12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575 |
- # -*- coding: utf-8 -*-
- import sys
- from concurrent.futures import ThreadPoolExecutor, as_completed
- from decimal import Decimal
- from itertools import product
- from math import gcd
- import pytest
- from pytest import raises as assert_raises
- from numpy.testing import (
- assert_equal,
- assert_almost_equal, assert_array_equal, assert_array_almost_equal,
- assert_allclose, assert_, assert_array_less,
- suppress_warnings)
- from numpy import array, arange
- import numpy as np
- from scipy.fft import fft
- from scipy.ndimage import correlate1d
- from scipy.optimize import fmin, linear_sum_assignment
- from scipy import signal
- from scipy.signal import (
- correlate, correlate2d, correlation_lags, convolve, convolve2d,
- fftconvolve, oaconvolve, choose_conv_method,
- hilbert, hilbert2, lfilter, lfilter_zi, filtfilt, butter, zpk2tf, zpk2sos,
- invres, invresz, vectorstrength, lfiltic, tf2sos, sosfilt, sosfiltfilt,
- sosfilt_zi, tf2zpk, BadCoefficients, detrend, unique_roots, residue,
- residuez)
- from scipy.signal.windows import hann
- from scipy.signal._signaltools import (_filtfilt_gust, _compute_factors,
- _group_poles)
- from scipy.signal._upfirdn import _upfirdn_modes
- from scipy._lib import _testutils
- class _TestConvolve:
- def test_basic(self):
- a = [3, 4, 5, 6, 5, 4]
- b = [1, 2, 3]
- c = convolve(a, b)
- assert_array_equal(c, array([3, 10, 22, 28, 32, 32, 23, 12]))
- def test_same(self):
- a = [3, 4, 5]
- b = [1, 2, 3, 4]
- c = convolve(a, b, mode="same")
- assert_array_equal(c, array([10, 22, 34]))
- def test_same_eq(self):
- a = [3, 4, 5]
- b = [1, 2, 3]
- c = convolve(a, b, mode="same")
- assert_array_equal(c, array([10, 22, 22]))
- def test_complex(self):
- x = array([1 + 1j, 2 + 1j, 3 + 1j])
- y = array([1 + 1j, 2 + 1j])
- z = convolve(x, y)
- assert_array_equal(z, array([2j, 2 + 6j, 5 + 8j, 5 + 5j]))
- def test_zero_rank(self):
- a = 1289
- b = 4567
- c = convolve(a, b)
- assert_equal(c, a * b)
- def test_broadcastable(self):
- a = np.arange(27).reshape(3, 3, 3)
- b = np.arange(3)
- for i in range(3):
- b_shape = [1]*3
- b_shape[i] = 3
- x = convolve(a, b.reshape(b_shape), method='direct')
- y = convolve(a, b.reshape(b_shape), method='fft')
- assert_allclose(x, y)
- def test_single_element(self):
- a = array([4967])
- b = array([3920])
- c = convolve(a, b)
- assert_equal(c, a * b)
- def test_2d_arrays(self):
- a = [[1, 2, 3], [3, 4, 5]]
- b = [[2, 3, 4], [4, 5, 6]]
- c = convolve(a, b)
- d = array([[2, 7, 16, 17, 12],
- [10, 30, 62, 58, 38],
- [12, 31, 58, 49, 30]])
- assert_array_equal(c, d)
- def test_input_swapping(self):
- small = arange(8).reshape(2, 2, 2)
- big = 1j * arange(27).reshape(3, 3, 3)
- big += arange(27)[::-1].reshape(3, 3, 3)
- out_array = array(
- [[[0 + 0j, 26 + 0j, 25 + 1j, 24 + 2j],
- [52 + 0j, 151 + 5j, 145 + 11j, 93 + 11j],
- [46 + 6j, 133 + 23j, 127 + 29j, 81 + 23j],
- [40 + 12j, 98 + 32j, 93 + 37j, 54 + 24j]],
- [[104 + 0j, 247 + 13j, 237 + 23j, 135 + 21j],
- [282 + 30j, 632 + 96j, 604 + 124j, 330 + 86j],
- [246 + 66j, 548 + 180j, 520 + 208j, 282 + 134j],
- [142 + 66j, 307 + 161j, 289 + 179j, 153 + 107j]],
- [[68 + 36j, 157 + 103j, 147 + 113j, 81 + 75j],
- [174 + 138j, 380 + 348j, 352 + 376j, 186 + 230j],
- [138 + 174j, 296 + 432j, 268 + 460j, 138 + 278j],
- [70 + 138j, 145 + 323j, 127 + 341j, 63 + 197j]],
- [[32 + 72j, 68 + 166j, 59 + 175j, 30 + 100j],
- [68 + 192j, 139 + 433j, 117 + 455j, 57 + 255j],
- [38 + 222j, 73 + 499j, 51 + 521j, 21 + 291j],
- [12 + 144j, 20 + 318j, 7 + 331j, 0 + 182j]]])
- assert_array_equal(convolve(small, big, 'full'), out_array)
- assert_array_equal(convolve(big, small, 'full'), out_array)
- assert_array_equal(convolve(small, big, 'same'),
- out_array[1:3, 1:3, 1:3])
- assert_array_equal(convolve(big, small, 'same'),
- out_array[0:3, 0:3, 0:3])
- assert_array_equal(convolve(small, big, 'valid'),
- out_array[1:3, 1:3, 1:3])
- assert_array_equal(convolve(big, small, 'valid'),
- out_array[1:3, 1:3, 1:3])
- def test_invalid_params(self):
- a = [3, 4, 5]
- b = [1, 2, 3]
- assert_raises(ValueError, convolve, a, b, mode='spam')
- assert_raises(ValueError, convolve, a, b, mode='eggs', method='fft')
- assert_raises(ValueError, convolve, a, b, mode='ham', method='direct')
- assert_raises(ValueError, convolve, a, b, mode='full', method='bacon')
- assert_raises(ValueError, convolve, a, b, mode='same', method='bacon')
- class TestConvolve(_TestConvolve):
- def test_valid_mode2(self):
- # See gh-5897
- a = [1, 2, 3, 6, 5, 3]
- b = [2, 3, 4, 5, 3, 4, 2, 2, 1]
- expected = [70, 78, 73, 65]
- out = convolve(a, b, 'valid')
- assert_array_equal(out, expected)
- out = convolve(b, a, 'valid')
- assert_array_equal(out, expected)
- a = [1 + 5j, 2 - 1j, 3 + 0j]
- b = [2 - 3j, 1 + 0j]
- expected = [2 - 3j, 8 - 10j]
- out = convolve(a, b, 'valid')
- assert_array_equal(out, expected)
- out = convolve(b, a, 'valid')
- assert_array_equal(out, expected)
- def test_same_mode(self):
- a = [1, 2, 3, 3, 1, 2]
- b = [1, 4, 3, 4, 5, 6, 7, 4, 3, 2, 1, 1, 3]
- c = convolve(a, b, 'same')
- d = array([57, 61, 63, 57, 45, 36])
- assert_array_equal(c, d)
- def test_invalid_shapes(self):
- # By "invalid," we mean that no one
- # array has dimensions that are all at
- # least as large as the corresponding
- # dimensions of the other array. This
- # setup should throw a ValueError.
- a = np.arange(1, 7).reshape((2, 3))
- b = np.arange(-6, 0).reshape((3, 2))
- assert_raises(ValueError, convolve, *(a, b), **{'mode': 'valid'})
- assert_raises(ValueError, convolve, *(b, a), **{'mode': 'valid'})
- def test_convolve_method(self, n=100):
- types = sum([t for _, t in np.sctypes.items()], [])
- types = {np.dtype(t).name for t in types}
- # These types include 'bool' and all precisions (int8, float32, etc)
- # The removed types throw errors in correlate or fftconvolve
- for dtype in ['complex256', 'complex192', 'float128', 'float96',
- 'str', 'void', 'bytes', 'object', 'unicode', 'string']:
- if dtype in types:
- types.remove(dtype)
- args = [(t1, t2, mode) for t1 in types for t2 in types
- for mode in ['valid', 'full', 'same']]
- # These are random arrays, which means test is much stronger than
- # convolving testing by convolving two np.ones arrays
- np.random.seed(42)
- array_types = {'i': np.random.choice([0, 1], size=n),
- 'f': np.random.randn(n)}
- array_types['b'] = array_types['u'] = array_types['i']
- array_types['c'] = array_types['f'] + 0.5j*array_types['f']
- for t1, t2, mode in args:
- x1 = array_types[np.dtype(t1).kind].astype(t1)
- x2 = array_types[np.dtype(t2).kind].astype(t2)
- results = {key: convolve(x1, x2, method=key, mode=mode)
- for key in ['fft', 'direct']}
- assert_equal(results['fft'].dtype, results['direct'].dtype)
- if 'bool' in t1 and 'bool' in t2:
- assert_equal(choose_conv_method(x1, x2), 'direct')
- continue
- # Found by experiment. Found approx smallest value for (rtol, atol)
- # threshold to have tests pass.
- if any([t in {'complex64', 'float32'} for t in [t1, t2]]):
- kwargs = {'rtol': 1.0e-4, 'atol': 1e-6}
- elif 'float16' in [t1, t2]:
- # atol is default for np.allclose
- kwargs = {'rtol': 1e-3, 'atol': 1e-3}
- else:
- # defaults for np.allclose (different from assert_allclose)
- kwargs = {'rtol': 1e-5, 'atol': 1e-8}
- assert_allclose(results['fft'], results['direct'], **kwargs)
- def test_convolve_method_large_input(self):
- # This is really a test that convolving two large integers goes to the
- # direct method even if they're in the fft method.
- for n in [10, 20, 50, 51, 52, 53, 54, 60, 62]:
- z = np.array([2**n], dtype=np.int64)
- fft = convolve(z, z, method='fft')
- direct = convolve(z, z, method='direct')
- # this is the case when integer precision gets to us
- # issue #6076 has more detail, hopefully more tests after resolved
- if n < 50:
- assert_equal(fft, direct)
- assert_equal(fft, 2**(2*n))
- assert_equal(direct, 2**(2*n))
- def test_mismatched_dims(self):
- # Input arrays should have the same number of dimensions
- assert_raises(ValueError, convolve, [1], 2, method='direct')
- assert_raises(ValueError, convolve, 1, [2], method='direct')
- assert_raises(ValueError, convolve, [1], 2, method='fft')
- assert_raises(ValueError, convolve, 1, [2], method='fft')
- assert_raises(ValueError, convolve, [1], [[2]])
- assert_raises(ValueError, convolve, [3], 2)
- class _TestConvolve2d:
- def test_2d_arrays(self):
- a = [[1, 2, 3], [3, 4, 5]]
- b = [[2, 3, 4], [4, 5, 6]]
- d = array([[2, 7, 16, 17, 12],
- [10, 30, 62, 58, 38],
- [12, 31, 58, 49, 30]])
- e = convolve2d(a, b)
- assert_array_equal(e, d)
- def test_valid_mode(self):
- e = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]]
- f = [[1, 2, 3], [3, 4, 5]]
- h = array([[62, 80, 98, 116, 134]])
- g = convolve2d(e, f, 'valid')
- assert_array_equal(g, h)
- # See gh-5897
- g = convolve2d(f, e, 'valid')
- assert_array_equal(g, h)
- def test_valid_mode_complx(self):
- e = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]]
- f = np.array([[1, 2, 3], [3, 4, 5]], dtype=complex) + 1j
- h = array([[62.+24.j, 80.+30.j, 98.+36.j, 116.+42.j, 134.+48.j]])
- g = convolve2d(e, f, 'valid')
- assert_array_almost_equal(g, h)
- # See gh-5897
- g = convolve2d(f, e, 'valid')
- assert_array_equal(g, h)
- def test_fillvalue(self):
- a = [[1, 2, 3], [3, 4, 5]]
- b = [[2, 3, 4], [4, 5, 6]]
- fillval = 1
- c = convolve2d(a, b, 'full', 'fill', fillval)
- d = array([[24, 26, 31, 34, 32],
- [28, 40, 62, 64, 52],
- [32, 46, 67, 62, 48]])
- assert_array_equal(c, d)
- def test_fillvalue_errors(self):
- msg = "could not cast `fillvalue` directly to the output "
- with np.testing.suppress_warnings() as sup:
- sup.filter(np.ComplexWarning, "Casting complex values")
- with assert_raises(ValueError, match=msg):
- convolve2d([[1]], [[1, 2]], fillvalue=1j)
- msg = "`fillvalue` must be scalar or an array with "
- with assert_raises(ValueError, match=msg):
- convolve2d([[1]], [[1, 2]], fillvalue=[1, 2])
- def test_fillvalue_empty(self):
- # Check that fillvalue being empty raises an error:
- assert_raises(ValueError, convolve2d, [[1]], [[1, 2]],
- fillvalue=[])
- def test_wrap_boundary(self):
- a = [[1, 2, 3], [3, 4, 5]]
- b = [[2, 3, 4], [4, 5, 6]]
- c = convolve2d(a, b, 'full', 'wrap')
- d = array([[80, 80, 74, 80, 80],
- [68, 68, 62, 68, 68],
- [80, 80, 74, 80, 80]])
- assert_array_equal(c, d)
- def test_sym_boundary(self):
- a = [[1, 2, 3], [3, 4, 5]]
- b = [[2, 3, 4], [4, 5, 6]]
- c = convolve2d(a, b, 'full', 'symm')
- d = array([[34, 30, 44, 62, 66],
- [52, 48, 62, 80, 84],
- [82, 78, 92, 110, 114]])
- assert_array_equal(c, d)
- @pytest.mark.parametrize('func', [convolve2d, correlate2d])
- @pytest.mark.parametrize('boundary, expected',
- [('symm', [[37.0, 42.0, 44.0, 45.0]]),
- ('wrap', [[43.0, 44.0, 42.0, 39.0]])])
- def test_same_with_boundary(self, func, boundary, expected):
- # Test boundary='symm' and boundary='wrap' with a "long" kernel.
- # The size of the kernel requires that the values in the "image"
- # be extended more than once to handle the requested boundary method.
- # This is a regression test for gh-8684 and gh-8814.
