27. [-np.cos(np.pi / 2 - shiftangle),
  28. -np.sin(np.pi / 2 - shiftangle)]],
  29. 'd') / np.sqrt(4)
  30. def test_procrustes(self):
  31. # tests procrustes' ability to match two matrices.
  32. #
  33. # the second matrix is a rotated, shifted, scaled, and mirrored version
  34. # of the first, in two dimensions only
  35. #
  36. # can shift, mirror, and scale an 'L'?
  37. a, b, disparity = procrustes(self.data1, self.data2)
  38. assert_allclose(b, a)
  39. assert_almost_equal(disparity, 0.)
  40. # if first mtx is standardized, leaves first mtx unchanged?
  41. m4, m5, disp45 = procrustes(self.data4, self.data5)
  42. assert_equal(m4, self.data4)
  43. # at worst, data3 is an 'L' with one point off by .5
  44. m1, m3, disp13 = procrustes(self.data1, self.data3)
  45. #assert_(disp13 < 0.5 ** 2)
  46. def test_procrustes2(self):
  47. # procrustes disparity should not depend on order of matrices
  48. m1, m3, disp13 = procrustes(self.data1, self.data3)
  49. m3_2, m1_2, disp31 = procrustes(self.data3, self.data1)
  50. assert_almost_equal(disp13, disp31)
  51. # try with 3d, 8 pts per
  52. rand1 = np.array([[2.61955202, 0.30522265, 0.55515826],
  53. [0.41124708, -0.03966978, -0.31854548],
  54. [0.91910318, 1.39451809, -0.15295084],
  55. [2.00452023, 0.50150048, 0.29485268],
  56. [0.09453595, 0.67528885, 0.03283872],
  57. [0.07015232, 2.18892599, -1.67266852],
  58. [0.65029688, 1.60551637, 0.80013549],
  59. [-0.6607528, 0.53644208, 0.17033891]])
  60. rand3 = np.array([[0.0809969, 0.09731461, -0.173442],
  61. [-1.84888465, -0.92589646, -1.29335743],
  62. [0.67031855, -1.35957463, 0.41938621],
  63. [0.73967209, -0.20230757, 0.52418027],
  64. [0.17752796, 0.09065607, 0.29827466],
  65. [0.47999368, -0.88455717, -0.57547934],
  66. [-0.11486344, -0.12608506, -0.3395779],
  67. [-0.86106154, -0.28687488, 0.9644429]])
  68. res1, res3, disp13 = procrustes(rand1, rand3)
  69. res3_2, res1_2, disp31 = procrustes(rand3, rand1)
  70. assert_almost_equal(disp13, disp31)
  71. def test_procrustes_shape_mismatch(self):
  72. assert_raises(ValueError, procrustes,
  73. np.array([[1, 2], [3, 4]]),
  74. np.array([[5, 6, 7], [8, 9, 10]]))
  75. def test_procrustes_empty_rows_or_cols(self):
  76. empty = np.array([[]])
  77. assert_raises(ValueError, procrustes, empty, empty)
  78. def test_procrustes_no_variation(self):
  79. assert_raises(ValueError, procrustes,
  80. np.array([[42, 42], [42, 42]]),
  81. np.array([[45, 45], [45, 45]]))
  82. def test_procrustes_bad_number_of_dimensions(self):
  83. # fewer dimensions in one dataset
  84. assert_raises(ValueError, procrustes,
  85. np.array([1, 1, 2, 3, 5, 8]),
  86. np.array([[1, 2], [3, 4]]))
  87. # fewer dimensions in both datasets
  88. assert_raises(ValueError, procrustes,
  89. np.array([1, 1, 2, 3, 5, 8]),
  90. np.array([1, 1, 2, 3, 5, 8]))
  91. # zero dimensions
  92. assert_raises(ValueError, procrustes, np.array(7), np.array(11))
  93. # extra dimensions
  94. assert_raises(ValueError, procrustes,
  95. np.array([[[11], [7]]]),
  96. np.array([[[5, 13]]]))