123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852 |
- import pickle
- import numpy as np
- from numpy import array
- from numpy.testing import (assert_array_almost_equal, assert_array_equal,
- assert_allclose,
- assert_equal, assert_, assert_array_less,
- suppress_warnings)
- from pytest import raises as assert_raises
- from scipy.fft import fft
- from scipy.signal import windows, get_window, resample, hann as dep_hann
- window_funcs = [
- ('boxcar', ()),
- ('triang', ()),
- ('parzen', ()),
- ('bohman', ()),
- ('blackman', ()),
- ('nuttall', ()),
- ('blackmanharris', ()),
- ('flattop', ()),
- ('bartlett', ()),
- ('barthann', ()),
- ('hamming', ()),
- ('kaiser', (1,)),
- ('dpss', (2,)),
- ('gaussian', (0.5,)),
- ('general_gaussian', (1.5, 2)),
- ('chebwin', (1,)),
- ('cosine', ()),
- ('hann', ()),
- ('exponential', ()),
- ('taylor', ()),
- ('tukey', (0.5,)),
- ('lanczos', ()),
- ]
- class TestBartHann:
- def test_basic(self):
- assert_allclose(windows.barthann(6, sym=True),
- [0, 0.35857354213752, 0.8794264578624801,
- 0.8794264578624801, 0.3585735421375199, 0])
- assert_allclose(windows.barthann(7),
- [0, 0.27, 0.73, 1.0, 0.73, 0.27, 0])
- assert_allclose(windows.barthann(6, False),
- [0, 0.27, 0.73, 1.0, 0.73, 0.27])
- class TestBartlett:
- def test_basic(self):
- assert_allclose(windows.bartlett(6), [0, 0.4, 0.8, 0.8, 0.4, 0])
- assert_allclose(windows.bartlett(7), [0, 1/3, 2/3, 1.0, 2/3, 1/3, 0])
- assert_allclose(windows.bartlett(6, False),
- [0, 1/3, 2/3, 1.0, 2/3, 1/3])
- class TestBlackman:
- def test_basic(self):
- assert_allclose(windows.blackman(6, sym=False),
- [0, 0.13, 0.63, 1.0, 0.63, 0.13], atol=1e-14)
- assert_allclose(windows.blackman(7, sym=False),
- [0, 0.09045342435412804, 0.4591829575459636,
- 0.9203636180999081, 0.9203636180999081,
- 0.4591829575459636, 0.09045342435412804], atol=1e-8)
- assert_allclose(windows.blackman(6),
- [0, 0.2007701432625305, 0.8492298567374694,
- 0.8492298567374694, 0.2007701432625305, 0],
- atol=1e-14)
- assert_allclose(windows.blackman(7, True),
- [0, 0.13, 0.63, 1.0, 0.63, 0.13, 0], atol=1e-14)
- class TestBlackmanHarris:
- def test_basic(self):
- assert_allclose(windows.blackmanharris(6, False),
- [6.0e-05, 0.055645, 0.520575, 1.0, 0.520575, 0.055645])
- assert_allclose(windows.blackmanharris(7, sym=False),
- [6.0e-05, 0.03339172347815117, 0.332833504298565,
- 0.8893697722232837, 0.8893697722232838,
- 0.3328335042985652, 0.03339172347815122])
- assert_allclose(windows.blackmanharris(6),
- [6.0e-05, 0.1030114893456638, 0.7938335106543362,
- 0.7938335106543364, 0.1030114893456638, 6.0e-05])
- assert_allclose(windows.blackmanharris(7, sym=True),
- [6.0e-05, 0.055645, 0.520575, 1.0, 0.520575, 0.055645,
- 6.0e-05])
- class TestTaylor:
- def test_normalized(self):
- """Tests windows of small length that are normalized to 1. See the
- documentation for the Taylor window for more information on
- normalization.
- """
- assert_allclose(windows.taylor(1, 2, 15), 1.0)
- assert_allclose(
- windows.taylor(5, 2, 15),
- np.array([0.75803341, 0.90757699, 1.0, 0.90757699, 0.75803341])
- )
- assert_allclose(
- windows.taylor(6, 2, 15),
- np.array([
- 0.7504082, 0.86624416, 0.98208011, 0.98208011, 0.86624416,
- 0.7504082
- ])
- )
- def test_non_normalized(self):
- """Test windows of small length that are not normalized to 1. See
- the documentation for the Taylor window for more information on
- normalization.
- """
- assert_allclose(
- windows.taylor(5, 2, 15, norm=False),
- np.array([
- 0.87508054, 1.04771499, 1.15440894, 1.04771499, 0.87508054
- ])
- )
- assert_allclose(
- windows.taylor(6, 2, 15, norm=False),
- np.array([
- 0.86627793, 1.0, 1.13372207, 1.13372207, 1.0, 0.86627793
- ])
- )
- def test_correctness(self):
- """This test ensures the correctness of the implemented Taylor
- Windowing function. A Taylor Window of 1024 points is created, its FFT
- is taken, and the Peak Sidelobe Level (PSLL) and 3dB and 18dB bandwidth
- are found and checked.
- A publication from Sandia National Laboratories was used as reference
- for the correctness values [1]_.
- References
- -----
- .. [1] Armin Doerry, "Catalog of Window Taper Functions for
- Sidelobe Control", 2017.