- image = np.array([[2.0, -1.0, 3.0, 4.0]])
- kernel = np.ones((1, 21))
- result = func(image, kernel, mode='same', boundary=boundary)
- # The expected results were calculated "by hand". Because the
- # kernel is all ones, the same result is expected for convolve2d
- # and correlate2d.
- assert_array_equal(result, expected)
- def test_boundary_extension_same(self):
- # Regression test for gh-12686.
- # Use ndimage.convolve with appropriate arguments to create the
- # expected result.
- import scipy.ndimage as ndi
- a = np.arange(1, 10*3+1, dtype=float).reshape(10, 3)
- b = np.arange(1, 10*10+1, dtype=float).reshape(10, 10)
- c = convolve2d(a, b, mode='same', boundary='wrap')
- assert_array_equal(c, ndi.convolve(a, b, mode='wrap', origin=(-1, -1)))
- def test_boundary_extension_full(self):
- # Regression test for gh-12686.
- # Use ndimage.convolve with appropriate arguments to create the
- # expected result.
- import scipy.ndimage as ndi
- a = np.arange(1, 3*3+1, dtype=float).reshape(3, 3)
- b = np.arange(1, 6*6+1, dtype=float).reshape(6, 6)
- c = convolve2d(a, b, mode='full', boundary='wrap')
- apad = np.pad(a, ((3, 3), (3, 3)), 'wrap')
- assert_array_equal(c, ndi.convolve(apad, b, mode='wrap')[:-1, :-1])
- def test_invalid_shapes(self):
- # By "invalid," we mean that no one
- # array has dimensions that are all at
- # least as large as the corresponding
- # dimensions of the other array. This
- # setup should throw a ValueError.
- a = np.arange(1, 7).reshape((2, 3))
- b = np.arange(-6, 0).reshape((3, 2))
- assert_raises(ValueError, convolve2d, *(a, b), **{'mode': 'valid'})
- assert_raises(ValueError, convolve2d, *(b, a), **{'mode': 'valid'})
- class TestConvolve2d(_TestConvolve2d):
- def test_same_mode(self):
- e = [[1, 2, 3], [3, 4, 5]]
- f = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]]
- g = convolve2d(e, f, 'same')
- h = array([[22, 28, 34],
- [80, 98, 116]])
- assert_array_equal(g, h)
- def test_valid_mode2(self):
- # See gh-5897
- e = [[1, 2, 3], [3, 4, 5]]
- f = [[2, 3, 4, 5, 6, 7, 8], [4, 5, 6, 7, 8, 9, 10]]
- expected = [[62, 80, 98, 116, 134]]
- out = convolve2d(e, f, 'valid')
- assert_array_equal(out, expected)
- out = convolve2d(f, e, 'valid')
- assert_array_equal(out, expected)
- e = [[1 + 1j, 2 - 3j], [3 + 1j, 4 + 0j]]
- f = [[2 - 1j, 3 + 2j, 4 + 0j], [4 - 0j, 5 + 1j, 6 - 3j]]
- expected = [[27 - 1j, 46. + 2j]]
- out = convolve2d(e, f, 'valid')
- assert_array_equal(out, expected)
- # See gh-5897
- out = convolve2d(f, e, 'valid')
- assert_array_equal(out, expected)
- def test_consistency_convolve_funcs(self):
- # Compare np.convolve, signal.convolve, signal.convolve2d
- a = np.arange(5)
- b = np.array([3.2, 1.4, 3])
- for mode in ['full', 'valid', 'same']:
- assert_almost_equal(np.convolve(a, b, mode=mode),
- signal.convolve(a, b, mode=mode))
- assert_almost_equal(np.squeeze(
- signal.convolve2d([a], [b], mode=mode)),
- signal.convolve(a, b, mode=mode))
- def test_invalid_dims(self):
- assert_raises(ValueError, convolve2d, 3, 4)
- assert_raises(ValueError, convolve2d, [3], [4])
- assert_raises(ValueError, convolve2d, [[[3]]], [[[4]]])
- @pytest.mark.slow
- @pytest.mark.xfail_on_32bit("Can't create large array for test")
- def test_large_array(self):
- # Test indexing doesn't overflow an int (gh-10761)
- n = 2**31 // (1000 * np.int64().itemsize)
- _testutils.check_free_memory(2 * n * 1001 * np.int64().itemsize / 1e6)
- # Create a chequered pattern of 1s and 0s
- a = np.zeros(1001 * n, dtype=np.int64)
- a[::2] = 1
- a = np.lib.stride_tricks.as_strided(a, shape=(n, 1000), strides=(8008, 8))
- count = signal.convolve2d(a, [[1, 1]])
- fails = np.where(count > 1)
- assert fails[0].size == 0
- class TestFFTConvolve:
- @pytest.mark.parametrize('axes', ['', None, 0, [0], -1, [-1]])
- def test_real(self, axes):
- a = array([1, 2, 3])
- expected = array([1, 4, 10, 12, 9.])
- if axes == '':
- out = fftconvolve(a, a)
- else:
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [1, [1], -1, [-1]])
- def test_real_axes(self, axes):
- a = array([1, 2, 3])
- expected = array([1, 4, 10, 12, 9.])
- a = np.tile(a, [2, 1])
- expected = np.tile(expected, [2, 1])
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', ['', None, 0, [0], -1, [-1]])
- def test_complex(self, axes):
- a = array([1 + 1j, 2 + 2j, 3 + 3j])
- expected = array([0 + 2j, 0 + 8j, 0 + 20j, 0 + 24j, 0 + 18j])
- if axes == '':
- out = fftconvolve(a, a)
- else:
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [1, [1], -1, [-1]])
- def test_complex_axes(self, axes):
- a = array([1 + 1j, 2 + 2j, 3 + 3j])
- expected = array([0 + 2j, 0 + 8j, 0 + 20j, 0 + 24j, 0 + 18j])
- a = np.tile(a, [2, 1])
- expected = np.tile(expected, [2, 1])
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', ['',
- None,
- [0, 1],
- [1, 0],
- [0, -1],
- [-1, 0],
- [-2, 1],
- [1, -2],
- [-2, -1],
- [-1, -2]])
- def test_2d_real_same(self, axes):
- a = array([[1, 2, 3],
- [4, 5, 6]])
- expected = array([[1, 4, 10, 12, 9],
- [8, 26, 56, 54, 36],
- [16, 40, 73, 60, 36]])
- if axes == '':
- out = fftconvolve(a, a)
- else:
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [[1, 2],
- [2, 1],
- [1, -1],
- [-1, 1],
- [-2, 2],
- [2, -2],
- [-2, -1],
- [-1, -2]])
- def test_2d_real_same_axes(self, axes):
- a = array([[1, 2, 3],
- [4, 5, 6]])
- expected = array([[1, 4, 10, 12, 9],
- [8, 26, 56, 54, 36],
- [16, 40, 73, 60, 36]])
- a = np.tile(a, [2, 1, 1])
- expected = np.tile(expected, [2, 1, 1])
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', ['',
- None,
- [0, 1],
- [1, 0],
- [0, -1],
- [-1, 0],
- [-2, 1],
- [1, -2],
- [-2, -1],
- [-1, -2]])
- def test_2d_complex_same(self, axes):
- a = array([[1 + 2j, 3 + 4j, 5 + 6j],
- [2 + 1j, 4 + 3j, 6 + 5j]])
- expected = array([
- [-3 + 4j, -10 + 20j, -21 + 56j, -18 + 76j, -11 + 60j],
- [10j, 44j, 118j, 156j, 122j],
- [3 + 4j, 10 + 20j, 21 + 56j, 18 + 76j, 11 + 60j]
- ])
- if axes == '':
- out = fftconvolve(a, a)
- else:
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [[1, 2],
- [2, 1],
- [1, -1],
- [-1, 1],
- [-2, 2],
- [2, -2],
- [-2, -1],
- [-1, -2]])
- def test_2d_complex_same_axes(self, axes):
- a = array([[1 + 2j, 3 + 4j, 5 + 6j],
- [2 + 1j, 4 + 3j, 6 + 5j]])
- expected = array([
- [-3 + 4j, -10 + 20j, -21 + 56j, -18 + 76j, -11 + 60j],
- [10j, 44j, 118j, 156j, 122j],
- [3 + 4j, 10 + 20j, 21 + 56j, 18 + 76j, 11 + 60j]
- ])
- a = np.tile(a, [2, 1, 1])
- expected = np.tile(expected, [2, 1, 1])
- out = fftconvolve(a, a, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', ['', None, 0, [0], -1, [-1]])
- def test_real_same_mode(self, axes):
- a = array([1, 2, 3])
- b = array([3, 3, 5, 6, 8, 7, 9, 0, 1])
- expected_1 = array([35., 41., 47.])
- expected_2 = array([9., 20., 25., 35., 41., 47., 39., 28., 2.])
- if axes == '':
- out = fftconvolve(a, b, 'same')
- else:
- out = fftconvolve(a, b, 'same', axes=axes)
- assert_array_almost_equal(out, expected_1)
- if axes == '':
- out = fftconvolve(b, a, 'same')
- else:
- out = fftconvolve(b, a, 'same', axes=axes)
- assert_array_almost_equal(out, expected_2)
- @pytest.mark.parametrize('axes', [1, -1, [1], [-1]])
- def test_real_same_mode_axes(self, axes):
- a = array([1, 2, 3])
- b = array([3, 3, 5, 6, 8, 7, 9, 0, 1])
- expected_1 = array([35., 41., 47.])
- expected_2 = array([9., 20., 25., 35., 41., 47., 39., 28., 2.])
- a = np.tile(a, [2, 1])
- b = np.tile(b, [2, 1])
- expected_1 = np.tile(expected_1, [2, 1])
- expected_2 = np.tile(expected_2, [2, 1])
- out = fftconvolve(a, b, 'same', axes=axes)
- assert_array_almost_equal(out, expected_1)
- out = fftconvolve(b, a, 'same', axes=axes)
- assert_array_almost_equal(out, expected_2)
- @pytest.mark.parametrize('axes', ['', None, 0, [0], -1, [-1]])
- def test_valid_mode_real(self, axes):
- # See gh-5897
- a = array([3, 2, 1])
- b = array([3, 3, 5, 6, 8, 7, 9, 0, 1])
- expected = array([24., 31., 41., 43., 49., 25., 12.])
- if axes == '':
- out = fftconvolve(a, b, 'valid')
- else:
- out = fftconvolve(a, b, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- if axes == '':
- out = fftconvolve(b, a, 'valid')
- else:
- out = fftconvolve(b, a, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [1, [1]])
- def test_valid_mode_real_axes(self, axes):
- # See gh-5897
- a = array([3, 2, 1])
- b = array([3, 3, 5, 6, 8, 7, 9, 0, 1])
- expected = array([24., 31., 41., 43., 49., 25., 12.])
- a = np.tile(a, [2, 1])
- b = np.tile(b, [2, 1])
- expected = np.tile(expected, [2, 1])
- out = fftconvolve(a, b, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', ['', None, 0, [0], -1, [-1]])
- def test_valid_mode_complex(self, axes):
- a = array([3 - 1j, 2 + 7j, 1 + 0j])
- b = array([3 + 2j, 3 - 3j, 5 + 0j, 6 - 1j, 8 + 0j])
- expected = array([45. + 12.j, 30. + 23.j, 48 + 32.j])
- if axes == '':
- out = fftconvolve(a, b, 'valid')
- else:
- out = fftconvolve(a, b, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- if axes == '':
- out = fftconvolve(b, a, 'valid')
- else:
- out = fftconvolve(b, a, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [1, [1], -1, [-1]])
- def test_valid_mode_complex_axes(self, axes):
- a = array([3 - 1j, 2 + 7j, 1 + 0j])
- b = array([3 + 2j, 3 - 3j, 5 + 0j, 6 - 1j, 8 + 0j])
- expected = array([45. + 12.j, 30. + 23.j, 48 + 32.j])
- a = np.tile(a, [2, 1])
- b = np.tile(b, [2, 1])
- expected = np.tile(expected, [2, 1])
- out = fftconvolve(a, b, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- out = fftconvolve(b, a, 'valid', axes=axes)
- assert_array_almost_equal(out, expected)
- def test_valid_mode_ignore_nonaxes(self):
- # See gh-5897
- a = array([3, 2, 1])
- b = array([3, 3, 5, 6, 8, 7, 9, 0, 1])
- expected = array([24., 31., 41., 43., 49., 25., 12.])
- a = np.tile(a, [2, 1])
- b = np.tile(b, [1, 1])
- expected = np.tile(expected, [2, 1])
- out = fftconvolve(a, b, 'valid', axes=1)
- assert_array_almost_equal(out, expected)
- def test_empty(self):
- # Regression test for #1745: crashes with 0-length input.
