123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252 |
- """Test functions for the sparse.linalg._onenormest module
- """
- import numpy as np
- from numpy.testing import assert_allclose, assert_equal, assert_
- import pytest
- import scipy.linalg
- import scipy.sparse.linalg
- from scipy.sparse.linalg._onenormest import _onenormest_core, _algorithm_2_2
- class MatrixProductOperator(scipy.sparse.linalg.LinearOperator):
- """
- This is purely for onenormest testing.
- """
- def __init__(self, A, B):
- if A.ndim != 2 or B.ndim != 2:
- raise ValueError('expected ndarrays representing matrices')
- if A.shape[1] != B.shape[0]:
- raise ValueError('incompatible shapes')
- self.A = A
- self.B = B
- self.ndim = 2
- self.shape = (A.shape[0], B.shape[1])
- def _matvec(self, x):
- return np.dot(self.A, np.dot(self.B, x))
- def _rmatvec(self, x):
- return np.dot(np.dot(x, self.A), self.B)
- def _matmat(self, X):
- return np.dot(self.A, np.dot(self.B, X))
- @property
- def T(self):
- return MatrixProductOperator(self.B.T, self.A.T)
- class TestOnenormest:
- @pytest.mark.xslow
- def test_onenormest_table_3_t_2(self):
- # This will take multiple seconds if your computer is slow like mine.
- # It is stochastic, so the tolerance could be too strict.
- np.random.seed(1234)
- t = 2
- n = 100
- itmax = 5
- nsamples = 5000
- observed = []
- expected = []
- nmult_list = []
- nresample_list = []
- for i in range(nsamples):
- A = scipy.linalg.inv(np.random.randn(n, n))
- est, v, w, nmults, nresamples = _onenormest_core(A, A.T, t, itmax)
- observed.append(est)
- expected.append(scipy.linalg.norm(A, 1))
- nmult_list.append(nmults)
- nresample_list.append(nresamples)
- observed = np.array(observed, dtype=float)
- expected = np.array(expected, dtype=float)
- relative_errors = np.abs(observed - expected) / expected
- # check the mean underestimation ratio
- underestimation_ratio = observed / expected
- assert_(0.99 < np.mean(underestimation_ratio) < 1.0)
- # check the max and mean required column resamples
- assert_equal(np.max(nresample_list), 2)
- assert_(0.05 < np.mean(nresample_list) < 0.2)
- # check the proportion of norms computed exactly correctly
- nexact = np.count_nonzero(relative_errors < 1e-14)
- proportion_exact = nexact / float(nsamples)
- assert_(0.9 < proportion_exact < 0.95)
- # check the average number of matrix*vector multiplications
- assert_(3.5 < np.mean(nmult_list) < 4.5)
- @pytest.mark.xslow
- def test_onenormest_table_4_t_7(self):
- # This will take multiple seconds if your computer is slow like mine.
- # It is stochastic, so the tolerance could be too strict.
- np.random.seed(1234)
- t = 7
- n = 100
- itmax = 5
- nsamples = 5000
- observed = []
- expected = []
- nmult_list = []
- nresample_list = []
- for i in range(nsamples):
- A = np.random.randint(-1, 2, size=(n, n))
- est, v, w, nmults, nresamples = _onenormest_core(A, A.T, t, itmax)
- observed.append(est)
- expected.append(scipy.linalg.norm(A, 1))
- nmult_list.append(nmults)
- nresample_list.append(nresamples)
- observed = np.array(observed, dtype=float)
- expected = np.array(expected, dtype=float)
- relative_errors = np.abs(observed - expected) / expected
- # check the mean underestimation ratio
- underestimation_ratio = observed / expected
- assert_(0.90 < np.mean(underestimation_ratio) < 0.99)
- # check the required column resamples
- assert_equal(np.max(nresample_list), 0)
- # check the proportion of norms computed exactly correctly
- nexact = np.count_nonzero(relative_errors < 1e-14)
- proportion_exact = nexact / float(nsamples)
- assert_(0.15 < proportion_exact < 0.25)
- # check the average number of matrix*vector multiplications
- assert_(3.5 < np.mean(nmult_list) < 4.5)
- def test_onenormest_table_5_t_1(self):
- # "note that there is no randomness and hence only one estimate for t=1"
- t = 1
- n = 100
- itmax = 5
- alpha = 1 - 1e-6
- A = -scipy.linalg.inv(np.identity(n) + alpha*np.eye(n, k=1))
- first_col = np.array([1] + [0]*(n-1))
- first_row = np.array([(-alpha)**i for i in range(n)])
- B = -scipy.linalg.toeplitz(first_col, first_row)
- assert_allclose(A, B)
- est, v, w, nmults, nresamples = _onenormest_core(B, B.T, t, itmax)
- exact_value = scipy.linalg.norm(B, 1)
- underest_ratio = est / exact_value
- assert_allclose(underest_ratio, 0.05, rtol=1e-4)
- assert_equal(nmults, 11)
- assert_equal(nresamples, 0)
- # check the non-underscored version of onenormest
- est_plain = scipy.sparse.linalg.onenormest(B, t=t, itmax=itmax)
- assert_allclose(est, est_plain)
- @pytest.mark.xslow
- def test_onenormest_table_6_t_1(self):
- #TODO this test seems to give estimates that match the table,
- #TODO even though no attempt has been made to deal with
- #TODO complex numbers in the one-norm estimation.