- https://www.researchgate.net/profile/Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf
- """
- M_win = 1024
- N_fft = 131072
- # Set norm=False for correctness as the values obtained from the
- # scientific publication do not normalize the values. Normalizing
- # changes the sidelobe level from the desired value.
- w = windows.taylor(M_win, nbar=4, sll=35, norm=False, sym=False)
- f = fft(w, N_fft)
- spec = 20 * np.log10(np.abs(f / np.amax(f)))
- first_zero = np.argmax(np.diff(spec) > 0)
- PSLL = np.amax(spec[first_zero:-first_zero])
- BW_3dB = 2*np.argmax(spec <= -3.0102999566398121) / N_fft * M_win
- BW_18dB = 2*np.argmax(spec <= -18.061799739838872) / N_fft * M_win
- assert_allclose(PSLL, -35.1672, atol=1)
- assert_allclose(BW_3dB, 1.1822, atol=0.1)
- assert_allclose(BW_18dB, 2.6112, atol=0.1)
- class TestBohman:
- def test_basic(self):
- assert_allclose(windows.bohman(6),
- [0, 0.1791238937062839, 0.8343114522576858,
- 0.8343114522576858, 0.1791238937062838, 0])
- assert_allclose(windows.bohman(7, sym=True),
- [0, 0.1089977810442293, 0.6089977810442293, 1.0,
- 0.6089977810442295, 0.1089977810442293, 0])
- assert_allclose(windows.bohman(6, False),
- [0, 0.1089977810442293, 0.6089977810442293, 1.0,
- 0.6089977810442295, 0.1089977810442293])
- class TestBoxcar:
- def test_basic(self):
- assert_allclose(windows.boxcar(6), [1, 1, 1, 1, 1, 1])
- assert_allclose(windows.boxcar(7), [1, 1, 1, 1, 1, 1, 1])
- assert_allclose(windows.boxcar(6, False), [1, 1, 1, 1, 1, 1])
- cheb_odd_true = array([0.200938, 0.107729, 0.134941, 0.165348,
- 0.198891, 0.235450, 0.274846, 0.316836,
- 0.361119, 0.407338, 0.455079, 0.503883,
- 0.553248, 0.602637, 0.651489, 0.699227,
- 0.745266, 0.789028, 0.829947, 0.867485,
- 0.901138, 0.930448, 0.955010, 0.974482,
- 0.988591, 0.997138, 1.000000, 0.997138,
- 0.988591, 0.974482, 0.955010, 0.930448,
- 0.901138, 0.867485, 0.829947, 0.789028,
- 0.745266, 0.699227, 0.651489, 0.602637,
- 0.553248, 0.503883, 0.455079, 0.407338,
- 0.361119, 0.316836, 0.274846, 0.235450,
- 0.198891, 0.165348, 0.134941, 0.107729,
- 0.200938])
- cheb_even_true = array([0.203894, 0.107279, 0.133904,
- 0.163608, 0.196338, 0.231986,
- 0.270385, 0.311313, 0.354493,
- 0.399594, 0.446233, 0.493983,
- 0.542378, 0.590916, 0.639071,
- 0.686302, 0.732055, 0.775783,
- 0.816944, 0.855021, 0.889525,
- 0.920006, 0.946060, 0.967339,
- 0.983557, 0.994494, 1.000000,
- 1.000000, 0.994494, 0.983557,
- 0.967339, 0.946060, 0.920006,
- 0.889525, 0.855021, 0.816944,
- 0.775783, 0.732055, 0.686302,
- 0.639071, 0.590916, 0.542378,
- 0.493983, 0.446233, 0.399594,
- 0.354493, 0.311313, 0.270385,
- 0.231986, 0.196338, 0.163608,
- 0.133904, 0.107279, 0.203894])
- class TestChebWin:
- def test_basic(self):
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- assert_allclose(windows.chebwin(6, 100),
- [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
- 0.5075781475823447, 0.1046401879356917])
- assert_allclose(windows.chebwin(7, 100),
- [0.05650405062850233, 0.316608530648474,
- 0.7601208123539079, 1.0, 0.7601208123539079,
- 0.316608530648474, 0.05650405062850233])
- assert_allclose(windows.chebwin(6, 10),
- [1.0, 0.6071201674458373, 0.6808391469897297,
- 0.6808391469897297, 0.6071201674458373, 1.0])
- assert_allclose(windows.chebwin(7, 10),
- [1.0, 0.5190521247588651, 0.5864059018130382,
- 0.6101519801307441, 0.5864059018130382,
- 0.5190521247588651, 1.0])
- assert_allclose(windows.chebwin(6, 10, False),
- [1.0, 0.5190521247588651, 0.5864059018130382,
- 0.6101519801307441, 0.5864059018130382,
- 0.5190521247588651])
- def test_cheb_odd_high_attenuation(self):
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- cheb_odd = windows.chebwin(53, at=-40)
- assert_array_almost_equal(cheb_odd, cheb_odd_true, decimal=4)
- def test_cheb_even_high_attenuation(self):
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- cheb_even = windows.chebwin(54, at=40)
- assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
- def test_cheb_odd_low_attenuation(self):
- cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
- 0.610151, 0.586405, 0.519052,
- 1.000000])