- assert_(fftconvolve([], []).size == 0)
- assert_(fftconvolve([5, 6], []).size == 0)
- assert_(fftconvolve([], [7]).size == 0)
- def test_zero_rank(self):
- a = array(4967)
- b = array(3920)
- out = fftconvolve(a, b)
- assert_equal(out, a * b)
- def test_single_element(self):
- a = array([4967])
- b = array([3920])
- out = fftconvolve(a, b)
- assert_equal(out, a * b)
- @pytest.mark.parametrize('axes', ['', None, 0, [0], -1, [-1]])
- def test_random_data(self, axes):
- np.random.seed(1234)
- a = np.random.rand(1233) + 1j * np.random.rand(1233)
- b = np.random.rand(1321) + 1j * np.random.rand(1321)
- expected = np.convolve(a, b, 'full')
- if axes == '':
- out = fftconvolve(a, b, 'full')
- else:
- out = fftconvolve(a, b, 'full', axes=axes)
- assert_(np.allclose(out, expected, rtol=1e-10))
- @pytest.mark.parametrize('axes', [1, [1], -1, [-1]])
- def test_random_data_axes(self, axes):
- np.random.seed(1234)
- a = np.random.rand(1233) + 1j * np.random.rand(1233)
- b = np.random.rand(1321) + 1j * np.random.rand(1321)
- expected = np.convolve(a, b, 'full')
- a = np.tile(a, [2, 1])
- b = np.tile(b, [2, 1])
- expected = np.tile(expected, [2, 1])
- out = fftconvolve(a, b, 'full', axes=axes)
- assert_(np.allclose(out, expected, rtol=1e-10))
- @pytest.mark.parametrize('axes', [[1, 4],
- [4, 1],
- [1, -1],
- [-1, 1],
- [-4, 4],
- [4, -4],
- [-4, -1],
- [-1, -4]])
- def test_random_data_multidim_axes(self, axes):
- a_shape, b_shape = (123, 22), (132, 11)
- np.random.seed(1234)
- a = np.random.rand(*a_shape) + 1j * np.random.rand(*a_shape)
- b = np.random.rand(*b_shape) + 1j * np.random.rand(*b_shape)
- expected = convolve2d(a, b, 'full')
- a = a[:, :, None, None, None]
- b = b[:, :, None, None, None]
- expected = expected[:, :, None, None, None]
- a = np.moveaxis(a.swapaxes(0, 2), 1, 4)
- b = np.moveaxis(b.swapaxes(0, 2), 1, 4)
- expected = np.moveaxis(expected.swapaxes(0, 2), 1, 4)
- # use 1 for dimension 2 in a and 3 in b to test broadcasting
- a = np.tile(a, [2, 1, 3, 1, 1])
- b = np.tile(b, [2, 1, 1, 4, 1])
- expected = np.tile(expected, [2, 1, 3, 4, 1])
- out = fftconvolve(a, b, 'full', axes=axes)
- assert_allclose(out, expected, rtol=1e-10, atol=1e-10)
- @pytest.mark.slow
- @pytest.mark.parametrize(
- 'n',
- list(range(1, 100)) +
- list(range(1000, 1500)) +
- np.random.RandomState(1234).randint(1001, 10000, 5).tolist())
- def test_many_sizes(self, n):
- a = np.random.rand(n) + 1j * np.random.rand(n)
- b = np.random.rand(n) + 1j * np.random.rand(n)
- expected = np.convolve(a, b, 'full')
- out = fftconvolve(a, b, 'full')
- assert_allclose(out, expected, atol=1e-10)
- out = fftconvolve(a, b, 'full', axes=[0])
- assert_allclose(out, expected, atol=1e-10)
- def test_fft_nan(self):
- n = 1000
- rng = np.random.default_rng(43876432987)
- sig_nan = rng.standard_normal(n)
- for val in [np.nan, np.inf]:
- sig_nan[100] = val
- coeffs = signal.firwin(200, 0.2)
- with pytest.warns(RuntimeWarning, match="Use of fft convolution"):
- signal.convolve(sig_nan, coeffs, mode='same', method='fft')
- def fftconvolve_err(*args, **kwargs):
- raise RuntimeError('Fell back to fftconvolve')
- def gen_oa_shapes(sizes):
- return [(a, b) for a, b in product(sizes, repeat=2)
- if abs(a - b) > 3]
- def gen_oa_shapes_2d(sizes):
- shapes0 = gen_oa_shapes(sizes)
- shapes1 = gen_oa_shapes(sizes)
- shapes = [ishapes0+ishapes1 for ishapes0, ishapes1 in
- zip(shapes0, shapes1)]
- modes = ['full', 'valid', 'same']
- return [ishapes+(imode,) for ishapes, imode in product(shapes, modes)
- if imode != 'valid' or
- (ishapes[0] > ishapes[1] and ishapes[2] > ishapes[3]) or
- (ishapes[0] < ishapes[1] and ishapes[2] < ishapes[3])]
- def gen_oa_shapes_eq(sizes):
- return [(a, b) for a, b in product(sizes, repeat=2)
- if a >= b]
- class TestOAConvolve:
- @pytest.mark.slow()
- @pytest.mark.parametrize('shape_a_0, shape_b_0',
- gen_oa_shapes_eq(list(range(100)) +
- list(range(100, 1000, 23)))
- )
- def test_real_manylens(self, shape_a_0, shape_b_0):
- a = np.random.rand(shape_a_0)
- b = np.random.rand(shape_b_0)
- expected = fftconvolve(a, b)
- out = oaconvolve(a, b)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('shape_a_0, shape_b_0',
- gen_oa_shapes([50, 47, 6, 4, 1]))
- @pytest.mark.parametrize('is_complex', [True, False])
- @pytest.mark.parametrize('mode', ['full', 'valid', 'same'])
- def test_1d_noaxes(self, shape_a_0, shape_b_0,
- is_complex, mode, monkeypatch):
- a = np.random.rand(shape_a_0)
- b = np.random.rand(shape_b_0)
- if is_complex:
- a = a + 1j*np.random.rand(shape_a_0)
- b = b + 1j*np.random.rand(shape_b_0)
- expected = fftconvolve(a, b, mode=mode)
- monkeypatch.setattr(signal._signaltools, 'fftconvolve',
- fftconvolve_err)
- out = oaconvolve(a, b, mode=mode)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [0, 1])
- @pytest.mark.parametrize('shape_a_0, shape_b_0',
- gen_oa_shapes([50, 47, 6, 4]))
- @pytest.mark.parametrize('shape_a_extra', [1, 3])
- @pytest.mark.parametrize('shape_b_extra', [1, 3])
- @pytest.mark.parametrize('is_complex', [True, False])
- @pytest.mark.parametrize('mode', ['full', 'valid', 'same'])
- def test_1d_axes(self, axes, shape_a_0, shape_b_0,
- shape_a_extra, shape_b_extra,
- is_complex, mode, monkeypatch):
- ax_a = [shape_a_extra]*2
- ax_b = [shape_b_extra]*2
- ax_a[axes] = shape_a_0
- ax_b[axes] = shape_b_0
- a = np.random.rand(*ax_a)
- b = np.random.rand(*ax_b)
- if is_complex:
- a = a + 1j*np.random.rand(*ax_a)
- b = b + 1j*np.random.rand(*ax_b)
- expected = fftconvolve(a, b, mode=mode, axes=axes)
- monkeypatch.setattr(signal._signaltools, 'fftconvolve',
- fftconvolve_err)
- out = oaconvolve(a, b, mode=mode, axes=axes)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('shape_a_0, shape_b_0, '
- 'shape_a_1, shape_b_1, mode',
- gen_oa_shapes_2d([50, 47, 6, 4]))
- @pytest.mark.parametrize('is_complex', [True, False])
- def test_2d_noaxes(self, shape_a_0, shape_b_0,
- shape_a_1, shape_b_1, mode,
- is_complex, monkeypatch):
- a = np.random.rand(shape_a_0, shape_a_1)
- b = np.random.rand(shape_b_0, shape_b_1)
- if is_complex:
- a = a + 1j*np.random.rand(shape_a_0, shape_a_1)
- b = b + 1j*np.random.rand(shape_b_0, shape_b_1)
- expected = fftconvolve(a, b, mode=mode)
- monkeypatch.setattr(signal._signaltools, 'fftconvolve',
- fftconvolve_err)
- out = oaconvolve(a, b, mode=mode)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('axes', [[0, 1], [0, 2], [1, 2]])
- @pytest.mark.parametrize('shape_a_0, shape_b_0, '
- 'shape_a_1, shape_b_1, mode',
- gen_oa_shapes_2d([50, 47, 6, 4]))
- @pytest.mark.parametrize('shape_a_extra', [1, 3])
- @pytest.mark.parametrize('shape_b_extra', [1, 3])
- @pytest.mark.parametrize('is_complex', [True, False])
- def test_2d_axes(self, axes, shape_a_0, shape_b_0,
- shape_a_1, shape_b_1, mode,
- shape_a_extra, shape_b_extra,
- is_complex, monkeypatch):
- ax_a = [shape_a_extra]*3
- ax_b = [shape_b_extra]*3
- ax_a[axes[0]] = shape_a_0
- ax_b[axes[0]] = shape_b_0
- ax_a[axes[1]] = shape_a_1
- ax_b[axes[1]] = shape_b_1
- a = np.random.rand(*ax_a)
- b = np.random.rand(*ax_b)
- if is_complex:
- a = a + 1j*np.random.rand(*ax_a)
- b = b + 1j*np.random.rand(*ax_b)
- expected = fftconvolve(a, b, mode=mode, axes=axes)
- monkeypatch.setattr(signal._signaltools, 'fftconvolve',
- fftconvolve_err)
- out = oaconvolve(a, b, mode=mode, axes=axes)
- assert_array_almost_equal(out, expected)
- def test_empty(self):
- # Regression test for #1745: crashes with 0-length input.
- assert_(oaconvolve([], []).size == 0)
- assert_(oaconvolve([5, 6], []).size == 0)
- assert_(oaconvolve([], [7]).size == 0)
- def test_zero_rank(self):
- a = array(4967)
- b = array(3920)
- out = oaconvolve(a, b)
- assert_equal(out, a * b)
- def test_single_element(self):
- a = array([4967])
- b = array([3920])
- out = oaconvolve(a, b)
- assert_equal(out, a * b)
- class TestAllFreqConvolves:
- @pytest.mark.parametrize('convapproach',
- [fftconvolve, oaconvolve])
- def test_invalid_shapes(self, convapproach):
- a = np.arange(1, 7).reshape((2, 3))
- b = np.arange(-6, 0).reshape((3, 2))
- with assert_raises(ValueError,
- match="For 'valid' mode, one must be at least "
- "as large as the other in every dimension"):
- convapproach(a, b, mode='valid')
- @pytest.mark.parametrize('convapproach',
- [fftconvolve, oaconvolve])
- def test_invalid_shapes_axes(self, convapproach):
- a = np.zeros([5, 6, 2, 1])
- b = np.zeros([5, 6, 3, 1])
- with assert_raises(ValueError,
- match=r"incompatible shapes for in1 and in2:"
- r" \(5L?, 6L?, 2L?, 1L?\) and"
- r" \(5L?, 6L?, 3L?, 1L?\)"):
- convapproach(a, b, axes=[0, 1])
- @pytest.mark.parametrize('a,b',
- [([1], 2),
- (1, [2]),
- ([3], [[2]])])
- @pytest.mark.parametrize('convapproach',
- [fftconvolve, oaconvolve])
- def test_mismatched_dims(self, a, b, convapproach):
- with assert_raises(ValueError,
- match="in1 and in2 should have the same"
- " dimensionality"):
- convapproach(a, b)
- @pytest.mark.parametrize('convapproach',
- [fftconvolve, oaconvolve])
- def test_invalid_flags(self, convapproach):
- with assert_raises(ValueError,
- match="acceptable mode flags are 'valid',"
- " 'same', or 'full'"):
- convapproach([1], [2], mode='chips')
- with assert_raises(ValueError,
- match="when provided, axes cannot be empty"):
- convapproach([1], [2], axes=[])
- with assert_raises(ValueError, match="axes must be a scalar or "
- "iterable of integers"):
- convapproach([1], [2], axes=[[1, 2], [3, 4]])
- with assert_raises(ValueError, match="axes must be a scalar or "
- "iterable of integers"):
- convapproach([1], [2], axes=[1., 2., 3., 4.])
- with assert_raises(ValueError,
- match="axes exceeds dimensionality of input"):
- convapproach([1], [2], axes=[1])
- with assert_raises(ValueError,
- match="axes exceeds dimensionality of input"):
- convapproach([1], [2], axes=[-2])
- with assert_raises(ValueError,
- match="all axes must be unique"):
- convapproach([1], [2], axes=[0, 0])
- @pytest.mark.parametrize('dtype', [np.longfloat, np.longcomplex])
- def test_longdtype_input(self, dtype):
- x = np.random.random((27, 27)).astype(dtype)
- y = np.random.random((4, 4)).astype(dtype)
- if np.iscomplexobj(dtype()):
- x += .1j
- y -= .1j
- res = fftconvolve(x, y)
- assert_allclose(res, convolve(x, y, method='direct'))
- assert res.dtype == dtype
- class TestMedFilt:
- IN = [[50, 50, 50, 50, 50, 92, 18, 27, 65, 46],
- [50, 50, 50, 50, 50, 0, 72, 77, 68, 66],
- [50, 50, 50, 50, 50, 46, 47, 19, 64, 77],
- [50, 50, 50, 50, 50, 42, 15, 29, 95, 35],
- [50, 50, 50, 50, 50, 46, 34, 9, 21, 66],
- [70, 97, 28, 68, 78, 77, 61, 58, 71, 42],
- [64, 53, 44, 29, 68, 32, 19, 68, 24, 84],
- [3, 33, 53, 67, 1, 78, 74, 55, 12, 83],
- [7, 11, 46, 70, 60, 47, 24, 43, 61, 26],
- [32, 61, 88, 7, 39, 4, 92, 64, 45, 61]]
- OUT = [[0, 50, 50, 50, 42, 15, 15, 18, 27, 0],
- [0, 50, 50, 50, 50, 42, 19, 21, 29, 0],
- [50, 50, 50, 50, 50, 47, 34, 34, 46, 35],
- [50, 50, 50, 50, 50, 50, 42, 47, 64, 42],
- [50, 50, 50, 50, 50, 50, 46, 55, 64, 35],
- [33, 50, 50, 50, 50, 47, 46, 43, 55, 26],
- [32, 50, 50, 50, 50, 47, 46, 45, 55, 26],
- [7, 46, 50, 50, 47, 46, 46, 43, 45, 21],
- [0, 32, 33, 39, 32, 32, 43, 43, 43, 0],
- [0, 7, 11, 7, 4, 4, 19, 19, 24, 0]]
- KERNEL_SIZE = [7,3]
- def test_basic(self):
- d = signal.medfilt(self.IN, self.KERNEL_SIZE)
- e = signal.medfilt2d(np.array(self.IN, float), self.KERNEL_SIZE)
- assert_array_equal(d, self.OUT)
- assert_array_equal(d, e)
- @pytest.mark.parametrize('dtype', [np.ubyte, np.byte, np.ushort, np.short,
- np.uint, int, np.ulonglong, np.ulonglong,
- np.float32, np.float64, np.longdouble])
- def test_types(self, dtype):
- # volume input and output types match
- in_typed = np.array(self.IN, dtype=dtype)
- assert_equal(signal.medfilt(in_typed).dtype, dtype)
- assert_equal(signal.medfilt2d(in_typed).dtype, dtype)
- @pytest.mark.parametrize('dtype', [np.bool_, np.cfloat, np.cdouble,
- np.clongdouble, np.float16,])
- def test_invalid_dtypes(self, dtype):
- in_typed = np.array(self.IN, dtype=dtype)
- with pytest.raises(ValueError, match="order_filterND"):
- signal.medfilt(in_typed)
- with pytest.raises(ValueError, match="order_filterND"):
- signal.medfilt2d(in_typed)
- def test_none(self):
- # gh-1651, trac #1124. Ensure this does not segfault.
