123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- import numpy as np
- from numpy.testing import assert_array_equal
- import pytest
- from scipy.sparse import csr_matrix, csc_matrix
- from scipy.sparse.csgraph import maximum_flow
- from scipy.sparse.csgraph._flow import (
- _add_reverse_edges, _make_edge_pointers, _make_tails
- )
- methods = ['edmonds_karp', 'dinic']
- def test_raises_on_dense_input():
- with pytest.raises(TypeError):
- graph = np.array([[0, 1], [0, 0]])
- maximum_flow(graph, 0, 1)
- maximum_flow(graph, 0, 1, method='edmonds_karp')
- def test_raises_on_csc_input():
- with pytest.raises(TypeError):
- graph = csc_matrix([[0, 1], [0, 0]])
- maximum_flow(graph, 0, 1)
- maximum_flow(graph, 0, 1, method='edmonds_karp')
- def test_raises_on_floating_point_input():
- with pytest.raises(ValueError):
- graph = csr_matrix([[0, 1.5], [0, 0]], dtype=np.float64)
- maximum_flow(graph, 0, 1)
- maximum_flow(graph, 0, 1, method='edmonds_karp')
- def test_raises_on_non_square_input():
- with pytest.raises(ValueError):
- graph = csr_matrix([[0, 1, 2], [2, 1, 0]])
- maximum_flow(graph, 0, 1)
- def test_raises_when_source_is_sink():
- with pytest.raises(ValueError):
- graph = csr_matrix([[0, 1], [0, 0]])
- maximum_flow(graph, 0, 0)
- maximum_flow(graph, 0, 0, method='edmonds_karp')
- @pytest.mark.parametrize('method', methods)
- @pytest.mark.parametrize('source', [-1, 2, 3])
- def test_raises_when_source_is_out_of_bounds(source, method):
- with pytest.raises(ValueError):
- graph = csr_matrix([[0, 1], [0, 0]])
- maximum_flow(graph, source, 1, method=method)
- @pytest.mark.parametrize('method', methods)
- @pytest.mark.parametrize('sink', [-1, 2, 3])
- def test_raises_when_sink_is_out_of_bounds(sink, method):
- with pytest.raises(ValueError):
- graph = csr_matrix([[0, 1], [0, 0]])
- maximum_flow(graph, 0, sink, method=method)
- @pytest.mark.parametrize('method', methods)
- def test_simple_graph(method):
- # This graph looks as follows:
- # (0) --5--> (1)
- graph = csr_matrix([[0, 5], [0, 0]])
- res = maximum_flow(graph, 0, 1, method=method)
- assert res.flow_value == 5
- expected_flow = np.array([[0, 5], [-5, 0]])
- assert_array_equal(res.flow.toarray(), expected_flow)
- @pytest.mark.parametrize('method', methods)
- def test_bottle_neck_graph(method):
- # This graph cannot use the full capacity between 0 and 1:
- # (0) --5--> (1) --3--> (2)
- graph = csr_matrix([[0, 5, 0], [0, 0, 3], [0, 0, 0]])
- res = maximum_flow(graph, 0, 2, method=method)
- assert res.flow_value == 3
- expected_flow = np.array([[0, 3, 0], [-3, 0, 3], [0, -3, 0]])
- assert_array_equal(res.flow.toarray(), expected_flow)
- @pytest.mark.parametrize('method', methods)
- def test_backwards_flow(method):
- # This example causes backwards flow between vertices 3 and 4,
- # and so this test ensures that we handle that accordingly. See
- # https://stackoverflow.com/q/38843963/5085211
- # for more information.
- graph = csr_matrix([[0, 10, 0, 0, 10, 0, 0, 0],
- [0, 0, 10, 0, 0, 0, 0, 0],
- [0, 0, 0, 10, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 10],
- [0, 0, 0, 10, 0, 10, 0, 0],
- [0, 0, 0, 0, 0, 0, 10, 0],
- [0, 0, 0, 0, 0, 0, 0, 10],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- res = maximum_flow(graph, 0, 7, method=method)
- assert res.flow_value == 20
- expected_flow = np.array([[0, 10, 0, 0, 10, 0, 0, 0],
- [-10, 0, 10, 0, 0, 0, 0, 0],
- [0, -10, 0, 10, 0, 0, 0, 0],
- [0, 0, -10, 0, 0, 0, 0, 10],
- [-10, 0, 0, 0, 0, 10, 0, 0],
- [0, 0, 0, 0, -10, 0, 10, 0],
- [0, 0, 0, 0, 0, -10, 0, 10],
- [0, 0, 0, -10, 0, 0, -10, 0]])
- assert_array_equal(res.flow.toarray(), expected_flow)
- @pytest.mark.parametrize('method', methods)
- def test_example_from_clrs_chapter_26_1(method):
- # See page 659 in CLRS second edition, but note that the maximum flow
- # we find is slightly different than the one in CLRS; we push a flow of
- # 12 to v_1 instead of v_2.