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- cheb_odd = windows.chebwin(7, at=10)
- assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
- def test_cheb_even_low_attenuation(self):
- cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
- 0.541338, 0.541338, 0.51027,
- 0.451924, 1.000000])
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- cheb_even = windows.chebwin(8, at=-10)
- assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
- exponential_data = {
- (4, None, 0.2, False):
- array([4.53999297624848542e-05,
- 6.73794699908546700e-03, 1.00000000000000000e+00,
- 6.73794699908546700e-03]),
- (4, None, 0.2, True): array([0.00055308437014783, 0.0820849986238988,
- 0.0820849986238988, 0.00055308437014783]),
- (4, None, 1.0, False): array([0.1353352832366127, 0.36787944117144233, 1.,
- 0.36787944117144233]),
- (4, None, 1.0, True): array([0.22313016014842982, 0.60653065971263342,
- 0.60653065971263342, 0.22313016014842982]),
- (4, 2, 0.2, False):
- array([4.53999297624848542e-05, 6.73794699908546700e-03,
- 1.00000000000000000e+00, 6.73794699908546700e-03]),
- (4, 2, 0.2, True): None,
- (4, 2, 1.0, False): array([0.1353352832366127, 0.36787944117144233, 1.,
- 0.36787944117144233]),
- (4, 2, 1.0, True): None,
- (5, None, 0.2, True):
- array([4.53999297624848542e-05,
- 6.73794699908546700e-03, 1.00000000000000000e+00,
- 6.73794699908546700e-03, 4.53999297624848542e-05]),
- (5, None, 1.0, True): array([0.1353352832366127, 0.36787944117144233, 1.,
- 0.36787944117144233, 0.1353352832366127]),
- (5, 2, 0.2, True): None,
- (5, 2, 1.0, True): None
- }
- def test_exponential():
- for k, v in exponential_data.items():
- if v is None:
- assert_raises(ValueError, windows.exponential, *k)
- else:
- win = windows.exponential(*k)
- assert_allclose(win, v, rtol=1e-14)
- class TestFlatTop:
- def test_basic(self):
- assert_allclose(windows.flattop(6, sym=False),
- [-0.000421051, -0.051263156, 0.19821053, 1.0,
- 0.19821053, -0.051263156])
- assert_allclose(windows.flattop(7, sym=False),
- [-0.000421051, -0.03684078115492348,
- 0.01070371671615342, 0.7808739149387698,
- 0.7808739149387698, 0.01070371671615342,
- -0.03684078115492348])
- assert_allclose(windows.flattop(6),
- [-0.000421051, -0.0677142520762119, 0.6068721525762117,
- 0.6068721525762117, -0.0677142520762119,
- -0.000421051])
- assert_allclose(windows.flattop(7, True),
- [-0.000421051, -0.051263156, 0.19821053, 1.0,
- 0.19821053, -0.051263156, -0.000421051])
- class TestGaussian:
- def test_basic(self):
- assert_allclose(windows.gaussian(6, 1.0),
- [0.04393693362340742, 0.3246524673583497,
- 0.8824969025845955, 0.8824969025845955,
- 0.3246524673583497, 0.04393693362340742])
- assert_allclose(windows.gaussian(7, 1.2),
- [0.04393693362340742, 0.2493522087772962,
- 0.7066482778577162, 1.0, 0.7066482778577162,
- 0.2493522087772962, 0.04393693362340742])
- assert_allclose(windows.gaussian(7, 3),
- [0.6065306597126334, 0.8007374029168081,
- 0.9459594689067654, 1.0, 0.9459594689067654,
- 0.8007374029168081, 0.6065306597126334])
- assert_allclose(windows.gaussian(6, 3, False),
- [0.6065306597126334, 0.8007374029168081,
- 0.9459594689067654, 1.0, 0.9459594689067654,
- 0.8007374029168081])
- class TestGeneralCosine:
- def test_basic(self):
- assert_allclose(windows.general_cosine(5, [0.5, 0.3, 0.2]),
- [0.4, 0.3, 1, 0.3, 0.4])
- assert_allclose(windows.general_cosine(4, [0.5, 0.3, 0.2], sym=False),
- [0.4, 0.3, 1, 0.3])
- class TestGeneralHamming:
- def test_basic(self):
- assert_allclose(windows.general_hamming(5, 0.7),
- [0.4, 0.7, 1.0, 0.7, 0.4])
- assert_allclose(windows.general_hamming(5, 0.75, sym=False),
- [0.5, 0.6727457514, 0.9522542486,
- 0.9522542486, 0.6727457514])
- assert_allclose(windows.general_hamming(6, 0.75, sym=True),
- [0.5, 0.6727457514, 0.9522542486,
- 0.9522542486, 0.6727457514, 0.5])
- class TestHamming:
- def test_basic(self):
- assert_allclose(windows.hamming(6, False),
- [0.08, 0.31, 0.77, 1.0, 0.77, 0.31])
- assert_allclose(windows.hamming(7, sym=False),
- [0.08, 0.2531946911449826, 0.6423596296199047,
- 0.9544456792351128, 0.9544456792351128,