- with pytest.warns(UserWarning):
- assert_raises(TypeError, signal.medfilt, None)
- # Expand on this test to avoid a regression with possible contiguous
- # numpy arrays that have odd strides. The stride value below gets
- # us into wrong memory if used (but it does not need to be used)
- dummy = np.arange(10, dtype=np.float64)
- a = dummy[5:6]
- a.strides = 16
- assert_(signal.medfilt(a, 1) == 5.)
- def test_refcounting(self):
- # Check a refcounting-related crash
- a = Decimal(123)
- x = np.array([a, a], dtype=object)
- if hasattr(sys, 'getrefcount'):
- n = 2 * sys.getrefcount(a)
- else:
- n = 10
- # Shouldn't segfault:
- with pytest.warns(UserWarning):
- for j in range(n):
- signal.medfilt(x)
- if hasattr(sys, 'getrefcount'):
- assert_(sys.getrefcount(a) < n)
- assert_equal(x, [a, a])
- def test_object(self,):
- in_object = np.array(self.IN, dtype=object)
- out_object = np.array(self.OUT, dtype=object)
- assert_array_equal(signal.medfilt(in_object, self.KERNEL_SIZE),
- out_object)
- @pytest.mark.parametrize("dtype", [np.ubyte, np.float32, np.float64])
- def test_medfilt2d_parallel(self, dtype):
- in_typed = np.array(self.IN, dtype=dtype)
- expected = np.array(self.OUT, dtype=dtype)
- # This is used to simplify the indexing calculations.
- assert in_typed.shape == expected.shape
- # We'll do the calculation in four chunks. M1 and N1 are the dimensions
- # of the first output chunk. We have to extend the input by half the
- # kernel size to be able to calculate the full output chunk.
- M1 = expected.shape[0] // 2
- N1 = expected.shape[1] // 2
- offM = self.KERNEL_SIZE[0] // 2 + 1
- offN = self.KERNEL_SIZE[1] // 2 + 1
- def apply(chunk):
- # in = slice of in_typed to use.
- # sel = slice of output to crop it to the correct region.
- # out = slice of output array to store in.
- M, N = chunk
- if M == 0:
- Min = slice(0, M1 + offM)
- Msel = slice(0, -offM)
- Mout = slice(0, M1)
- else:
- Min = slice(M1 - offM, None)
- Msel = slice(offM, None)
- Mout = slice(M1, None)
- if N == 0:
- Nin = slice(0, N1 + offN)
- Nsel = slice(0, -offN)
- Nout = slice(0, N1)
- else:
- Nin = slice(N1 - offN, None)
- Nsel = slice(offN, None)
- Nout = slice(N1, None)
- # Do the calculation, but do not write to the output in the threads.
- chunk_data = in_typed[Min, Nin]
- med = signal.medfilt2d(chunk_data, self.KERNEL_SIZE)
- return med[Msel, Nsel], Mout, Nout
- # Give each chunk to a different thread.
- output = np.zeros_like(expected)
- with ThreadPoolExecutor(max_workers=4) as pool:
- chunks = {(0, 0), (0, 1), (1, 0), (1, 1)}
- futures = {pool.submit(apply, chunk) for chunk in chunks}
- # Store each result in the output as it arrives.
- for future in as_completed(futures):
- data, Mslice, Nslice = future.result()
- output[Mslice, Nslice] = data
- assert_array_equal(output, expected)
- class TestWiener:
- def test_basic(self):
- g = array([[5, 6, 4, 3],
- [3, 5, 6, 2],
- [2, 3, 5, 6],
- [1, 6, 9, 7]], 'd')
- h = array([[2.16374269, 3.2222222222, 2.8888888889, 1.6666666667],
- [2.666666667, 4.33333333333, 4.44444444444, 2.8888888888],
- [2.222222222, 4.4444444444, 5.4444444444, 4.801066874837],
- [1.33333333333, 3.92735042735, 6.0712560386, 5.0404040404]])
- assert_array_almost_equal(signal.wiener(g), h, decimal=6)
- assert_array_almost_equal(signal.wiener(g, mysize=3), h, decimal=6)
- padtype_options = ["mean", "median", "minimum", "maximum", "line"]
- padtype_options += _upfirdn_modes
- class TestResample:
- def test_basic(self):
- # Some basic tests
- # Regression test for issue #3603.
- # window.shape must equal to sig.shape[0]
- sig = np.arange(128)
- num = 256
- win = signal.get_window(('kaiser', 8.0), 160)
- assert_raises(ValueError, signal.resample, sig, num, window=win)
- # Other degenerate conditions
- assert_raises(ValueError, signal.resample_poly, sig, 'yo', 1)
- assert_raises(ValueError, signal.resample_poly, sig, 1, 0)
- assert_raises(ValueError, signal.resample_poly, sig, 2, 1, padtype='')
- assert_raises(ValueError, signal.resample_poly, sig, 2, 1,
- padtype='mean', cval=10)
- # test for issue #6505 - should not modify window.shape when axis ≠ 0
- sig2 = np.tile(np.arange(160), (2, 1))
- signal.resample(sig2, num, axis=-1, window=win)
- assert_(win.shape == (160,))
- @pytest.mark.parametrize('window', (None, 'hamming'))
- @pytest.mark.parametrize('N', (20, 19))
- @pytest.mark.parametrize('num', (100, 101, 10, 11))
- def test_rfft(self, N, num, window):
- # Make sure the speed up using rfft gives the same result as the normal
- # way using fft
- x = np.linspace(0, 10, N, endpoint=False)
- y = np.cos(-x**2/6.0)
- assert_allclose(signal.resample(y, num, window=window),
- signal.resample(y + 0j, num, window=window).real)
- y = np.array([np.cos(-x**2/6.0), np.sin(-x**2/6.0)])
- y_complex = y + 0j
- assert_allclose(
- signal.resample(y, num, axis=1, window=window),
- signal.resample(y_complex, num, axis=1, window=window).real,
- atol=1e-9)
- def test_input_domain(self):
- # Test if both input domain modes produce the same results.
- tsig = np.arange(256) + 0j
- fsig = fft(tsig)
- num = 256
- assert_allclose(
- signal.resample(fsig, num, domain='freq'),
- signal.resample(tsig, num, domain='time'),
- atol=1e-9)
- @pytest.mark.parametrize('nx', (1, 2, 3, 5, 8))
- @pytest.mark.parametrize('ny', (1, 2, 3, 5, 8))
- @pytest.mark.parametrize('dtype', ('float', 'complex'))
- def test_dc(self, nx, ny, dtype):
- x = np.array([1] * nx, dtype)
- y = signal.resample(x, ny)
- assert_allclose(y, [1] * ny)
- @pytest.mark.parametrize('padtype', padtype_options)
- def test_mutable_window(self, padtype):
- # Test that a mutable window is not modified
- impulse = np.zeros(3)
- window = np.random.RandomState(0).randn(2)
- window_orig = window.copy()
- signal.resample_poly(impulse, 5, 1, window=window, padtype=padtype)
- assert_array_equal(window, window_orig)
- @pytest.mark.parametrize('padtype', padtype_options)
- def test_output_float32(self, padtype):
- # Test that float32 inputs yield a float32 output
- x = np.arange(10, dtype=np.float32)
- h = np.array([1, 1, 1], dtype=np.float32)
- y = signal.resample_poly(x, 1, 2, window=h, padtype=padtype)
- assert y.dtype == np.float32
- @pytest.mark.parametrize('padtype', padtype_options)
- @pytest.mark.parametrize('dtype', [np.float32, np.float64])
- def test_output_match_dtype(self, padtype, dtype):
- # Test that the dtype of x is preserved per issue #14733
- x = np.arange(10, dtype=dtype)
- y = signal.resample_poly(x, 1, 2, padtype=padtype)
- assert y.dtype == x.dtype
- @pytest.mark.parametrize(
- "method, ext, padtype",
- [("fft", False, None)]
- + list(
- product(
- ["polyphase"], [False, True], padtype_options,
- )
- ),
- )
- def test_resample_methods(self, method, ext, padtype):
- # Test resampling of sinusoids and random noise (1-sec)
- rate = 100
- rates_to = [49, 50, 51, 99, 100, 101, 199, 200, 201]
- # Sinusoids, windowed to avoid edge artifacts
- t = np.arange(rate) / float(rate)
- freqs = np.array((1., 10., 40.))[:, np.newaxis]
- x = np.sin(2 * np.pi * freqs * t) * hann(rate)
- for rate_to in rates_to:
- t_to = np.arange(rate_to) / float(rate_to)
- y_tos = np.sin(2 * np.pi * freqs * t_to) * hann(rate_to)
- if method == 'fft':
- y_resamps = signal.resample(x, rate_to, axis=-1)
- else:
- if ext and rate_to != rate:
- # Match default window design
- g = gcd(rate_to, rate)
- up = rate_to // g
- down = rate // g
- max_rate = max(up, down)
- f_c = 1. / max_rate
- half_len = 10 * max_rate
- window = signal.firwin(2 * half_len + 1, f_c,
- window=('kaiser', 5.0))
- polyargs = {'window': window, 'padtype': padtype}
- else:
- polyargs = {'padtype': padtype}
- y_resamps = signal.resample_poly(x, rate_to, rate, axis=-1,
- **polyargs)
- for y_to, y_resamp, freq in zip(y_tos, y_resamps, freqs):
- if freq >= 0.5 * rate_to:
- y_to.fill(0.) # mostly low-passed away
- if padtype in ['minimum', 'maximum']:
- assert_allclose(y_resamp, y_to, atol=3e-1)
- else:
- assert_allclose(y_resamp, y_to, atol=1e-3)
- else:
- assert_array_equal(y_to.shape, y_resamp.shape)
- corr = np.corrcoef(y_to, y_resamp)[0, 1]
- assert_(corr > 0.99, msg=(corr, rate, rate_to))
- # Random data
- rng = np.random.RandomState(0)
- x = hann(rate) * np.cumsum(rng.randn(rate)) # low-pass, wind
- for rate_to in rates_to:
- # random data
- t_to = np.arange(rate_to) / float(rate_to)
- y_to = np.interp(t_to, t, x)
- if method == 'fft':
- y_resamp = signal.resample(x, rate_to)
- else:
- y_resamp = signal.resample_poly(x, rate_to, rate,
- padtype=padtype)
- assert_array_equal(y_to.shape, y_resamp.shape)
- corr = np.corrcoef(y_to, y_resamp)[0, 1]
- assert_(corr > 0.99, msg=corr)
- # More tests of fft method (Master 0.18.1 fails these)
- if method == 'fft':
- x1 = np.array([1.+0.j, 0.+0.j])
- y1_test = signal.resample(x1, 4)
- # upsampling a complex array
- y1_true = np.array([1.+0.j, 0.5+0.j, 0.+0.j, 0.5+0.j])
- assert_allclose(y1_test, y1_true, atol=1e-12)
- x2 = np.array([1., 0.5, 0., 0.5])
- y2_test = signal.resample(x2, 2) # downsampling a real array
- y2_true = np.array([1., 0.])
- assert_allclose(y2_test, y2_true, atol=1e-12)
- def test_poly_vs_filtfilt(self):
- # Check that up=1.0 gives same answer as filtfilt + slicing
- random_state = np.random.RandomState(17)
- try_types = (int, np.float32, np.complex64, float, complex)
- size = 10000
- down_factors = [2, 11, 79]
- for dtype in try_types:
- x = random_state.randn(size).astype(dtype)
- if dtype in (np.complex64, np.complex128):
- x += 1j * random_state.randn(size)
- # resample_poly assumes zeros outside of signl, whereas filtfilt
- # can only constant-pad. Make them equivalent:
- x[0] = 0
- x[-1] = 0
- for down in down_factors:
- h = signal.firwin(31, 1. / down, window='hamming')
- yf = filtfilt(h, 1.0, x, padtype='constant')[::down]
- # Need to pass convolved version of filter to resample_poly,
- # since filtfilt does forward and backward, but resample_poly
- # only goes forward
- hc = convolve(h, h[::-1])
- y = signal.resample_poly(x, 1, down, window=hc)
- assert_allclose(yf, y, atol=1e-7, rtol=1e-7)
- def test_correlate1d(self):
- for down in [2, 4]:
- for nx in range(1, 40, down):
- for nweights in (32, 33):
- x = np.random.random((nx,))
- weights = np.random.random((nweights,))
- y_g = correlate1d(x, weights[::-1], mode='constant')
- y_s = signal.resample_poly(
- x, up=1, down=down, window=weights)
- assert_allclose(y_g[::down], y_s)
- class TestCSpline1DEval:
- def test_basic(self):
- y = array([1, 2, 3, 4, 3, 2, 1, 2, 3.0])
- x = arange(len(y))
- dx = x[1] - x[0]
- cj = signal.cspline1d(y)
- x2 = arange(len(y) * 10.0) / 10.0
- y2 = signal.cspline1d_eval(cj, x2, dx=dx, x0=x[0])
- # make sure interpolated values are on knot points
- assert_array_almost_equal(y2[::10], y, decimal=5)
- def test_complex(self):
- # create some smoothly varying complex signal to interpolate
- x = np.arange(2)
- y = np.zeros(x.shape, dtype=np.complex64)
- T = 10.0
- f = 1.0 / T
- y = np.exp(2.0J * np.pi * f * x)
- # get the cspline transform
- cy = signal.cspline1d(y)
- # determine new test x value and interpolate
- xnew = np.array([0.5])
- ynew = signal.cspline1d_eval(cy, xnew)
- assert_equal(ynew.dtype, y.dtype)
- class TestOrderFilt:
- def test_basic(self):
- assert_array_equal(signal.order_filter([1, 2, 3], [1, 0, 1], 1),
- [2, 3, 2])
- class _TestLinearFilter:
- def generate(self, shape):
- x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
- return self.convert_dtype(x)
- def convert_dtype(self, arr):
- if self.dtype == np.dtype('O'):
- arr = np.asarray(arr)
- out = np.empty(arr.shape, self.dtype)
- iter = np.nditer([arr, out], ['refs_ok','zerosize_ok'],
- [['readonly'],['writeonly']])
- for x, y in iter:
- y[...] = self.type(x[()])
- return out
- else:
- return np.array(arr, self.dtype, copy=False)
- def test_rank_1_IIR(self):
- x = self.generate((6,))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, -0.5])
- y_r = self.convert_dtype([0, 2, 4, 6, 8, 10.])
