123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351 |
- import numpy as np
- from numpy.testing import (assert_almost_equal, assert_equal,
- assert_, assert_allclose, assert_array_equal)
- from pytest import raises as assert_raises
- import scipy.signal._waveforms as waveforms
- # These chirp_* functions are the instantaneous frequencies of the signals
- # returned by chirp().
- def chirp_linear(t, f0, f1, t1):
- f = f0 + (f1 - f0) * t / t1
- return f
- def chirp_quadratic(t, f0, f1, t1, vertex_zero=True):
- if vertex_zero:
- f = f0 + (f1 - f0) * t**2 / t1**2
- else:
- f = f1 - (f1 - f0) * (t1 - t)**2 / t1**2
- return f
- def chirp_geometric(t, f0, f1, t1):
- f = f0 * (f1/f0)**(t/t1)
- return f
- def chirp_hyperbolic(t, f0, f1, t1):
- f = f0*f1*t1 / ((f0 - f1)*t + f1*t1)
- return f
- def compute_frequency(t, theta):
- """
- Compute theta'(t)/(2*pi), where theta'(t) is the derivative of theta(t).
- """
- # Assume theta and t are 1-D NumPy arrays.
- # Assume that t is uniformly spaced.
- dt = t[1] - t[0]
- f = np.diff(theta)/(2*np.pi) / dt
- tf = 0.5*(t[1:] + t[:-1])
- return tf, f
- class TestChirp:
- def test_linear_at_zero(self):
- w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='linear')
- assert_almost_equal(w, 1.0)
- def test_linear_freq_01(self):
- method = 'linear'
- f0 = 1.0
- f1 = 2.0
- t1 = 1.0
- t = np.linspace(0, t1, 100)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_linear(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_linear_freq_02(self):
- method = 'linear'
- f0 = 200.0
- f1 = 100.0
- t1 = 10.0
- t = np.linspace(0, t1, 100)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_linear(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_quadratic_at_zero(self):
- w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='quadratic')
- assert_almost_equal(w, 1.0)
- def test_quadratic_at_zero2(self):
- w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='quadratic',
- vertex_zero=False)
- assert_almost_equal(w, 1.0)
- def test_quadratic_freq_01(self):
- method = 'quadratic'
- f0 = 1.0
- f1 = 2.0
- t1 = 1.0
- t = np.linspace(0, t1, 2000)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_quadratic(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_quadratic_freq_02(self):
- method = 'quadratic'
- f0 = 20.0
- f1 = 10.0
- t1 = 10.0
- t = np.linspace(0, t1, 2000)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_quadratic(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_logarithmic_at_zero(self):
- w = waveforms.chirp(t=0, f0=1.0, f1=2.0, t1=1.0, method='logarithmic')
- assert_almost_equal(w, 1.0)
- def test_logarithmic_freq_01(self):
- method = 'logarithmic'
- f0 = 1.0
- f1 = 2.0
- t1 = 1.0
- t = np.linspace(0, t1, 10000)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_geometric(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_logarithmic_freq_02(self):
- method = 'logarithmic'
- f0 = 200.0
- f1 = 100.0
- t1 = 10.0
- t = np.linspace(0, t1, 10000)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_geometric(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_logarithmic_freq_03(self):
- method = 'logarithmic'
- f0 = 100.0
- f1 = 100.0
- t1 = 10.0
- t = np.linspace(0, t1, 10000)
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- abserr = np.max(np.abs(f - chirp_geometric(tf, f0, f1, t1)))
- assert_(abserr < 1e-6)
- def test_hyperbolic_at_zero(self):
- w = waveforms.chirp(t=0, f0=10.0, f1=1.0, t1=1.0, method='hyperbolic')
- assert_almost_equal(w, 1.0)
- def test_hyperbolic_freq_01(self):
- method = 'hyperbolic'
- t1 = 1.0
- t = np.linspace(0, t1, 10000)
- # f0 f1
- cases = [[10.0, 1.0],
- [1.0, 10.0],
- [-10.0, -1.0],
- [-1.0, -10.0]]
- for f0, f1 in cases:
- phase = waveforms._chirp_phase(t, f0, t1, f1, method)
- tf, f = compute_frequency(t, phase)
- expected = chirp_hyperbolic(tf, f0, f1, t1)
- assert_allclose(f, expected)
- def test_hyperbolic_zero_freq(self):
- # f0=0 or f1=0 must raise a ValueError.