- 0.6423596296199047, 0.2531946911449826])
- assert_allclose(windows.hamming(6),
- [0.08, 0.3978521825875242, 0.9121478174124757,
- 0.9121478174124757, 0.3978521825875242, 0.08])
- assert_allclose(windows.hamming(7, sym=True),
- [0.08, 0.31, 0.77, 1.0, 0.77, 0.31, 0.08])
- class TestHann:
- def test_basic(self):
- assert_allclose(windows.hann(6, sym=False),
- [0, 0.25, 0.75, 1.0, 0.75, 0.25])
- assert_allclose(windows.hann(7, sym=False),
- [0, 0.1882550990706332, 0.6112604669781572,
- 0.9504844339512095, 0.9504844339512095,
- 0.6112604669781572, 0.1882550990706332])
- assert_allclose(windows.hann(6, True),
- [0, 0.3454915028125263, 0.9045084971874737,
- 0.9045084971874737, 0.3454915028125263, 0])
- assert_allclose(windows.hann(7),
- [0, 0.25, 0.75, 1.0, 0.75, 0.25, 0])
- class TestKaiser:
- def test_basic(self):
- assert_allclose(windows.kaiser(6, 0.5),
- [0.9403061933191572, 0.9782962393705389,
- 0.9975765035372042, 0.9975765035372042,
- 0.9782962393705389, 0.9403061933191572])
- assert_allclose(windows.kaiser(7, 0.5),
- [0.9403061933191572, 0.9732402256999829,
- 0.9932754654413773, 1.0, 0.9932754654413773,
- 0.9732402256999829, 0.9403061933191572])
- assert_allclose(windows.kaiser(6, 2.7),
- [0.2603047507678832, 0.6648106293528054,
- 0.9582099802511439, 0.9582099802511439,
- 0.6648106293528054, 0.2603047507678832])
- assert_allclose(windows.kaiser(7, 2.7),
- [0.2603047507678832, 0.5985765418119844,
- 0.8868495172060835, 1.0, 0.8868495172060835,
- 0.5985765418119844, 0.2603047507678832])
- assert_allclose(windows.kaiser(6, 2.7, False),
- [0.2603047507678832, 0.5985765418119844,
- 0.8868495172060835, 1.0, 0.8868495172060835,
- 0.5985765418119844])
- class TestKaiserBesselDerived:
- def test_basic(self):
- M = 100
- w = windows.kaiser_bessel_derived(M, beta=4.0)
- w2 = windows.get_window(('kaiser bessel derived', 4.0),
- M, fftbins=False)
- assert_allclose(w, w2)
- # Test for Princen-Bradley condition
- assert_allclose(w[:M // 2] ** 2 + w[-M // 2:] ** 2, 1.)
- # Test actual values from other implementations
- # M = 2: sqrt(2) / 2
- # M = 4: 0.518562710536, 0.855039598640
- # M = 6: 0.436168993154, 0.707106781187, 0.899864772847
- # Ref:https://github.com/scipy/scipy/pull/4747#issuecomment-172849418
- assert_allclose(windows.kaiser_bessel_derived(2, beta=np.pi / 2)[:1],
- np.sqrt(2) / 2)
- assert_allclose(windows.kaiser_bessel_derived(4, beta=np.pi / 2)[:2],
- [0.518562710536, 0.855039598640])
- assert_allclose(windows.kaiser_bessel_derived(6, beta=np.pi / 2)[:3],
- [0.436168993154, 0.707106781187, 0.899864772847])
- def test_exceptions(self):
- M = 100
- # Assert ValueError for odd window length
- msg = ("Kaiser-Bessel Derived windows are only defined for even "
- "number of points")
- with assert_raises(ValueError, match=msg):
- windows.kaiser_bessel_derived(M + 1, beta=4.)
- # Assert ValueError for non-symmetric setting
- msg = ("Kaiser-Bessel Derived windows are only defined for "
- "symmetric shapes")
- with assert_raises(ValueError, match=msg):
- windows.kaiser_bessel_derived(M + 1, beta=4., sym=False)
- class TestNuttall:
- def test_basic(self):
- assert_allclose(windows.nuttall(6, sym=False),
- [0.0003628, 0.0613345, 0.5292298, 1.0, 0.5292298,
- 0.0613345])
- assert_allclose(windows.nuttall(7, sym=False),
- [0.0003628, 0.03777576895352025, 0.3427276199688195,
- 0.8918518610776603, 0.8918518610776603,
- 0.3427276199688196, 0.0377757689535203])
- assert_allclose(windows.nuttall(6),
- [0.0003628, 0.1105152530498718, 0.7982580969501282,
- 0.7982580969501283, 0.1105152530498719, 0.0003628])
- assert_allclose(windows.nuttall(7, True),
- [0.0003628, 0.0613345, 0.5292298, 1.0, 0.5292298,
- 0.0613345, 0.0003628])
- class TestParzen:
- def test_basic(self):
- assert_allclose(windows.parzen(6),
- [0.009259259259259254, 0.25, 0.8611111111111112,
- 0.8611111111111112, 0.25, 0.009259259259259254])
- assert_allclose(windows.parzen(7, sym=True),
- [0.00583090379008747, 0.1574344023323616,
- 0.6501457725947521, 1.0, 0.6501457725947521,
- 0.1574344023323616, 0.00583090379008747])
- assert_allclose(windows.parzen(6, False),