- assert_array_almost_equal(lfilter(b, a, x), y_r)
- def test_rank_1_FIR(self):
- x = self.generate((6,))
- b = self.convert_dtype([1, 1])
- a = self.convert_dtype([1])
- y_r = self.convert_dtype([0, 1, 3, 5, 7, 9.])
- assert_array_almost_equal(lfilter(b, a, x), y_r)
- def test_rank_1_IIR_init_cond(self):
- x = self.generate((6,))
- b = self.convert_dtype([1, 0, -1])
- a = self.convert_dtype([0.5, -0.5])
- zi = self.convert_dtype([1, 2])
- y_r = self.convert_dtype([1, 5, 9, 13, 17, 21])
- zf_r = self.convert_dtype([13, -10])
- y, zf = lfilter(b, a, x, zi=zi)
- assert_array_almost_equal(y, y_r)
- assert_array_almost_equal(zf, zf_r)
- def test_rank_1_FIR_init_cond(self):
- x = self.generate((6,))
- b = self.convert_dtype([1, 1, 1])
- a = self.convert_dtype([1])
- zi = self.convert_dtype([1, 1])
- y_r = self.convert_dtype([1, 2, 3, 6, 9, 12.])
- zf_r = self.convert_dtype([9, 5])
- y, zf = lfilter(b, a, x, zi=zi)
- assert_array_almost_equal(y, y_r)
- assert_array_almost_equal(zf, zf_r)
- def test_rank_2_IIR_axis_0(self):
- x = self.generate((4, 3))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, 0.5])
- y_r2_a0 = self.convert_dtype([[0, 2, 4], [6, 4, 2], [0, 2, 4],
- [6, 4, 2]])
- y = lfilter(b, a, x, axis=0)
- assert_array_almost_equal(y_r2_a0, y)
- def test_rank_2_IIR_axis_1(self):
- x = self.generate((4, 3))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, 0.5])
- y_r2_a1 = self.convert_dtype([[0, 2, 0], [6, -4, 6], [12, -10, 12],
- [18, -16, 18]])
- y = lfilter(b, a, x, axis=1)
- assert_array_almost_equal(y_r2_a1, y)
- def test_rank_2_IIR_axis_0_init_cond(self):
- x = self.generate((4, 3))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, 0.5])
- zi = self.convert_dtype(np.ones((4,1)))
- y_r2_a0_1 = self.convert_dtype([[1, 1, 1], [7, -5, 7], [13, -11, 13],
- [19, -17, 19]])
- zf_r = self.convert_dtype([-5, -17, -29, -41])[:, np.newaxis]
- y, zf = lfilter(b, a, x, axis=1, zi=zi)
- assert_array_almost_equal(y_r2_a0_1, y)
- assert_array_almost_equal(zf, zf_r)
- def test_rank_2_IIR_axis_1_init_cond(self):
- x = self.generate((4,3))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, 0.5])
- zi = self.convert_dtype(np.ones((1,3)))
- y_r2_a0_0 = self.convert_dtype([[1, 3, 5], [5, 3, 1],
- [1, 3, 5], [5, 3, 1]])
- zf_r = self.convert_dtype([[-23, -23, -23]])
- y, zf = lfilter(b, a, x, axis=0, zi=zi)
- assert_array_almost_equal(y_r2_a0_0, y)
- assert_array_almost_equal(zf, zf_r)
- def test_rank_3_IIR(self):
- x = self.generate((4, 3, 2))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, 0.5])
- for axis in range(x.ndim):
- y = lfilter(b, a, x, axis)
- y_r = np.apply_along_axis(lambda w: lfilter(b, a, w), axis, x)
- assert_array_almost_equal(y, y_r)
- def test_rank_3_IIR_init_cond(self):
- x = self.generate((4, 3, 2))
- b = self.convert_dtype([1, -1])
- a = self.convert_dtype([0.5, 0.5])
- for axis in range(x.ndim):
- zi_shape = list(x.shape)
- zi_shape[axis] = 1
- zi = self.convert_dtype(np.ones(zi_shape))
- zi1 = self.convert_dtype([1])
- y, zf = lfilter(b, a, x, axis, zi)
- lf0 = lambda w: lfilter(b, a, w, zi=zi1)[0]
- lf1 = lambda w: lfilter(b, a, w, zi=zi1)[1]
- y_r = np.apply_along_axis(lf0, axis, x)
- zf_r = np.apply_along_axis(lf1, axis, x)
- assert_array_almost_equal(y, y_r)
- assert_array_almost_equal(zf, zf_r)
- def test_rank_3_FIR(self):
- x = self.generate((4, 3, 2))
- b = self.convert_dtype([1, 0, -1])
- a = self.convert_dtype([1])
- for axis in range(x.ndim):
- y = lfilter(b, a, x, axis)
- y_r = np.apply_along_axis(lambda w: lfilter(b, a, w), axis, x)
- assert_array_almost_equal(y, y_r)
- def test_rank_3_FIR_init_cond(self):
- x = self.generate((4, 3, 2))
- b = self.convert_dtype([1, 0, -1])
- a = self.convert_dtype([1])
- for axis in range(x.ndim):
- zi_shape = list(x.shape)
- zi_shape[axis] = 2
- zi = self.convert_dtype(np.ones(zi_shape))
- zi1 = self.convert_dtype([1, 1])
- y, zf = lfilter(b, a, x, axis, zi)
- lf0 = lambda w: lfilter(b, a, w, zi=zi1)[0]
- lf1 = lambda w: lfilter(b, a, w, zi=zi1)[1]
- y_r = np.apply_along_axis(lf0, axis, x)
- zf_r = np.apply_along_axis(lf1, axis, x)
- assert_array_almost_equal(y, y_r)
- assert_array_almost_equal(zf, zf_r)
- def test_zi_pseudobroadcast(self):
- x = self.generate((4, 5, 20))
- b,a = signal.butter(8, 0.2, output='ba')
- b = self.convert_dtype(b)
- a = self.convert_dtype(a)
- zi_size = b.shape[0] - 1
- # lfilter requires x.ndim == zi.ndim exactly. However, zi can have
- # length 1 dimensions.
- zi_full = self.convert_dtype(np.ones((4, 5, zi_size)))
- zi_sing = self.convert_dtype(np.ones((1, 1, zi_size)))
- y_full, zf_full = lfilter(b, a, x, zi=zi_full)
- y_sing, zf_sing = lfilter(b, a, x, zi=zi_sing)
- assert_array_almost_equal(y_sing, y_full)
- assert_array_almost_equal(zf_full, zf_sing)
- # lfilter does not prepend ones
- assert_raises(ValueError, lfilter, b, a, x, -1, np.ones(zi_size))
- def test_scalar_a(self):
- # a can be a scalar.
- x = self.generate(6)
- b = self.convert_dtype([1, 0, -1])
- a = self.convert_dtype([1])
- y_r = self.convert_dtype([0, 1, 2, 2, 2, 2])
- y = lfilter(b, a[0], x)
- assert_array_almost_equal(y, y_r)
- def test_zi_some_singleton_dims(self):
- # lfilter doesn't really broadcast (no prepending of 1's). But does
- # do singleton expansion if x and zi have the same ndim. This was
- # broken only if a subset of the axes were singletons (gh-4681).
- x = self.convert_dtype(np.zeros((3,2,5), 'l'))
- b = self.convert_dtype(np.ones(5, 'l'))
- a = self.convert_dtype(np.array([1,0,0]))
- zi = np.ones((3,1,4), 'l')
- zi[1,:,:] *= 2
- zi[2,:,:] *= 3
- zi = self.convert_dtype(zi)
- zf_expected = self.convert_dtype(np.zeros((3,2,4), 'l'))
- y_expected = np.zeros((3,2,5), 'l')
- y_expected[:,:,:4] = [[[1]], [[2]], [[3]]]
- y_expected = self.convert_dtype(y_expected)
- # IIR
- y_iir, zf_iir = lfilter(b, a, x, -1, zi)
- assert_array_almost_equal(y_iir, y_expected)
- assert_array_almost_equal(zf_iir, zf_expected)
- # FIR
- y_fir, zf_fir = lfilter(b, a[0], x, -1, zi)
- assert_array_almost_equal(y_fir, y_expected)
- assert_array_almost_equal(zf_fir, zf_expected)
- def base_bad_size_zi(self, b, a, x, axis, zi):
- b = self.convert_dtype(b)
- a = self.convert_dtype(a)
- x = self.convert_dtype(x)
- zi = self.convert_dtype(zi)
- assert_raises(ValueError, lfilter, b, a, x, axis, zi)
- def test_bad_size_zi(self):
- # rank 1
- x1 = np.arange(6)
- self.base_bad_size_zi([1], [1], x1, -1, [1])
- self.base_bad_size_zi([1, 1], [1], x1, -1, [0, 1])
- self.base_bad_size_zi([1, 1], [1], x1, -1, [[0]])
- self.base_bad_size_zi([1, 1], [1], x1, -1, [0, 1, 2])
- self.base_bad_size_zi([1, 1, 1], [1], x1, -1, [[0]])
- self.base_bad_size_zi([1, 1, 1], [1], x1, -1, [0, 1, 2])
- self.base_bad_size_zi([1], [1, 1], x1, -1, [0, 1])
- self.base_bad_size_zi([1], [1, 1], x1, -1, [[0]])
- self.base_bad_size_zi([1], [1, 1], x1, -1, [0, 1, 2])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [0])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [[0], [1]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [0, 1, 2])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x1, -1, [0, 1, 2, 3])
- self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [0])
- self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [[0], [1]])
- self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [0, 1, 2])
- self.base_bad_size_zi([1, 1], [1, 1, 1], x1, -1, [0, 1, 2, 3])
- # rank 2
- x2 = np.arange(12).reshape((4,3))
- # for axis=0 zi.shape should == (max(len(a),len(b))-1, 3)
- self.base_bad_size_zi([1], [1], x2, 0, [0])
- # for each of these there are 5 cases tested (in this order):
- # 1. not deep enough, right # elements
- # 2. too deep, right # elements
- # 3. right depth, right # elements, transposed
- # 4. right depth, too few elements
- # 5. right depth, too many elements
- self.base_bad_size_zi([1, 1], [1], x2, 0, [0,1,2])
- self.base_bad_size_zi([1, 1], [1], x2, 0, [[[0,1,2]]])
- self.base_bad_size_zi([1, 1], [1], x2, 0, [[0], [1], [2]])
- self.base_bad_size_zi([1, 1], [1], x2, 0, [[0,1]])
- self.base_bad_size_zi([1, 1], [1], x2, 0, [[0,1,2,3]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [0,1,2,3,4,5])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[[0,1,2],[3,4,5]]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[0,1],[2,3],[4,5]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[0,1],[2,3]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 0, [[0,1,2,3],[4,5,6,7]])
- self.base_bad_size_zi([1], [1, 1], x2, 0, [0,1,2])
- self.base_bad_size_zi([1], [1, 1], x2, 0, [[[0,1,2]]])
- self.base_bad_size_zi([1], [1, 1], x2, 0, [[0], [1], [2]])
- self.base_bad_size_zi([1], [1, 1], x2, 0, [[0,1]])
- self.base_bad_size_zi([1], [1, 1], x2, 0, [[0,1,2,3]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [0,1,2,3,4,5])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[[0,1,2],[3,4,5]]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[0,1],[2,3],[4,5]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[0,1],[2,3]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 0, [[0,1,2,3],[4,5,6,7]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [0,1,2,3,4,5])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[[0,1,2],[3,4,5]]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[0,1],[2,3],[4,5]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[0,1],[2,3]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 0, [[0,1,2,3],[4,5,6,7]])
- # for axis=1 zi.shape should == (4, max(len(a),len(b))-1)
- self.base_bad_size_zi([1], [1], x2, 1, [0])
- self.base_bad_size_zi([1, 1], [1], x2, 1, [0,1,2,3])
- self.base_bad_size_zi([1, 1], [1], x2, 1, [[[0],[1],[2],[3]]])
- self.base_bad_size_zi([1, 1], [1], x2, 1, [[0, 1, 2, 3]])
- self.base_bad_size_zi([1, 1], [1], x2, 1, [[0],[1],[2]])
- self.base_bad_size_zi([1, 1], [1], x2, 1, [[0],[1],[2],[3],[4]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [0,1,2,3,4,5,6,7])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[[0,1],[2,3],[4,5],[6,7]]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[0,1,2,3],[4,5,6,7]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[0,1],[2,3],[4,5]])
- self.base_bad_size_zi([1, 1, 1], [1], x2, 1, [[0,1],[2,3],[4,5],[6,7],[8,9]])
- self.base_bad_size_zi([1], [1, 1], x2, 1, [0,1,2,3])
- self.base_bad_size_zi([1], [1, 1], x2, 1, [[[0],[1],[2],[3]]])
- self.base_bad_size_zi([1], [1, 1], x2, 1, [[0, 1, 2, 3]])
- self.base_bad_size_zi([1], [1, 1], x2, 1, [[0],[1],[2]])
- self.base_bad_size_zi([1], [1, 1], x2, 1, [[0],[1],[2],[3],[4]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [0,1,2,3,4,5,6,7])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[[0,1],[2,3],[4,5],[6,7]]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[0,1,2,3],[4,5,6,7]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[0,1],[2,3],[4,5]])
- self.base_bad_size_zi([1], [1, 1, 1], x2, 1, [[0,1],[2,3],[4,5],[6,7],[8,9]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [0,1,2,3,4,5,6,7])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[[0,1],[2,3],[4,5],[6,7]]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[0,1,2,3],[4,5,6,7]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[0,1],[2,3],[4,5]])
- self.base_bad_size_zi([1, 1, 1], [1, 1], x2, 1, [[0,1],[2,3],[4,5],[6,7],[8,9]])
- def test_empty_zi(self):
- # Regression test for #880: empty array for zi crashes.