- graph = csr_matrix([[0, 16, 13, 0, 0, 0],
- [0, 0, 10, 12, 0, 0],
- [0, 4, 0, 0, 14, 0],
- [0, 0, 9, 0, 0, 20],
- [0, 0, 0, 7, 0, 4],
- [0, 0, 0, 0, 0, 0]])
- res = maximum_flow(graph, 0, 5, method=method)
- assert res.flow_value == 23
- expected_flow = np.array([[0, 12, 11, 0, 0, 0],
- [-12, 0, 0, 12, 0, 0],
- [-11, 0, 0, 0, 11, 0],
- [0, -12, 0, 0, -7, 19],
- [0, 0, -11, 7, 0, 4],
- [0, 0, 0, -19, -4, 0]])
- assert_array_equal(res.flow.toarray(), expected_flow)
- @pytest.mark.parametrize('method', methods)
- def test_disconnected_graph(method):
- # This tests the following disconnected graph:
- # (0) --5--> (1) (2) --3--> (3)
- graph = csr_matrix([[0, 5, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 9, 3],
- [0, 0, 0, 0]])
- res = maximum_flow(graph, 0, 3, method=method)
- assert res.flow_value == 0
- expected_flow = np.zeros((4, 4), dtype=np.int32)
- assert_array_equal(res.flow.toarray(), expected_flow)
- @pytest.mark.parametrize('method', methods)
- def test_add_reverse_edges_large_graph(method):
- # Regression test for https://github.com/scipy/scipy/issues/14385
- n = 100_000
- indices = np.arange(1, n)
- indptr = np.array(list(range(n)) + [n - 1])
- data = np.ones(n - 1, dtype=np.int32)
- graph = csr_matrix((data, indices, indptr), shape=(n, n))
- res = maximum_flow(graph, 0, n - 1, method=method)
- assert res.flow_value == 1
- expected_flow = graph - graph.transpose()
- assert_array_equal(res.flow.data, expected_flow.data)
- assert_array_equal(res.flow.indices, expected_flow.indices)
- assert_array_equal(res.flow.indptr, expected_flow.indptr)
- def test_residual_raises_deprecation_warning():
- graph = csr_matrix([[0, 5, 0], [0, 0, 3], [0, 0, 0]])
- res = maximum_flow(graph, 0, 2)
- with pytest.deprecated_call():
- res.residual
- @pytest.mark.parametrize("a,b_data_expected", [
- ([[]], []),
- ([[0], [0]], []),
- ([[1, 0, 2], [0, 0, 0], [0, 3, 0]], [1, 2, 0, 0, 3]),
- ([[9, 8, 7], [4, 5, 6], [0, 0, 0]], [9, 8, 7, 4, 5, 6, 0, 0])])
- def test_add_reverse_edges(a, b_data_expected):
- """Test that the reversal of the edges of the input graph works
- as expected.
- """
- a = csr_matrix(a, dtype=np.int32, shape=(len(a), len(a)))
- b = _add_reverse_edges(a)
- assert_array_equal(b.data, b_data_expected)
- @pytest.mark.parametrize("a,expected", [
- ([[]], []),
- ([[0]], []),
- ([[1]], [0]),
- ([[0, 1], [10, 0]], [1, 0]),
- ([[1, 0, 2], [0, 0, 3], [4, 5, 0]], [0, 3, 4, 1, 2])
- ])
- def test_make_edge_pointers(a, expected):
- a = csr_matrix(a, dtype=np.int32)
- rev_edge_ptr = _make_edge_pointers(a)
- assert_array_equal(rev_edge_ptr, expected)
- @pytest.mark.parametrize("a,expected", [
- ([[]], []),
- ([[0]], []),
- ([[1]], [0]),
- ([[0, 1], [10, 0]], [0, 1]),
- ([[1, 0, 2], [0, 0, 3], [4, 5, 0]], [0, 0, 1, 2, 2])
- ])
- def test_make_tails(a, expected):
- a = csr_matrix(a, dtype=np.int32)
- tails = _make_tails(a)
- assert_array_equal(tails, expected)
|