- [0.00583090379008747, 0.1574344023323616,
- 0.6501457725947521, 1.0, 0.6501457725947521,
- 0.1574344023323616])
- class TestTriang:
- def test_basic(self):
- assert_allclose(windows.triang(6, True),
- [1/6, 1/2, 5/6, 5/6, 1/2, 1/6])
- assert_allclose(windows.triang(7),
- [1/4, 1/2, 3/4, 1, 3/4, 1/2, 1/4])
- assert_allclose(windows.triang(6, sym=False),
- [1/4, 1/2, 3/4, 1, 3/4, 1/2])
- tukey_data = {
- (4, 0.5, True): array([0.0, 1.0, 1.0, 0.0]),
- (4, 0.9, True): array([0.0, 0.84312081893436686,
- 0.84312081893436686, 0.0]),
- (4, 1.0, True): array([0.0, 0.75, 0.75, 0.0]),
- (4, 0.5, False): array([0.0, 1.0, 1.0, 1.0]),
- (4, 0.9, False): array([0.0, 0.58682408883346526,
- 1.0, 0.58682408883346526]),
- (4, 1.0, False): array([0.0, 0.5, 1.0, 0.5]),
- (5, 0.0, True): array([1.0, 1.0, 1.0, 1.0, 1.0]),
- (5, 0.8, True): array([0.0, 0.69134171618254492,
- 1.0, 0.69134171618254492, 0.0]),
- (5, 1.0, True): array([0.0, 0.5, 1.0, 0.5, 0.0]),
- (6, 0): [1, 1, 1, 1, 1, 1],
- (7, 0): [1, 1, 1, 1, 1, 1, 1],
- (6, .25): [0, 1, 1, 1, 1, 0],
- (7, .25): [0, 1, 1, 1, 1, 1, 0],
- (6,): [0, 0.9045084971874737, 1.0, 1.0, 0.9045084971874735, 0],
- (7,): [0, 0.75, 1.0, 1.0, 1.0, 0.75, 0],
- (6, .75): [0, 0.5522642316338269, 1.0, 1.0, 0.5522642316338267, 0],
- (7, .75): [0, 0.4131759111665348, 0.9698463103929542, 1.0,
- 0.9698463103929542, 0.4131759111665347, 0],
- (6, 1): [0, 0.3454915028125263, 0.9045084971874737, 0.9045084971874737,
- 0.3454915028125263, 0],
- (7, 1): [0, 0.25, 0.75, 1.0, 0.75, 0.25, 0],
- }
- class TestTukey:
- def test_basic(self):
- # Test against hardcoded data
- for k, v in tukey_data.items():
- if v is None:
- assert_raises(ValueError, windows.tukey, *k)
- else:
- win = windows.tukey(*k)
- assert_allclose(win, v, rtol=1e-14)
- def test_extremes(self):
- # Test extremes of alpha correspond to boxcar and hann
- tuk0 = windows.tukey(100, 0)
- box0 = windows.boxcar(100)
- assert_array_almost_equal(tuk0, box0)
- tuk1 = windows.tukey(100, 1)
- han1 = windows.hann(100)
- assert_array_almost_equal(tuk1, han1)
- dpss_data = {
- # All values from MATLAB:
- # * taper[1] of (3, 1.4, 3) sign-flipped
- # * taper[3] of (5, 1.5, 5) sign-flipped
- (4, 0.1, 2): ([[0.497943898, 0.502047681, 0.502047681, 0.497943898], [0.670487993, 0.224601537, -0.224601537, -0.670487993]], [0.197961815, 0.002035474]), # noqa
- (3, 1.4, 3): ([[0.410233151, 0.814504464, 0.410233151], [0.707106781, 0.0, -0.707106781], [0.575941629, -0.580157287, 0.575941629]], [0.999998093, 0.998067480, 0.801934426]), # noqa
- (5, 1.5, 5): ([[0.1745071052, 0.4956749177, 0.669109327, 0.495674917, 0.174507105], [0.4399493348, 0.553574369, 0.0, -0.553574369, -0.439949334], [0.631452756, 0.073280238, -0.437943884, 0.073280238, 0.631452756], [0.553574369, -0.439949334, 0.0, 0.439949334, -0.553574369], [0.266110290, -0.498935248, 0.600414741, -0.498935248, 0.266110290147157]], [0.999728571, 0.983706916, 0.768457889, 0.234159338, 0.013947282907567]), # noqa: E501
- (100, 2, 4): ([[0.0030914414, 0.0041266922, 0.005315076, 0.006665149, 0.008184854, 0.0098814158, 0.011761239, 0.013829809, 0.016091597, 0.018549973, 0.02120712, 0.02406396, 0.027120092, 0.030373728, 0.033821651, 0.037459181, 0.041280145, 0.045276872, 0.049440192, 0.053759447, 0.058222524, 0.062815894, 0.067524661, 0.072332638, 0.077222418, 0.082175473, 0.087172252, 0.092192299, 0.097214376, 0.1022166, 0.10717657, 0.11207154, 0.11687856, 0.12157463, 0.12613686, 0.13054266, 0.13476986, 0.13879691, 0.14260302, 0.14616832, 0.14947401, 0.1525025, 0.15523755, 0.15766438, 0.15976981, 0.16154233, 0.16297223, 0.16405162, 0.16477455, 0.16513702, 0.16513702, 0.16477455, 0.16405162, 0.16297223, 0.16154233, 0.15976981, 0.15766438, 0.15523755, 0.1525025, 0.14947401, 0.14616832, 0.14260302, 0.13879691, 0.13476986, 0.13054266, 0.12613686, 0.12157463, 0.11687856, 0.11207154, 0.10717657, 0.1022166, 0.097214376, 0.092192299, 0.087172252, 0.082175473, 0.077222418, 0.072332638, 0.067524661, 0.062815894, 0.058222524, 0.053759447, 0.049440192, 0.045276872, 0.041280145, 0.037459181, 0.033821651, 0.030373728, 0.027120092, 0.02406396, 0.02120712, 0.018549973, 