- x = self.generate((5,))
- a = self.convert_dtype([1])
- b = self.convert_dtype([1])
- zi = self.convert_dtype([])
- y, zf = lfilter(b, a, x, zi=zi)
- assert_array_almost_equal(y, x)
- assert_equal(zf.dtype, self.dtype)
- assert_equal(zf.size, 0)
- def test_lfiltic_bad_zi(self):
- # Regression test for #3699: bad initial conditions
- a = self.convert_dtype([1])
- b = self.convert_dtype([1])
- # "y" sets the datatype of zi, so it truncates if int
- zi = lfiltic(b, a, [1., 0])
- zi_1 = lfiltic(b, a, [1, 0])
- zi_2 = lfiltic(b, a, [True, False])
- assert_array_equal(zi, zi_1)
- assert_array_equal(zi, zi_2)
- def test_short_x_FIR(self):
- # regression test for #5116
- # x shorter than b, with non None zi fails
- a = self.convert_dtype([1])
- b = self.convert_dtype([1, 0, -1])
- zi = self.convert_dtype([2, 7])
- x = self.convert_dtype([72])
- ye = self.convert_dtype([74])
- zfe = self.convert_dtype([7, -72])
- y, zf = lfilter(b, a, x, zi=zi)
- assert_array_almost_equal(y, ye)
- assert_array_almost_equal(zf, zfe)
- def test_short_x_IIR(self):
- # regression test for #5116
- # x shorter than b, with non None zi fails
- a = self.convert_dtype([1, 1])
- b = self.convert_dtype([1, 0, -1])
- zi = self.convert_dtype([2, 7])
- x = self.convert_dtype([72])
- ye = self.convert_dtype([74])
- zfe = self.convert_dtype([-67, -72])
- y, zf = lfilter(b, a, x, zi=zi)
- assert_array_almost_equal(y, ye)
- assert_array_almost_equal(zf, zfe)
- def test_do_not_modify_a_b_IIR(self):
- x = self.generate((6,))
- b = self.convert_dtype([1, -1])
- b0 = b.copy()
- a = self.convert_dtype([0.5, -0.5])
- a0 = a.copy()
- y_r = self.convert_dtype([0, 2, 4, 6, 8, 10.])
- y_f = lfilter(b, a, x)
- assert_array_almost_equal(y_f, y_r)
- assert_equal(b, b0)
- assert_equal(a, a0)
- def test_do_not_modify_a_b_FIR(self):
- x = self.generate((6,))
- b = self.convert_dtype([1, 0, 1])
- b0 = b.copy()
- a = self.convert_dtype([2])
- a0 = a.copy()
- y_r = self.convert_dtype([0, 0.5, 1, 2, 3, 4.])
- y_f = lfilter(b, a, x)
- assert_array_almost_equal(y_f, y_r)
- assert_equal(b, b0)
- assert_equal(a, a0)
- class TestLinearFilterFloat32(_TestLinearFilter):
- dtype = np.dtype('f')
- class TestLinearFilterFloat64(_TestLinearFilter):
- dtype = np.dtype('d')
- class TestLinearFilterFloatExtended(_TestLinearFilter):
- dtype = np.dtype('g')
- class TestLinearFilterComplex64(_TestLinearFilter):
- dtype = np.dtype('F')
- class TestLinearFilterComplex128(_TestLinearFilter):
- dtype = np.dtype('D')
- class TestLinearFilterComplexExtended(_TestLinearFilter):
- dtype = np.dtype('G')
- class TestLinearFilterDecimal(_TestLinearFilter):
- dtype = np.dtype('O')
- def type(self, x):
- return Decimal(str(x))
- class TestLinearFilterObject(_TestLinearFilter):
- dtype = np.dtype('O')
- type = float
- def test_lfilter_bad_object():
- # lfilter: object arrays with non-numeric objects raise TypeError.
- # Regression test for ticket #1452.
- assert_raises(TypeError, lfilter, [1.0], [1.0], [1.0, None, 2.0])
- assert_raises(TypeError, lfilter, [1.0], [None], [1.0, 2.0, 3.0])
- assert_raises(TypeError, lfilter, [None], [1.0], [1.0, 2.0, 3.0])
- def test_lfilter_notimplemented_input():
- # Should not crash, gh-7991
- assert_raises(NotImplementedError, lfilter, [2,3], [4,5], [1,2,3,4,5])
- @pytest.mark.parametrize('dt', [np.ubyte, np.byte, np.ushort, np.short,
- np.uint, int, np.ulonglong, np.ulonglong,
- np.float32, np.float64, np.longdouble,
- Decimal])
- class TestCorrelateReal:
- def _setup_rank1(self, dt):
- a = np.linspace(0, 3, 4).astype(dt)
- b = np.linspace(1, 2, 2).astype(dt)
- y_r = np.array([0, 2, 5, 8, 3]).astype(dt)
- return a, b, y_r
- def equal_tolerance(self, res_dt):
- # default value of keyword
- decimal = 6
- try:
- dt_info = np.finfo(res_dt)
- if hasattr(dt_info, 'resolution'):
- decimal = int(-0.5*np.log10(dt_info.resolution))
- except Exception:
- pass
- return decimal
- def equal_tolerance_fft(self, res_dt):
- # FFT implementations convert longdouble arguments down to
- # double so don't expect better precision, see gh-9520
- if res_dt == np.longdouble:
- return self.equal_tolerance(np.double)
- else:
- return self.equal_tolerance(res_dt)
- def test_method(self, dt):
- if dt == Decimal:
- method = choose_conv_method([Decimal(4)], [Decimal(3)])
- assert_equal(method, 'direct')
- else:
- a, b, y_r = self._setup_rank3(dt)
- y_fft = correlate(a, b, method='fft')
- y_direct = correlate(a, b, method='direct')
- assert_array_almost_equal(y_r, y_fft, decimal=self.equal_tolerance_fft(y_fft.dtype))
- assert_array_almost_equal(y_r, y_direct, decimal=self.equal_tolerance(y_direct.dtype))
- assert_equal(y_fft.dtype, dt)
- assert_equal(y_direct.dtype, dt)
- def test_rank1_valid(self, dt):
- a, b, y_r = self._setup_rank1(dt)
- y = correlate(a, b, 'valid')
- assert_array_almost_equal(y, y_r[1:4])
- assert_equal(y.dtype, dt)
- # See gh-5897
- y = correlate(b, a, 'valid')
- assert_array_almost_equal(y, y_r[1:4][::-1])
- assert_equal(y.dtype, dt)
- def test_rank1_same(self, dt):
- a, b, y_r = self._setup_rank1(dt)
- y = correlate(a, b, 'same')
- assert_array_almost_equal(y, y_r[:-1])
- assert_equal(y.dtype, dt)
- def test_rank1_full(self, dt):
- a, b, y_r = self._setup_rank1(dt)
- y = correlate(a, b, 'full')
- assert_array_almost_equal(y, y_r)
- assert_equal(y.dtype, dt)
- def _setup_rank3(self, dt):
- a = np.linspace(0, 39, 40).reshape((2, 4, 5), order='F').astype(
- dt)
- b = np.linspace(0, 23, 24).reshape((2, 3, 4), order='F').astype(
- dt)
- y_r = array([[[0., 184., 504., 912., 1360., 888., 472., 160.],
- [46., 432., 1062., 1840., 2672., 1698., 864., 266.],
- [134., 736., 1662., 2768., 3920., 2418., 1168., 314.],
- [260., 952., 1932., 3056., 4208., 2580., 1240., 332.],
- [202., 664., 1290., 1984., 2688., 1590., 712., 150.],
- [114., 344., 642., 960., 1280., 726., 296., 38.]],
- [[23., 400., 1035., 1832., 2696., 1737., 904., 293.],
- [134., 920., 2166., 3680., 5280., 3306., 1640., 474.],
- [325., 1544., 3369., 5512., 7720., 4683., 2192., 535.],
- [571., 1964., 3891., 6064., 8272., 4989., 2324., 565.],
- [434., 1360., 2586., 3920., 5264., 3054., 1312., 230.],
- [241., 700., 1281., 1888., 2496., 1383., 532., 39.]],
- [[22., 214., 528., 916., 1332., 846., 430., 132.],
- [86., 484., 1098., 1832., 2600., 1602., 772., 206.],
- [188., 802., 1698., 2732., 3788., 2256., 1018., 218.],
- [308., 1006., 1950., 2996., 4052., 2400., 1078., 230.],
- [230., 692., 1290., 1928., 2568., 1458., 596., 78.],
- [126., 354., 636., 924., 1212., 654., 234., 0.]]],
- dtype=dt)
- return a, b, y_r
- def test_rank3_valid(self, dt):
- a, b, y_r = self._setup_rank3(dt)
- y = correlate(a, b, "valid")
- assert_array_almost_equal(y, y_r[1:2, 2:4, 3:5])
- assert_equal(y.dtype, dt)
- # See gh-5897
- y = correlate(b, a, "valid")
- assert_array_almost_equal(y, y_r[1:2, 2:4, 3:5][::-1, ::-1, ::-1])
- assert_equal(y.dtype, dt)
- def test_rank3_same(self, dt):
- a, b, y_r = self._setup_rank3(dt)
- y = correlate(a, b, "same")
- assert_array_almost_equal(y, y_r[0:-1, 1:-1, 1:-2])
- assert_equal(y.dtype, dt)
- def test_rank3_all(self, dt):
- a, b, y_r = self._setup_rank3(dt)
- y = correlate(a, b)
- assert_array_almost_equal(y, y_r)
- assert_equal(y.dtype, dt)
- class TestCorrelate:
- # Tests that don't depend on dtype
- def test_invalid_shapes(self):
- # By "invalid," we mean that no one
- # array has dimensions that are all at
- # least as large as the corresponding
- # dimensions of the other array. This
- # setup should throw a ValueError.
- a = np.arange(1, 7).reshape((2, 3))
- b = np.arange(-6, 0).reshape((3, 2))
- assert_raises(ValueError, correlate, *(a, b), **{'mode': 'valid'})
- assert_raises(ValueError, correlate, *(b, a), **{'mode': 'valid'})
- def test_invalid_params(self):
- a = [3, 4, 5]
- b = [1, 2, 3]
- assert_raises(ValueError, correlate, a, b, mode='spam')
- assert_raises(ValueError, correlate, a, b, mode='eggs', method='fft')
- assert_raises(ValueError, correlate, a, b, mode='ham', method='direct')
- assert_raises(ValueError, correlate, a, b, mode='full', method='bacon')
- assert_raises(ValueError, correlate, a, b, mode='same', method='bacon')
- def test_mismatched_dims(self):
- # Input arrays should have the same number of dimensions
- assert_raises(ValueError, correlate, [1], 2, method='direct')
- assert_raises(ValueError, correlate, 1, [2], method='direct')
- assert_raises(ValueError, correlate, [1], 2, method='fft')
- assert_raises(ValueError, correlate, 1, [2], method='fft')
- assert_raises(ValueError, correlate, [1], [[2]])
- assert_raises(ValueError, correlate, [3], 2)
- def test_numpy_fastpath(self):
- a = [1, 2, 3]
- b = [4, 5]
- assert_allclose(correlate(a, b, mode='same'), [5, 14, 23])
- a = [1, 2, 3]
- b = [4, 5, 6]
- assert_allclose(correlate(a, b, mode='same'), [17, 32, 23])
- assert_allclose(correlate(a, b, mode='full'), [6, 17, 32, 23, 12])
- assert_allclose(correlate(a, b, mode='valid'), [32])
- @pytest.mark.parametrize("mode", ["valid", "same", "full"])
- @pytest.mark.parametrize("behind", [True, False])
- @pytest.mark.parametrize("input_size", [100, 101, 1000, 1001, 10000, 10001])
- def test_correlation_lags(mode, behind, input_size):
- # generate random data
- rng = np.random.RandomState(0)
- in1 = rng.standard_normal(input_size)
- offset = int(input_size/10)
- # generate offset version of array to correlate with
- if behind:
- # y is behind x
- in2 = np.concatenate([rng.standard_normal(offset), in1])
- expected = -offset
- else:
- # y is ahead of x
- in2 = in1[offset:]
- expected = offset
- # cross correlate, returning lag information
- correlation = correlate(in1, in2, mode=mode)
- lags = correlation_lags(in1.size, in2.size, mode=mode)
- # identify the peak
- lag_index = np.argmax(correlation)
- # Check as expected
- assert_equal(lags[lag_index], expected)
- # Correlation and lags shape should match
- assert_equal(lags.shape, correlation.shape)
- @pytest.mark.parametrize('dt', [np.csingle, np.cdouble, np.clongdouble])
- class TestCorrelateComplex:
- # The decimal precision to be used for comparing results.
- # This value will be passed as the 'decimal' keyword argument of
- # assert_array_almost_equal().
- # Since correlate may chose to use FFT method which converts
- # longdoubles to doubles internally don't expect better precision
- # for longdouble than for double (see gh-9520).