- method = 'hyperbolic'
- t1 = 1.0
- t = np.linspace(0, t1, 5)
- assert_raises(ValueError, waveforms.chirp, t, 0, t1, 1, method)
- assert_raises(ValueError, waveforms.chirp, t, 1, t1, 0, method)
- def test_unknown_method(self):
- method = "foo"
- f0 = 10.0
- f1 = 20.0
- t1 = 1.0
- t = np.linspace(0, t1, 10)
- assert_raises(ValueError, waveforms.chirp, t, f0, t1, f1, method)
- def test_integer_t1(self):
- f0 = 10.0
- f1 = 20.0
- t = np.linspace(-1, 1, 11)
- t1 = 3.0
- float_result = waveforms.chirp(t, f0, t1, f1)
- t1 = 3
- int_result = waveforms.chirp(t, f0, t1, f1)
- err_msg = "Integer input 't1=3' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- def test_integer_f0(self):
- f1 = 20.0
- t1 = 3.0
- t = np.linspace(-1, 1, 11)
- f0 = 10.0
- float_result = waveforms.chirp(t, f0, t1, f1)
- f0 = 10
- int_result = waveforms.chirp(t, f0, t1, f1)
- err_msg = "Integer input 'f0=10' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- def test_integer_f1(self):
- f0 = 10.0
- t1 = 3.0
- t = np.linspace(-1, 1, 11)
- f1 = 20.0
- float_result = waveforms.chirp(t, f0, t1, f1)
- f1 = 20
- int_result = waveforms.chirp(t, f0, t1, f1)
- err_msg = "Integer input 'f1=20' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- def test_integer_all(self):
- f0 = 10
- t1 = 3
- f1 = 20
- t = np.linspace(-1, 1, 11)
- float_result = waveforms.chirp(t, float(f0), float(t1), float(f1))
- int_result = waveforms.chirp(t, f0, t1, f1)
- err_msg = "Integer input 'f0=10, t1=3, f1=20' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- class TestSweepPoly:
- def test_sweep_poly_quad1(self):
- p = np.poly1d([1.0, 0.0, 1.0])
- t = np.linspace(0, 3.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = p(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- def test_sweep_poly_const(self):
- p = np.poly1d(2.0)
- t = np.linspace(0, 3.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = p(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- def test_sweep_poly_linear(self):
- p = np.poly1d([-1.0, 10.0])
- t = np.linspace(0, 3.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = p(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- def test_sweep_poly_quad2(self):
- p = np.poly1d([1.0, 0.0, -2.0])
- t = np.linspace(0, 3.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = p(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- def test_sweep_poly_cubic(self):
- p = np.poly1d([2.0, 1.0, 0.0, -2.0])
- t = np.linspace(0, 2.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = p(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- def test_sweep_poly_cubic2(self):
- """Use an array of coefficients instead of a poly1d."""
- p = np.array([2.0, 1.0, 0.0, -2.0])
- t = np.linspace(0, 2.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = np.poly1d(p)(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- def test_sweep_poly_cubic3(self):
- """Use a list of coefficients instead of a poly1d."""
- p = [2.0, 1.0, 0.0, -2.0]
- t = np.linspace(0, 2.0, 10000)
- phase = waveforms._sweep_poly_phase(t, p)
- tf, f = compute_frequency(t, phase)
- expected = np.poly1d(p)(tf)
- abserr = np.max(np.abs(f - expected))
- assert_(abserr < 1e-6)
- class TestGaussPulse:
- def test_integer_fc(self):
- float_result = waveforms.gausspulse('cutoff', fc=1000.0)
- int_result = waveforms.gausspulse('cutoff', fc=1000)
- err_msg = "Integer input 'fc=1000' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- def test_integer_bw(self):
- float_result = waveforms.gausspulse('cutoff', bw=1.0)
- int_result = waveforms.gausspulse('cutoff', bw=1)
- err_msg = "Integer input 'bw=1' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- def test_integer_bwr(self):
- float_result = waveforms.gausspulse('cutoff', bwr=-6.0)
- int_result = waveforms.gausspulse('cutoff', bwr=-6)
- err_msg = "Integer input 'bwr=-6' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- def test_integer_tpr(self):
- float_result = waveforms.gausspulse('cutoff', tpr=-60.0)
- int_result = waveforms.gausspulse('cutoff', tpr=-60)
- err_msg = "Integer input 'tpr=-60' gives wrong result"
- assert_equal(int_result, float_result, err_msg=err_msg)
- class TestUnitImpulse:
- def test_no_index(self):
- assert_array_equal(waveforms.unit_impulse(7), [1, 0, 0, 0, 0, 0, 0])
- assert_array_equal(waveforms.unit_impulse((3, 3)),
- [[1, 0, 0], [0, 0, 0], [0, 0, 0]])
- def test_index(self):
- assert_array_equal(waveforms.unit_impulse(10, 3),
- [0, 0, 0, 1, 0, 0, 0, 0, 0, 0])
- assert_array_equal(waveforms.unit_impulse((3, 3), (1, 1)),
- [[0, 0, 0], [0, 1, 0], [0, 0, 0]])
- # Broadcasting
- imp = waveforms.unit_impulse((4, 4), 2)
- assert_array_equal(imp, np.array([[0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 0]]))
- def test_mid(self):
- assert_array_equal(waveforms.unit_impulse((3, 3), 'mid'),
- [[0, 0, 0], [0, 1, 0], [0, 0, 0]])
- assert_array_equal(waveforms.unit_impulse(9, 'mid'),
- [0, 0, 0, 0, 1, 0, 0, 0, 0])
- def test_dtype(self):
- imp = waveforms.unit_impulse(7)
- assert_(np.issubdtype(imp.dtype, np.floating))
- imp = waveforms.unit_impulse(5, 3, dtype=int)
- assert_(np.issubdtype(imp.dtype, np.integer))
- imp = waveforms.unit_impulse((5, 2), (3, 1), dtype=complex)
- assert_(np.issubdtype(imp.dtype, np.complexfloating))
|