123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- # Code adapted from "upfirdn" python library with permission:
- #
- # Copyright (c) 2009, Motorola, Inc
- #
- # All Rights Reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are
- # met:
- #
- # * Redistributions of source code must retain the above copyright notice,
- # this list of conditions and the following disclaimer.
- #
- # * Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- #
- # * Neither the name of Motorola nor the names of its contributors may be
- # used to endorse or promote products derived from this software without
- # specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
- # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
- # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
- # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- import numpy as np
- from itertools import product
- from numpy.testing import assert_equal, assert_allclose
- from pytest import raises as assert_raises
- import pytest
- from scipy.signal import upfirdn, firwin
- from scipy.signal._upfirdn import _output_len, _upfirdn_modes
- from scipy.signal._upfirdn_apply import _pad_test
- def upfirdn_naive(x, h, up=1, down=1):
- """Naive upfirdn processing in Python.
- Note: arg order (x, h) differs to facilitate apply_along_axis use.
- """
- h = np.asarray(h)
- out = np.zeros(len(x) * up, x.dtype)
- out[::up] = x
- out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)]
- return out
- class UpFIRDnCase:
- """Test _UpFIRDn object"""
- def __init__(self, up, down, h, x_dtype):
- self.up = up
- self.down = down
- self.h = np.atleast_1d(h)
- self.x_dtype = x_dtype
- self.rng = np.random.RandomState(17)
- def __call__(self):
- # tiny signal
- self.scrub(np.ones(1, self.x_dtype))
- # ones
- self.scrub(np.ones(10, self.x_dtype)) # ones
- # randn
- x = self.rng.randn(10).astype(self.x_dtype)
- if self.x_dtype in (np.complex64, np.complex128):
- x += 1j * self.rng.randn(10)
- self.scrub(x)
- # ramp
- self.scrub(np.arange(10).astype(self.x_dtype))
- # 3D, random
- size = (2, 3, 5)
- x = self.rng.randn(*size).astype(self.x_dtype)
- if self.x_dtype in (np.complex64, np.complex128):
- x += 1j * self.rng.randn(*size)
- for axis in range(len(size)):
- self.scrub(x, axis=axis)
- x = x[:, ::2, 1::3].T
- for axis in range(len(size)):
- self.scrub(x, axis=axis)
- def scrub(self, x, axis=-1):
- yr = np.apply_along_axis(upfirdn_naive, axis, x,
- self.h, self.up, self.down)
- want_len = _output_len(len(self.h), x.shape[axis], self.up, self.down)
- assert yr.shape[axis] == want_len
- y = upfirdn(self.h, x, self.up, self.down, axis=axis)
- assert y.shape[axis] == want_len
- assert y.shape == yr.shape
- dtypes = (self.h.dtype, x.dtype)
- if all(d == np.complex64 for d in dtypes):
- assert_equal(y.dtype, np.complex64)
- elif np.complex64 in dtypes and np.float32 in dtypes:
- assert_equal(y.dtype, np.complex64)
- elif all(d == np.float32 for d in dtypes):
- assert_equal(y.dtype, np.float32)
- elif np.complex128 in dtypes or np.complex64 in dtypes:
- assert_equal(y.dtype, np.complex128)
- else:
- assert_equal(y.dtype, np.float64)
- assert_allclose(yr, y)
- _UPFIRDN_TYPES = (int, np.float32, np.complex64, float, complex)
- class TestUpfirdn:
- def test_valid_input(self):
- assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1
- assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1
- assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1)
- @pytest.mark.parametrize('len_h', [1, 2, 3, 4, 5])
- @pytest.mark.parametrize('len_x', [1, 2, 3, 4, 5])
- def test_singleton(self, len_h, len_x):
- # gh-9844: lengths producing expected outputs
- h = np.zeros(len_h)
- h[len_h // 2] = 1. # make h a delta
- x = np.ones(len_x)
- y = upfirdn(h, x, 1, 1)
- want = np.pad(x, (len_h // 2, (len_h - 1) // 2), 'constant')
- assert_allclose(y, want)
- def test_shift_x(self):
- # gh-9844: shifted x can change values?
- y = upfirdn([1, 1], [1.], 1, 1)
- assert_allclose(y, [1, 1]) # was [0, 1] in the issue
- y = upfirdn([1, 1], [0., 1.], 1, 1)
- assert_allclose(y, [0, 1, 1])
- # A bunch of lengths/factors chosen because they exposed differences
- # between the "old way" and new way of computing length, and then
- # got `expected` from MATLAB
- @pytest.mark.parametrize('len_h, len_x, up, down, expected', [
- (2, 2, 5, 2, [1, 0, 0, 0]),
- (2, 3, 6, 3, [1, 0, 1, 0, 1]),
- (2, 4, 4, 3, [1, 0, 0, 0, 1]),
- (3, 2, 6, 2, [1, 0, 0, 1, 0]),
- (4, 11, 3, 5, [1, 0, 0, 1, 0, 0, 1]),
- ])
- def test_length_factors(self, len_h, len_x, up, down, expected):
- # gh-9844: weird factors
- h = np.zeros(len_h)
- h[0] = 1.