- def decimal(self, dt):
- if dt == np.clongdouble:
- dt = np.cdouble
- return int(2 * np.finfo(dt).precision / 3)
- def _setup_rank1(self, dt, mode):
- np.random.seed(9)
- a = np.random.randn(10).astype(dt)
- a += 1j * np.random.randn(10).astype(dt)
- b = np.random.randn(8).astype(dt)
- b += 1j * np.random.randn(8).astype(dt)
- y_r = (correlate(a.real, b.real, mode=mode) +
- correlate(a.imag, b.imag, mode=mode)).astype(dt)
- y_r += 1j * (-correlate(a.real, b.imag, mode=mode) +
- correlate(a.imag, b.real, mode=mode))
- return a, b, y_r
- def test_rank1_valid(self, dt):
- a, b, y_r = self._setup_rank1(dt, 'valid')
- y = correlate(a, b, 'valid')
- assert_array_almost_equal(y, y_r, decimal=self.decimal(dt))
- assert_equal(y.dtype, dt)
- # See gh-5897
- y = correlate(b, a, 'valid')
- assert_array_almost_equal(y, y_r[::-1].conj(), decimal=self.decimal(dt))
- assert_equal(y.dtype, dt)
- def test_rank1_same(self, dt):
- a, b, y_r = self._setup_rank1(dt, 'same')
- y = correlate(a, b, 'same')
- assert_array_almost_equal(y, y_r, decimal=self.decimal(dt))
- assert_equal(y.dtype, dt)
- def test_rank1_full(self, dt):
- a, b, y_r = self._setup_rank1(dt, 'full')
- y = correlate(a, b, 'full')
- assert_array_almost_equal(y, y_r, decimal=self.decimal(dt))
- assert_equal(y.dtype, dt)
- def test_swap_full(self, dt):
- d = np.array([0.+0.j, 1.+1.j, 2.+2.j], dtype=dt)
- k = np.array([1.+3.j, 2.+4.j, 3.+5.j, 4.+6.j], dtype=dt)
- y = correlate(d, k)
- assert_equal(y, [0.+0.j, 10.-2.j, 28.-6.j, 22.-6.j, 16.-6.j, 8.-4.j])
- def test_swap_same(self, dt):
- d = [0.+0.j, 1.+1.j, 2.+2.j]
- k = [1.+3.j, 2.+4.j, 3.+5.j, 4.+6.j]
- y = correlate(d, k, mode="same")
- assert_equal(y, [10.-2.j, 28.-6.j, 22.-6.j])
- def test_rank3(self, dt):
- a = np.random.randn(10, 8, 6).astype(dt)
- a += 1j * np.random.randn(10, 8, 6).astype(dt)
- b = np.random.randn(8, 6, 4).astype(dt)
- b += 1j * np.random.randn(8, 6, 4).astype(dt)
- y_r = (correlate(a.real, b.real)
- + correlate(a.imag, b.imag)).astype(dt)
- y_r += 1j * (-correlate(a.real, b.imag) + correlate(a.imag, b.real))
- y = correlate(a, b, 'full')
- assert_array_almost_equal(y, y_r, decimal=self.decimal(dt) - 1)
- assert_equal(y.dtype, dt)
- def test_rank0(self, dt):
- a = np.array(np.random.randn()).astype(dt)
- a += 1j * np.array(np.random.randn()).astype(dt)
- b = np.array(np.random.randn()).astype(dt)
- b += 1j * np.array(np.random.randn()).astype(dt)
- y_r = (correlate(a.real, b.real)
- + correlate(a.imag, b.imag)).astype(dt)
- y_r += 1j * np.array(-correlate(a.real, b.imag) +
- correlate(a.imag, b.real))
- y = correlate(a, b, 'full')
- assert_array_almost_equal(y, y_r, decimal=self.decimal(dt) - 1)
- assert_equal(y.dtype, dt)
- assert_equal(correlate([1], [2j]), correlate(1, 2j))
- assert_equal(correlate([2j], [3j]), correlate(2j, 3j))
- assert_equal(correlate([3j], [4]), correlate(3j, 4))
- class TestCorrelate2d:
- def test_consistency_correlate_funcs(self):
- # Compare np.correlate, signal.correlate, signal.correlate2d
- a = np.arange(5)
- b = np.array([3.2, 1.4, 3])
- for mode in ['full', 'valid', 'same']:
- assert_almost_equal(np.correlate(a, b, mode=mode),
- signal.correlate(a, b, mode=mode))
- assert_almost_equal(np.squeeze(signal.correlate2d([a], [b],
- mode=mode)),
- signal.correlate(a, b, mode=mode))
- # See gh-5897
- if mode == 'valid':
- assert_almost_equal(np.correlate(b, a, mode=mode),
- signal.correlate(b, a, mode=mode))
- assert_almost_equal(np.squeeze(signal.correlate2d([b], [a],
- mode=mode)),
- signal.correlate(b, a, mode=mode))
- def test_invalid_shapes(self):
- # By "invalid," we mean that no one
- # array has dimensions that are all at
- # least as large as the corresponding
- # dimensions of the other array. This
- # setup should throw a ValueError.
- a = np.arange(1, 7).reshape((2, 3))
- b = np.arange(-6, 0).reshape((3, 2))
- assert_raises(ValueError, signal.correlate2d, *(a, b), **{'mode': 'valid'})
- assert_raises(ValueError, signal.correlate2d, *(b, a), **{'mode': 'valid'})
- def test_complex_input(self):
- assert_equal(signal.correlate2d([[1]], [[2j]]), -2j)
- assert_equal(signal.correlate2d([[2j]], [[3j]]), 6)
- assert_equal(signal.correlate2d([[3j]], [[4]]), 12j)
- class TestLFilterZI:
- def test_basic(self):
- a = np.array([1.0, -1.0, 0.5])
- b = np.array([1.0, 0.0, 2.0])
- zi_expected = np.array([5.0, -1.0])
- zi = lfilter_zi(b, a)
- assert_array_almost_equal(zi, zi_expected)
- def test_scale_invariance(self):
- # Regression test. There was a bug in which b was not correctly
- # rescaled when a[0] was nonzero.
- b = np.array([2, 8, 5])
- a = np.array([1, 1, 8])
- zi1 = lfilter_zi(b, a)
- zi2 = lfilter_zi(2*b, 2*a)
- assert_allclose(zi2, zi1, rtol=1e-12)
- @pytest.mark.parametrize('dtype', [np.float32, np.float64])
- def test_types(self, dtype):
- b = np.zeros((8), dtype=dtype)
- a = np.array([1], dtype=dtype)
- assert_equal(np.real(signal.lfilter_zi(b, a)).dtype, dtype)
- class TestFiltFilt:
- filtfilt_kind = 'tf'
- def filtfilt(self, zpk, x, axis=-1, padtype='odd', padlen=None,
- method='pad', irlen=None):
- if self.filtfilt_kind == 'tf':
- b, a = zpk2tf(*zpk)
- return filtfilt(b, a, x, axis, padtype, padlen, method, irlen)
- elif self.filtfilt_kind == 'sos':
- sos = zpk2sos(*zpk)
- return sosfiltfilt(sos, x, axis, padtype, padlen)
- def test_basic(self):
- zpk = tf2zpk([1, 2, 3], [1, 2, 3])
- out = self.filtfilt(zpk, np.arange(12))
- assert_allclose(out, arange(12), atol=5.28e-11)
- def test_sine(self):
- rate = 2000
- t = np.linspace(0, 1.0, rate + 1)
- # A signal with low frequency and a high frequency.
- xlow = np.sin(5 * 2 * np.pi * t)
- xhigh = np.sin(250 * 2 * np.pi * t)
- x = xlow + xhigh
- zpk = butter(8, 0.125, output='zpk')
- # r is the magnitude of the largest pole.
- r = np.abs(zpk[1]).max()
- eps = 1e-5
- # n estimates the number of steps for the
- # transient to decay by a factor of eps.
- n = int(np.ceil(np.log(eps) / np.log(r)))
- # High order lowpass filter...
- y = self.filtfilt(zpk, x, padlen=n)
- # Result should be just xlow.
- err = np.abs(y - xlow).max()
- assert_(err < 1e-4)
- # A 2D case.
- x2d = np.vstack([xlow, xlow + xhigh])
- y2d = self.filtfilt(zpk, x2d, padlen=n, axis=1)
- assert_equal(y2d.shape, x2d.shape)
- err = np.abs(y2d - xlow).max()
- assert_(err < 1e-4)
- # Use the previous result to check the use of the axis keyword.
- # (Regression test for ticket #1620)
- y2dt = self.filtfilt(zpk, x2d.T, padlen=n, axis=0)
- assert_equal(y2d, y2dt.T)
- def test_axis(self):
- # Test the 'axis' keyword on a 3D array.
- x = np.arange(10.0 * 11.0 * 12.0).reshape(10, 11, 12)
- zpk = butter(3, 0.125, output='zpk')
- y0 = self.filtfilt(zpk, x, padlen=0, axis=0)
- y1 = self.filtfilt(zpk, np.swapaxes(x, 0, 1), padlen=0, axis=1)
- assert_array_equal(y0, np.swapaxes(y1, 0, 1))
- y2 = self.filtfilt(zpk, np.swapaxes(x, 0, 2), padlen=0, axis=2)
- assert_array_equal(y0, np.swapaxes(y2, 0, 2))
- def test_acoeff(self):
- if self.filtfilt_kind != 'tf':
- return # only necessary for TF
- # test for 'a' coefficient as single number
- out = signal.filtfilt([.5, .5], 1, np.arange(10))
- assert_allclose(out, np.arange(10), rtol=1e-14, atol=1e-14)
- def test_gust_simple(self):
- if self.filtfilt_kind != 'tf':
- pytest.skip('gust only implemented for TF systems')
- # The input array has length 2. The exact solution for this case
- # was computed "by hand".
- x = np.array([1.0, 2.0])
- b = np.array([0.5])
- a = np.array([1.0, -0.5])
- y, z1, z2 = _filtfilt_gust(b, a, x)
- assert_allclose([z1[0], z2[0]],
- [0.3*x[0] + 0.2*x[1], 0.2*x[0] + 0.3*x[1]])
- assert_allclose(y, [z1[0] + 0.25*z2[0] + 0.25*x[0] + 0.125*x[1],
- 0.25*z1[0] + z2[0] + 0.125*x[0] + 0.25*x[1]])
- def test_gust_scalars(self):
- if self.filtfilt_kind != 'tf':
- pytest.skip('gust only implemented for TF systems')
- # The filter coefficients are both scalars, so the filter simply
- # multiplies its input by b/a. When it is used in filtfilt, the
- # factor is (b/a)**2.
- x = np.arange(12)
- b = 3.0
- a = 2.0
- y = filtfilt(b, a, x, method="gust")
- expected = (b/a)**2 * x
- assert_allclose(y, expected)
- class TestSOSFiltFilt(TestFiltFilt):
- filtfilt_kind = 'sos'
- def test_equivalence(self):
- """Test equivalence between sosfiltfilt and filtfilt"""
- x = np.random.RandomState(0).randn(1000)
- for order in range(1, 6):
- zpk = signal.butter(order, 0.35, output='zpk')
- b, a = zpk2tf(*zpk)
- sos = zpk2sos(*zpk)
- y = filtfilt(b, a, x)
- y_sos = sosfiltfilt(sos, x)
- assert_allclose(y, y_sos, atol=1e-12, err_msg='order=%s' % order)
- def filtfilt_gust_opt(b, a, x):
- """
- An alternative implementation of filtfilt with Gustafsson edges.
- This function computes the same result as
- `scipy.signal._signaltools._filtfilt_gust`, but only 1-d arrays
- are accepted. The problem is solved using `fmin` from `scipy.optimize`.
- `_filtfilt_gust` is significanly faster than this implementation.
- """
- def filtfilt_gust_opt_func(ics, b, a, x):
- """Objective function used in filtfilt_gust_opt."""
- m = max(len(a), len(b)) - 1
- z0f = ics[:m]
- z0b = ics[m:]
- y_f = lfilter(b, a, x, zi=z0f)[0]
- y_fb = lfilter(b, a, y_f[::-1], zi=z0b)[0][::-1]
- y_b = lfilter(b, a, x[::-1], zi=z0b)[0][::-1]
- y_bf = lfilter(b, a, y_b, zi=z0f)[0]
- value = np.sum((y_fb - y_bf)**2)
- return value
- m = max(len(a), len(b)) - 1
- zi = lfilter_zi(b, a)
- ics = np.concatenate((x[:m].mean()*zi, x[-m:].mean()*zi))
- result = fmin(filtfilt_gust_opt_func, ics, args=(b, a, x),
- xtol=1e-10, ftol=1e-12,
- maxfun=10000, maxiter=10000,
- full_output=True, disp=False)
- opt, fopt, niter, funcalls, warnflag = result
- if warnflag > 0:
- raise RuntimeError("minimization failed in filtfilt_gust_opt: "
- "warnflag=%d" % warnflag)
- z0f = opt[:m]
- z0b = opt[m:]
- # Apply the forward-backward filter using the computed initial
- # conditions.
- y_b = lfilter(b, a, x[::-1], zi=z0b)[0][::-1]
- y = lfilter(b, a, y_b, zi=z0f)[0]
- return y, z0f, z0b
- def check_filtfilt_gust(b, a, shape, axis, irlen=None):
- # Generate x, the data to be filtered.
- np.random.seed(123)
- x = np.random.randn(*shape)
- # Apply filtfilt to x. This is the main calculation to be checked.
- y = filtfilt(b, a, x, axis=axis, method="gust", irlen=irlen)
- # Also call the private function so we can test the ICs.
- yg, zg1, zg2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen)
- # filtfilt_gust_opt is an independent implementation that gives the
- # expected result, but it only handles 1-D arrays, so use some looping
- # and reshaping shenanigans to create the expected output arrays.