0.016091597, 0.013829809, 0.011761239, 0.0098814158, 0.008184854, 0.006665149, 0.005315076, 0.0041266922, 0.0030914414], [0.018064449, 0.022040342, 0.026325013, 0.030905288, 0.035764398, 0.040881982, 0.046234148, 0.051793558, 0.057529559, 0.063408356, 0.069393216, 0.075444716, 0.081521022, 0.087578202, 0.093570567, 0.099451049, 0.10517159, 0.11068356, 0.11593818, 0.12088699, 0.12548227, 0.12967752, 0.1334279, 0.13669069, 0.13942569, 0.1415957, 0.14316686, 0.14410905, 0.14439626, 0.14400686, 0.14292389, 0.1411353, 0.13863416, 0.13541876, 0.13149274, 0.12686516, 0.12155045, 0.1155684, 0.10894403, 0.10170748, 0.093893752, 0.08554251, 0.076697768, 0.067407559, 0.057723559, 0.04770068, 0.037396627, 0.026871428, 0.016186944, 0.0054063557, -0.0054063557, -0.016186944, -0.026871428, -0.037396627, -0.04770068, -0.057723559, -0.067407559, -0.076697768, -0.08554251, -0.093893752, -0.10170748, -0.10894403, -0.1155684, -0.12155045, -0.12686516, -0.13149274, -0.13541876, -0.13863416, -0.1411353, -0.14292389, -0.14400686, -0.14439626, -0.14410905, -0.14316686, -0.1415957, -0.13942569, -0.13669069, -0.1334279, -0.12967752, -0.12548227, -0.12088699, -0.11593818, -0.11068356, -0.10517159, -0.099451049, -0.093570567, -0.087578202, -0.081521022, -0.075444716, -0.069393216, -0.063408356, -0.057529559, -0.051793558, -0.046234148, -0.040881982, -0.035764398, -0.030905288, -0.026325013, -0.022040342, -0.018064449], [0.064817553, 0.072567801, 0.080292992, 0.087918235, 0.095367076, 0.10256232, 0.10942687, 0.1158846, 0.12186124, 0.12728523, 0.13208858, 0.13620771, 0.13958427, 0.14216587, 0.14390678, 0.14476863, 0.1447209, 0.14374148, 0.14181704, 0.13894336, 0.13512554, 0.13037812, 0.1247251, 0.11819984, 0.11084487, 0.10271159, 0.093859853, 0.084357497, 0.074279719, 0.063708406, 0.052731374, 0.041441525, 0.029935953, 0.018314987, 0.0066811877, -0.0048616765, -0.016209689, -0.027259848, -0.037911124, -0.048065512, -0.05762905, -0.066512804, -0.0746338, -0.081915903, -0.088290621, -0.09369783, -0.098086416, -0.10141482, -0.10365146, -0.10477512, -0.10477512, -0.10365146, -0.10141482, -0.098086416, -0.09369783, -0.088290621, -0.081915903, -0.0746338, -0.066512804, -0.05762905, -0.048065512, -0.037911124, -0.027259848, -0.016209689, -0.0048616765, 0.0066811877, 0.018314987, 0.029935953, 0.041441525, 0.052731374, 0.063708406, 0.074279719, 0.084357497, 0.093859853, 0.10271159, 0.11084487, 0.11819984, 0.1247251, 0.13037812, 0.13512554, 0.13894336, 0.14181704, 0.14374148, 0.1447209, 0.14476863, 0.14390678, 0.14216587, 0.13958427, 0.13620771, 0.13208858, 0.12728523, 0.12186124, 0.1158846, 0.10942687, 0.10256232, 0.095367076, 0.087918235, 0.080292992, 0.072567801, 0.064817553], [0.14985551, 0.15512305, 0.15931467, 0.16236806, 0.16423291, 0.16487165, 0.16426009, 0.1623879, 0.1592589, 0.15489114, 0.14931693, 0.14258255, 0.13474785, 0.1258857, 0.11608124, 0.10543095, 0.094041635, 0.082029213, 0.069517411, 0.056636348, 0.043521028, 0.030309756, 0.017142511, 0.0041592774, -0.0085016282, -0.020705223, -0.032321494, -0.043226982, -0.053306291, -0.062453515, -0.070573544, -0.077583253, -0.083412547, -0.088005244, -0.091319802, -0.093329861, -0.094024602, -0.093408915, -0.091503383, -0.08834406, -0.08398207, -0.078483012, -0.071926192, -0.064403681, -0.056019215, -0.046886954, -0.037130106, -0.026879442, -0.016271713, -0.005448, 0.005448, 0.016271713, 0.026879442, 0.037130106, 0.046886954, 0.056019215, 0.064403681, 0.071926192, 0.078483012, 0.08398207, 0.08834406, 0.091503383, 0.093408915, 0.094024602, 0.093329861, 0.091319802, 0.088005244, 0.083412547, 0.077583253, 0.070573544, 0.062453515, 0.053306291, 0.043226982, 0.032321494, 0.020705223, 0.0085016282, -0.0041592774, -0.017142511, -0.030309756, -0.043521028, -0.056636348, -0.069517411, -0.082029213, -0.094041635, -0.10543095, -0.11608124, -0.1258857, -0.13474785, -0.14258255, -0.14931693, -0.15489114, -0.1592589, -0.1623879, -0.16426009, -0.16487165, -0.16423291, -0.16236806, -0.15931467, -0.15512305, -0.14985551]], [0.999943140, 0.997571533, 0.959465463, 0.721862496]), # noqa: E501
- }
- class TestDPSS:
- def test_basic(self):