- # This will take multiple seconds if your computer is slow like mine.
- # It is stochastic, so the tolerance could be too strict.
- np.random.seed(1234)
- t = 1
- n = 100
- itmax = 5
- nsamples = 5000
- observed = []
- expected = []
- nmult_list = []
- nresample_list = []
- for i in range(nsamples):
- A_inv = np.random.rand(n, n) + 1j * np.random.rand(n, n)
- A = scipy.linalg.inv(A_inv)
- est, v, w, nmults, nresamples = _onenormest_core(A, A.T, t, itmax)
- observed.append(est)
- expected.append(scipy.linalg.norm(A, 1))
- nmult_list.append(nmults)
- nresample_list.append(nresamples)
- observed = np.array(observed, dtype=float)
- expected = np.array(expected, dtype=float)
- relative_errors = np.abs(observed - expected) / expected
- # check the mean underestimation ratio
- underestimation_ratio = observed / expected
- underestimation_ratio_mean = np.mean(underestimation_ratio)
- assert_(0.90 < underestimation_ratio_mean < 0.99)
- # check the required column resamples
- max_nresamples = np.max(nresample_list)
- assert_equal(max_nresamples, 0)
- # check the proportion of norms computed exactly correctly
- nexact = np.count_nonzero(relative_errors < 1e-14)
- proportion_exact = nexact / float(nsamples)
- assert_(0.7 < proportion_exact < 0.8)
- # check the average number of matrix*vector multiplications
- mean_nmult = np.mean(nmult_list)
- assert_(4 < mean_nmult < 5)
- def _help_product_norm_slow(self, A, B):
- # for profiling
- C = np.dot(A, B)
- return scipy.linalg.norm(C, 1)
- def _help_product_norm_fast(self, A, B):
- # for profiling
- t = 2
- itmax = 5
- D = MatrixProductOperator(A, B)
- est, v, w, nmults, nresamples = _onenormest_core(D, D.T, t, itmax)
- return est
- @pytest.mark.slow
- def test_onenormest_linear_operator(self):
- # Define a matrix through its product A B.
- # Depending on the shapes of A and B,
- # it could be easy to multiply this product by a small matrix,
- # but it could be annoying to look at all of
- # the entries of the product explicitly.
- np.random.seed(1234)
- n = 6000
- k = 3
- A = np.random.randn(n, k)
- B = np.random.randn(k, n)
- fast_estimate = self._help_product_norm_fast(A, B)
- exact_value = self._help_product_norm_slow(A, B)
- assert_(fast_estimate <= exact_value <= 3*fast_estimate,
- 'fast: %g\nexact:%g' % (fast_estimate, exact_value))
- def test_returns(self):
- np.random.seed(1234)
- A = scipy.sparse.rand(50, 50, 0.1)
- s0 = scipy.linalg.norm(A.toarray(), 1)
- s1, v = scipy.sparse.linalg.onenormest(A, compute_v=True)
- s2, w = scipy.sparse.linalg.onenormest(A, compute_w=True)
- s3, v2, w2 = scipy.sparse.linalg.onenormest(A, compute_w=True, compute_v=True)
- assert_allclose(s1, s0, rtol=1e-9)
- assert_allclose(np.linalg.norm(A.dot(v), 1), s0*np.linalg.norm(v, 1), rtol=1e-9)
- assert_allclose(A.dot(v), w, rtol=1e-9)
- class TestAlgorithm_2_2:
- def test_randn_inv(self):
- np.random.seed(1234)
- n = 20
- nsamples = 100
- for i in range(nsamples):
- # Choose integer t uniformly between 1 and 3 inclusive.
- t = np.random.randint(1, 4)
- # Choose n uniformly between 10 and 40 inclusive.
- n = np.random.randint(10, 41)
- # Sample the inverse of a matrix with random normal entries.
- A = scipy.linalg.inv(np.random.randn(n, n))
- # Compute the 1-norm bounds.
- g, ind = _algorithm_2_2(A, A.T, t)
|