- x = np.ones(len_x)
- y = upfirdn(h, x, up, down)
- assert_allclose(y, expected)
- @pytest.mark.parametrize('down, want_len', [ # lengths from MATLAB
- (2, 5015),
- (11, 912),
- (79, 127),
- ])
- def test_vs_convolve(self, down, want_len):
- # Check that up=1.0 gives same answer as convolve + slicing
- random_state = np.random.RandomState(17)
- try_types = (int, np.float32, np.complex64, float, complex)
- size = 10000
- for dtype in try_types:
- x = random_state.randn(size).astype(dtype)
- if dtype in (np.complex64, np.complex128):
- x += 1j * random_state.randn(size)
- h = firwin(31, 1. / down, window='hamming')
- yl = upfirdn_naive(x, h, 1, down)
- y = upfirdn(h, x, up=1, down=down)
- assert y.shape == (want_len,)
- assert yl.shape[0] == y.shape[0]
- assert_allclose(yl, y, atol=1e-7, rtol=1e-7)
- @pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
- @pytest.mark.parametrize('h', (1., 1j))
- @pytest.mark.parametrize('up, down', [(1, 1), (2, 2), (3, 2), (2, 3)])
- def test_vs_naive_delta(self, x_dtype, h, up, down):
- UpFIRDnCase(up, down, h, x_dtype)()
- @pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
- @pytest.mark.parametrize('h_dtype', _UPFIRDN_TYPES)
- @pytest.mark.parametrize('p_max, q_max',
- list(product((10, 100), (10, 100))))
- def test_vs_naive(self, x_dtype, h_dtype, p_max, q_max):
- tests = self._random_factors(p_max, q_max, h_dtype, x_dtype)
- for test in tests:
- test()
- def _random_factors(self, p_max, q_max, h_dtype, x_dtype):
- n_rep = 3
- longest_h = 25
- random_state = np.random.RandomState(17)
- tests = []
- for _ in range(n_rep):
- # Randomize the up/down factors somewhat
- p_add = q_max if p_max > q_max else 1
- q_add = p_max if q_max > p_max else 1
- p = random_state.randint(p_max) + p_add
- q = random_state.randint(q_max) + q_add
- # Generate random FIR coefficients
- len_h = random_state.randint(longest_h) + 1
- h = np.atleast_1d(random_state.randint(len_h))
- h = h.astype(h_dtype)
- if h_dtype == complex:
- h += 1j * random_state.randint(len_h)
- tests.append(UpFIRDnCase(p, q, h, x_dtype))
- return tests
- @pytest.mark.parametrize('mode', _upfirdn_modes)
- def test_extensions(self, mode):
- """Test vs. manually computed results for modes not in numpy's pad."""
- x = np.array([1, 2, 3, 1], dtype=float)
- npre, npost = 6, 6
- y = _pad_test(x, npre=npre, npost=npost, mode=mode)
- if mode == 'antisymmetric':
- y_expected = np.asarray(
- [3, 1, -1, -3, -2, -1, 1, 2, 3, 1, -1, -3, -2, -1, 1, 2])
- elif mode == 'antireflect':
- y_expected = np.asarray(
- [1, 2, 3, 1, -1, 0, 1, 2, 3, 1, -1, 0, 1, 2, 3, 1])
- elif mode == 'smooth':
- y_expected = np.asarray(
- [-5, -4, -3, -2, -1, 0, 1, 2, 3, 1, -1, -3, -5, -7, -9, -11])
- elif mode == "line":
- lin_slope = (x[-1] - x[0]) / (len(x) - 1)
- left = x[0] + np.arange(-npre, 0, 1) * lin_slope
- right = x[-1] + np.arange(1, npost + 1) * lin_slope
- y_expected = np.concatenate((left, x, right))
- else:
- y_expected = np.pad(x, (npre, npost), mode=mode)
- assert_allclose(y, y_expected)
- @pytest.mark.parametrize(
- 'size, h_len, mode, dtype',
- product(
- [8],
- [4, 5, 26], # include cases with h_len > 2*size
- _upfirdn_modes,
- [np.float32, np.float64, np.complex64, np.complex128],
- )
- )
- def test_modes(self, size, h_len, mode, dtype):
- random_state = np.random.RandomState(5)
- x = random_state.randn(size).astype(dtype)
- if dtype in (np.complex64, np.complex128):
- x += 1j * random_state.randn(size)
- h = np.arange(1, 1 + h_len, dtype=x.real.dtype)
- y = upfirdn(h, x, up=1, down=1, mode=mode)
- # expected result: pad the input, filter with zero padding, then crop
- npad = h_len - 1
- if mode in ['antisymmetric', 'antireflect', 'smooth', 'line']:
- # use _pad_test test function for modes not supported by np.pad.
- xpad = _pad_test(x, npre=npad, npost=npad, mode=mode)
- else:
- xpad = np.pad(x, npad, mode=mode)
- ypad = upfirdn(h, xpad, up=1, down=1, mode='constant')
- y_expected = ypad[npad:-npad]
- atol = rtol = np.finfo(dtype).eps * 1e2
- assert_allclose(y, y_expected, atol=atol, rtol=rtol)
- def test_output_len_long_input():
- # Regression test for gh-17375. On Windows, a large enough input
- # that should have been well within the capabilities of 64 bit integers
- # would result in a 32 bit overflow because of a bug in Cython 0.29.32.
- len_h = 1001
- in_len = 10**8
- up = 320
- down = 441
- out_len = _output_len(len_h, in_len, up, down)
- # The expected value was computed "by hand" from the formula
- # (((in_len - 1) * up + len_h) - 1) // down + 1
- assert out_len == 72562360
|