- # Test against hardcoded data
- for k, v in dpss_data.items():
- win, ratios = windows.dpss(*k, return_ratios=True)
- assert_allclose(win, v[0], atol=1e-7, err_msg=k)
- assert_allclose(ratios, v[1], rtol=1e-5, atol=1e-7, err_msg=k)
- def test_unity(self):
- # Test unity value handling (gh-2221)
- for M in range(1, 21):
- # corrected w/approximation (default)
- win = windows.dpss(M, M / 2.1)
- expected = M % 2 # one for odd, none for even
- assert_equal(np.isclose(win, 1.).sum(), expected,
- err_msg='%s' % (win,))
- # corrected w/subsample delay (slower)
- win_sub = windows.dpss(M, M / 2.1, norm='subsample')
- if M > 2:
- # @M=2 the subsample doesn't do anything
- assert_equal(np.isclose(win_sub, 1.).sum(), expected,
- err_msg='%s' % (win_sub,))
- assert_allclose(win, win_sub, rtol=0.03) # within 3%
- # not the same, l2-norm
- win_2 = windows.dpss(M, M / 2.1, norm=2)
- expected = 1 if M == 1 else 0
- assert_equal(np.isclose(win_2, 1.).sum(), expected,
- err_msg='%s' % (win_2,))
- def test_extremes(self):
- # Test extremes of alpha
- lam = windows.dpss(31, 6, 4, return_ratios=True)[1]
- assert_array_almost_equal(lam, 1.)
- lam = windows.dpss(31, 7, 4, return_ratios=True)[1]
- assert_array_almost_equal(lam, 1.)
- lam = windows.dpss(31, 8, 4, return_ratios=True)[1]
- assert_array_almost_equal(lam, 1.)
- def test_degenerate(self):
- # Test failures
- assert_raises(ValueError, windows.dpss, 4, 1.5, -1) # Bad Kmax
- assert_raises(ValueError, windows.dpss, 4, 1.5, -5)
- assert_raises(TypeError, windows.dpss, 4, 1.5, 1.1)
- assert_raises(ValueError, windows.dpss, 3, 1.5, 3) # NW must be < N/2.
- assert_raises(ValueError, windows.dpss, 3, -1, 3) # NW must be pos
- assert_raises(ValueError, windows.dpss, 3, 0, 3)
- assert_raises(ValueError, windows.dpss, -1, 1, 3) # negative M
- class TestLanczos:
- def test_basic(self):
- # Analytical results:
- # sinc(x) = sinc(-x)
- # sinc(pi) = 0, sinc(0) = 1
- # Hand computation on WolframAlpha:
- # sinc(2 pi / 3) = 0.413496672
- # sinc(pi / 3) = 0.826993343
- # sinc(3 pi / 5) = 0.504551152
- # sinc(pi / 5) = 0.935489284
- assert_allclose(windows.lanczos(6, sym=False),
- [0., 0.413496672,
- 0.826993343, 1., 0.826993343,
- 0.413496672],
- atol=1e-9)
- assert_allclose(windows.lanczos(6),
- [0., 0.504551152,
- 0.935489284, 0.935489284,
- 0.504551152, 0.],
- atol=1e-9)
- assert_allclose(windows.lanczos(7, sym=True),
- [0., 0.413496672,
- 0.826993343, 1., 0.826993343,
- 0.413496672, 0.],
- atol=1e-9)
- def test_array_size(self):
- for n in [0, 10, 11]:
- assert_equal(len(windows.lanczos(n, sym=False)), n)
- assert_equal(len(windows.lanczos(n, sym=True)), n)
- class TestGetWindow:
- def test_boxcar(self):
- w = windows.get_window('boxcar', 12)
- assert_array_equal(w, np.ones_like(w))
- # window is a tuple of len 1
- w = windows.get_window(('boxcar',), 16)
- assert_array_equal(w, np.ones_like(w))
- def test_cheb_odd(self):
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- w = windows.get_window(('chebwin', -40), 53, fftbins=False)
- assert_array_almost_equal(w, cheb_odd_true, decimal=4)
- def test_cheb_even(self):
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- w = windows.get_window(('chebwin', 40), 54, fftbins=False)
- assert_array_almost_equal(w, cheb_even_true, decimal=4)
- def test_dpss(self):
- win1 = windows.get_window(('dpss', 3), 64, fftbins=False)
- win2 = windows.dpss(64, 3)
- assert_array_almost_equal(win1, win2, decimal=4)
- def test_kaiser_float(self):
- win1 = windows.get_window(7.2, 64)
- win2 = windows.kaiser(64, 7.2, False)
- assert_allclose(win1, win2)
- def test_invalid_inputs(self):
- # Window is not a float, tuple, or string
- assert_raises(ValueError, windows.get_window, set('hann'), 8)
- # Unknown window type error
- assert_raises(ValueError, windows.get_window, 'broken', 4)
- def test_array_as_window(self):
- # github issue 3603
- osfactor = 128
- sig = np.arange(128)
- win = windows.get_window(('kaiser', 8.0), osfactor // 2)
- with assert_raises(ValueError, match='must have the same length'):
- resample(sig, len(sig) * osfactor, window=win)
- def test_general_cosine(self):
- assert_allclose(get_window(('general_cosine', [0.5, 0.3, 0.2]), 4),
- [0.4, 0.3, 1, 0.3])
- assert_allclose(get_window(('general_cosine', [0.5, 0.3, 0.2]), 4,
- fftbins=False),
- [0.4, 0.55, 0.55, 0.4])
- def test_general_hamming(self):
- assert_allclose(get_window(('general_hamming', 0.7), 5),
- [0.4, 0.6072949, 0.9427051, 0.9427051, 0.6072949])
- assert_allclose(get_window(('general_hamming', 0.7), 5, fftbins=False),
- [0.4, 0.7, 1.0, 0.7, 0.4])
- def test_lanczos(self):
- assert_allclose(get_window('lanczos', 6),
- [0., 0.413496672, 0.826993343, 1., 0.826993343,
- 0.413496672], atol=1e-9)
- assert_allclose(get_window('lanczos', 6, fftbins=False),
- [0., 0.504551152, 0.935489284, 0.935489284,
- 0.504551152, 0.], atol=1e-9)
- assert_allclose(get_window('lanczos', 6), get_window('sinc', 6))
- def test_windowfunc_basics():
- for window_name, params in window_funcs:
- window = getattr(windows, window_name)
- with suppress_warnings() as sup:
- sup.filter(UserWarning, "This window is not suitable")
- # Check symmetry for odd and even lengths
- w1 = window(8, *params, sym=True)
- w2 = window(7, *params, sym=False)
- assert_array_almost_equal(w1[:-1], w2)
- w1 = window(9, *params, sym=True)
- w2 = window(8, *params, sym=False)
- assert_array_almost_equal(w1[:-1], w2)
- # Check that functions run and output lengths are correct
- assert_equal(len(window(6, *params, sym=True)), 6)
- assert_equal(len(window(6, *params, sym=False)), 6)
- assert_equal(len(window(7, *params, sym=True)), 7)
- assert_equal(len(window(7, *params, sym=False)), 7)
- # Check invalid lengths
- assert_raises(ValueError, window, 5.5, *params)
- assert_raises(ValueError, window, -7, *params)
- # Check degenerate cases
- assert_array_equal(window(0, *params, sym=True), [])
- assert_array_equal(window(0, *params, sym=False), [])
- assert_array_equal(window(1, *params, sym=True), [1])
- assert_array_equal(window(1, *params, sym=False), [1])
- # Check dtype
- assert_(window(0, *params, sym=True).dtype == 'float')
- assert_(window(0, *params, sym=False).dtype == 'float')
- assert_(window(1, *params, sym=True).dtype == 'float')
- assert_(window(1, *params, sym=False).dtype == 'float')
- assert_(window(6, *params, sym=True).dtype == 'float')
- assert_(window(6, *params, sym=False).dtype == 'float')
- # Check normalization
- assert_array_less(window(10, *params, sym=True), 1.01)
- assert_array_less(window(10, *params, sym=False), 1.01)
- assert_array_less(window(9, *params, sym=True), 1.01)
- assert_array_less(window(9, *params, sym=False), 1.01)
- # Check that DFT-even spectrum is purely real for odd and even
- assert_allclose(fft(window(10, *params, sym=False)).imag,
- 0, atol=1e-14)
- assert_allclose(fft(window(11, *params, sym=False)).imag,
- 0, atol=1e-14)
- def test_needs_params():
- for winstr in ['kaiser', 'ksr', 'kaiser_bessel_derived', 'kbd',
- 'gaussian', 'gauss', 'gss',
- 'general gaussian', 'general_gaussian',
- 'general gauss', 'general_gauss', 'ggs',
- 'dss', 'dpss', 'general cosine', 'general_cosine',
- 'chebwin', 'cheb', 'general hamming', 'general_hamming',
- ]:
- assert_raises(ValueError, get_window, winstr, 7)
- def test_not_needs_params():
- for winstr in ['barthann',
- 'bartlett',
- 'blackman',
- 'blackmanharris',
- 'bohman',
- 'boxcar',
- 'cosine',
- 'flattop',
- 'hamming',
- 'nuttall',
- 'parzen',
- 'taylor',
- 'exponential',
- 'poisson',
- 'tukey',
- 'tuk',
- 'triangle',
- 'lanczos',
- 'sinc',
- ]:
- win = get_window(winstr, 7)
- assert_equal(len(win), 7)
- def test_deprecation():
- if dep_hann.__doc__ is not None: # can be None with `-OO` mode
- assert_('signal.hann is deprecated' in dep_hann.__doc__)
- assert_('deprecated' not in windows.hann.__doc__)
- def test_deprecated_pickleable():
- dep_hann2 = pickle.loads(pickle.dumps(dep_hann))
- assert_(dep_hann2 is dep_hann)
- def test_symmetric():
- for win in [windows.lanczos]:
- # Even sampling points
- w = win(4096)
- error = np.max(np.abs(w-np.flip(w)))
- assert_equal(error, 0.0)
- # Odd sampling points
- w = win(4097)
- error = np.max(np.abs(w-np.flip(w)))
- assert_equal(error, 0.0)
|