- xx = np.swapaxes(x, axis, -1)
- out_shape = xx.shape[:-1]
- yo = np.empty_like(xx)
- m = max(len(a), len(b)) - 1
- zo1 = np.empty(out_shape + (m,))
- zo2 = np.empty(out_shape + (m,))
- for indx in product(*[range(d) for d in out_shape]):
- yo[indx], zo1[indx], zo2[indx] = filtfilt_gust_opt(b, a, xx[indx])
- yo = np.swapaxes(yo, -1, axis)
- zo1 = np.swapaxes(zo1, -1, axis)
- zo2 = np.swapaxes(zo2, -1, axis)
- assert_allclose(y, yo, rtol=1e-8, atol=1e-9)
- assert_allclose(yg, yo, rtol=1e-8, atol=1e-9)
- assert_allclose(zg1, zo1, rtol=1e-8, atol=1e-9)
- assert_allclose(zg2, zo2, rtol=1e-8, atol=1e-9)
- def test_choose_conv_method():
- for mode in ['valid', 'same', 'full']:
- for ndim in [1, 2]:
- n, k, true_method = 8, 6, 'direct'
- x = np.random.randn(*((n,) * ndim))
- h = np.random.randn(*((k,) * ndim))
- method = choose_conv_method(x, h, mode=mode)
- assert_equal(method, true_method)
- method_try, times = choose_conv_method(x, h, mode=mode, measure=True)
- assert_(method_try in {'fft', 'direct'})
- assert_(type(times) is dict)
- assert_('fft' in times.keys() and 'direct' in times.keys())
- n = 10
- for not_fft_conv_supp in ["complex256", "complex192"]:
- if hasattr(np, not_fft_conv_supp):
- x = np.ones(n, dtype=not_fft_conv_supp)
- h = x.copy()
- assert_equal(choose_conv_method(x, h, mode=mode), 'direct')
- x = np.array([2**51], dtype=np.int64)
- h = x.copy()
- assert_equal(choose_conv_method(x, h, mode=mode), 'direct')
- x = [Decimal(3), Decimal(2)]
- h = [Decimal(1), Decimal(4)]
- assert_equal(choose_conv_method(x, h, mode=mode), 'direct')
- def test_filtfilt_gust():
- # Design a filter.
- z, p, k = signal.ellip(3, 0.01, 120, 0.0875, output='zpk')
- # Find the approximate impulse response length of the filter.
- eps = 1e-10
- r = np.max(np.abs(p))
- approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
- np.random.seed(123)
- b, a = zpk2tf(z, p, k)
- for irlen in [None, approx_impulse_len]:
- signal_len = 5 * approx_impulse_len
- # 1-d test case
- check_filtfilt_gust(b, a, (signal_len,), 0, irlen)
- # 3-d test case; test each axis.
- for axis in range(3):
- shape = [2, 2, 2]
- shape[axis] = signal_len
- check_filtfilt_gust(b, a, shape, axis, irlen)
- # Test case with length less than 2*approx_impulse_len.
- # In this case, `filtfilt_gust` should behave the same as if
- # `irlen=None` was given.
- length = 2*approx_impulse_len - 50
- check_filtfilt_gust(b, a, (length,), 0, approx_impulse_len)
- class TestDecimate:
- def test_bad_args(self):
- x = np.arange(12)
- assert_raises(TypeError, signal.decimate, x, q=0.5, n=1)
- assert_raises(TypeError, signal.decimate, x, q=2, n=0.5)
- def test_basic_IIR(self):
- x = np.arange(12)
- y = signal.decimate(x, 2, n=1, ftype='iir', zero_phase=False).round()
- assert_array_equal(y, x[::2])
- def test_basic_FIR(self):
- x = np.arange(12)
- y = signal.decimate(x, 2, n=1, ftype='fir', zero_phase=False).round()
- assert_array_equal(y, x[::2])
- def test_shape(self):
- # Regression test for ticket #1480.
- z = np.zeros((30, 30))
- d0 = signal.decimate(z, 2, axis=0, zero_phase=False)
- assert_equal(d0.shape, (15, 30))
- d1 = signal.decimate(z, 2, axis=1, zero_phase=False)
- assert_equal(d1.shape, (30, 15))
- def test_phaseshift_FIR(self):
- with suppress_warnings() as sup:
- sup.filter(BadCoefficients, "Badly conditioned filter")
- self._test_phaseshift(method='fir', zero_phase=False)
- def test_zero_phase_FIR(self):
- with suppress_warnings() as sup:
- sup.filter(BadCoefficients, "Badly conditioned filter")
- self._test_phaseshift(method='fir', zero_phase=True)
- def test_phaseshift_IIR(self):
- self._test_phaseshift(method='iir', zero_phase=False)
- def test_zero_phase_IIR(self):
- self._test_phaseshift(method='iir', zero_phase=True)
- def _test_phaseshift(self, method, zero_phase):
- rate = 120
- rates_to = [15, 20, 30, 40] # q = 8, 6, 4, 3
- t_tot = int(100) # Need to let antialiasing filters settle
- t = np.arange(rate*t_tot+1) / float(rate)
- # Sinusoids at 0.8*nyquist, windowed to avoid edge artifacts
- freqs = np.array(rates_to) * 0.8 / 2
- d = (np.exp(1j * 2 * np.pi * freqs[:, np.newaxis] * t)
- * signal.windows.tukey(t.size, 0.1))
- for rate_to in rates_to:
- q = rate // rate_to
- t_to = np.arange(rate_to*t_tot+1) / float(rate_to)
- d_tos = (np.exp(1j * 2 * np.pi * freqs[:, np.newaxis] * t_to)
- * signal.windows.tukey(t_to.size, 0.1))
- # Set up downsampling filters, match v0.17 defaults
- if method == 'fir':
- n = 30
- system = signal.dlti(signal.firwin(n + 1, 1. / q,
- window='hamming'), 1.)
- elif method == 'iir':
- n = 8
- wc = 0.8*np.pi/q
- system = signal.dlti(*signal.cheby1(n, 0.05, wc/np.pi))
- # Calculate expected phase response, as unit complex vector
- if zero_phase is False:
- _, h_resps = signal.freqz(system.num, system.den,
- freqs/rate*2*np.pi)
- h_resps /= np.abs(h_resps)
- else:
- h_resps = np.ones_like(freqs)
- y_resamps = signal.decimate(d.real, q, n, ftype=system,
- zero_phase=zero_phase)
- # Get phase from complex inner product, like CSD
- h_resamps = np.sum(d_tos.conj() * y_resamps, axis=-1)
- h_resamps /= np.abs(h_resamps)
- subnyq = freqs < 0.5*rate_to
- # Complex vectors should be aligned, only compare below nyquist
- assert_allclose(np.angle(h_resps.conj()*h_resamps)[subnyq], 0,
- atol=1e-3, rtol=1e-3)
- def test_auto_n(self):
- # Test that our value of n is a reasonable choice (depends on
- # the downsampling factor)
- sfreq = 100.
- n = 1000
- t = np.arange(n) / sfreq
- # will alias for decimations (>= 15)
- x = np.sqrt(2. / n) * np.sin(2 * np.pi * (sfreq / 30.) * t)
- assert_allclose(np.linalg.norm(x), 1., rtol=1e-3)
- x_out = signal.decimate(x, 30, ftype='fir')
- assert_array_less(np.linalg.norm(x_out), 0.01)
- def test_long_float32(self):
- # regression: gh-15072. With 32-bit float and either lfilter
- # or filtfilt, this is numerically unstable
- x = signal.decimate(np.ones(10_000, dtype=np.float32), 10)
- assert not any(np.isnan(x))
- def test_float16_upcast(self):
- # float16 must be upcast to float64
- x = signal.decimate(np.ones(100, dtype=np.float16), 10)
- assert x.dtype.type == np.float64
- class TestHilbert:
- def test_bad_args(self):
- x = np.array([1.0 + 0.0j])
- assert_raises(ValueError, hilbert, x)
- x = np.arange(8.0)
- assert_raises(ValueError, hilbert, x, N=0)
- def test_hilbert_theoretical(self):
- # test cases by Ariel Rokem
- decimal = 14
- pi = np.pi
- t = np.arange(0, 2 * pi, pi / 256)
- a0 = np.sin(t)
- a1 = np.cos(t)
- a2 = np.sin(2 * t)
- a3 = np.cos(2 * t)
- a = np.vstack([a0, a1, a2, a3])
- h = hilbert(a)
- h_abs = np.abs(h)
- h_angle = np.angle(h)
- h_real = np.real(h)
- # The real part should be equal to the original signals:
- assert_almost_equal(h_real, a, decimal)
- # The absolute value should be one everywhere, for this input:
- assert_almost_equal(h_abs, np.ones(a.shape), decimal)
- # For the 'slow' sine - the phase should go from -pi/2 to pi/2 in
- # the first 256 bins:
- assert_almost_equal(h_angle[0, :256],
- np.arange(-pi / 2, pi / 2, pi / 256),
- decimal)
- # For the 'slow' cosine - the phase should go from 0 to pi in the
- # same interval:
- assert_almost_equal(
- h_angle[1, :256], np.arange(0, pi, pi / 256), decimal)
- # The 'fast' sine should make this phase transition in half the time:
- assert_almost_equal(h_angle[2, :128],
- np.arange(-pi / 2, pi / 2, pi / 128),
- decimal)
- # Ditto for the 'fast' cosine:
- assert_almost_equal(
- h_angle[3, :128], np.arange(0, pi, pi / 128), decimal)
- # The imaginary part of hilbert(cos(t)) = sin(t) Wikipedia
- assert_almost_equal(h[1].imag, a0, decimal)
- def test_hilbert_axisN(self):
- # tests for axis and N arguments
- a = np.arange(18).reshape(3, 6)
- # test axis
- aa = hilbert(a, axis=-1)
- assert_equal(hilbert(a.T, axis=0), aa.T)
- # test 1d
- assert_almost_equal(hilbert(a[0]), aa[0], 14)
- # test N
- aan = hilbert(a, N=20, axis=-1)
- assert_equal(aan.shape, [3, 20])
- assert_equal(hilbert(a.T, N=20, axis=0).shape, [20, 3])
- # the next test is just a regression test,
- # no idea whether numbers make sense
- a0hilb = np.array([0.000000000000000e+00 - 1.72015830311905j,
- 1.000000000000000e+00 - 2.047794505137069j,
- 1.999999999999999e+00 - 2.244055555687583j,
- 3.000000000000000e+00 - 1.262750302935009j,
- 4.000000000000000e+00 - 1.066489252384493j,
- 5.000000000000000e+00 + 2.918022706971047j,
- 8.881784197001253e-17 + 3.845658908989067j,
- -9.444121133484362e-17 + 0.985044202202061j,
- -1.776356839400251e-16 + 1.332257797702019j,
- -3.996802888650564e-16 + 0.501905089898885j,
- 1.332267629550188e-16 + 0.668696078880782j,
- -1.192678053963799e-16 + 0.235487067862679j,
- -1.776356839400251e-16 + 0.286439612812121j,
- 3.108624468950438e-16 + 0.031676888064907j,
- 1.332267629550188e-16 - 0.019275656884536j,
- -2.360035624836702e-16 - 0.1652588660287j,
- 0.000000000000000e+00 - 0.332049855010597j,
- 3.552713678800501e-16 - 0.403810179797771j,
- 8.881784197001253e-17 - 0.751023775297729j,
- 9.444121133484362e-17 - 0.79252210110103j])
- assert_almost_equal(aan[0], a0hilb, 14, 'N regression')
- @pytest.mark.parametrize('dtype', [np.float32, np.float64])
- def test_hilbert_types(self, dtype):
- in_typed = np.zeros(8, dtype=dtype)
- assert_equal(np.real(signal.hilbert(in_typed)).dtype, dtype)
- class TestHilbert2:
- def test_bad_args(self):
- # x must be real.
- x = np.array([[1.0 + 0.0j]])
- assert_raises(ValueError, hilbert2, x)
- # x must be rank 2.
- x = np.arange(24).reshape(2, 3, 4)
- assert_raises(ValueError, hilbert2, x)
- # Bad value for N.
- x = np.arange(16).reshape(4, 4)
- assert_raises(ValueError, hilbert2, x, N=0)
- assert_raises(ValueError, hilbert2, x, N=(2, 0))
- assert_raises(ValueError, hilbert2, x, N=(2,))
- @pytest.mark.parametrize('dtype', [np.float32, np.float64])
- def test_hilbert2_types(self, dtype):
- in_typed = np.zeros((2, 32), dtype=dtype)
- assert_equal(np.real(signal.hilbert2(in_typed)).dtype, dtype)
- class TestPartialFractionExpansion:
- @staticmethod
- def assert_rp_almost_equal(r, p, r_true, p_true, decimal=7):
- r_true = np.asarray(r_true)
- p_true = np.asarray(p_true)
- distance = np.hypot(abs(p[:, None] - p_true),
- abs(r[:, None] - r_true))
- rows, cols = linear_sum_assignment(distance)
- assert_almost_equal(p[rows], p_true[cols], decimal=decimal)
- assert_almost_equal(r[rows], r_true[cols], decimal=decimal)
- def test_compute_factors(self):
- factors, poly = _compute_factors([1, 2, 3], [3, 2, 1])
- assert_equal(len(factors), 3)
- assert_almost_equal(factors[0], np.poly([2, 2, 3]))
- assert_almost_equal(factors[1], np.poly([1, 1, 1, 3]))
- assert_almost_equal(factors[2], np.poly([1, 1, 1, 2, 2]))
- assert_almost_equal(poly, np.poly([1, 1, 1, 2, 2, 3]))
- factors, poly = _compute_factors([1, 2, 3], [3, 2, 1],
- include_powers=True)
- assert_equal(len(factors), 6)
- assert_almost_equal(factors[0], np.poly([1, 1, 2, 2, 3]))
- assert_almost_equal(factors[1], np.poly([1, 2, 2, 3]))
- assert_almost_equal(factors[2], np.poly([2, 2, 3]))
- assert_almost_equal(factors[3], np.poly([1, 1, 1, 2, 3]))
- assert_almost_equal(factors[4], np.poly([1, 1, 1, 3]))
- assert_almost_equal(factors[5], np.poly([1, 1, 1, 2, 2]))
- assert_almost_equal(poly, np.poly([1, 1, 1, 2, 2, 3]))
- def test_group_poles(self):
- unique, multiplicity = _group_poles(
- [1.0, 1.001, 1.003, 2.0, 2.003, 3.0], 0.1, 'min')
- assert_equal(unique, [1.0, 2.0, 3.0])
- assert_equal(multiplicity, [3, 2, 1])
- def test_residue_general(self):
- # Test are taken from issue #4464, note that poles in scipy are
- # in increasing by absolute value order, opposite to MATLAB.
- r, p, k = residue([5, 3, -2, 7], [-4, 0, 8, 3])
- assert_almost_equal(r, [1.3320, -0.6653, -1.4167], decimal=4)
- assert_almost_equal(p, [-0.4093, -1.1644, 1.5737], decimal=4)
- assert_almost_equal(k, [-1.2500], decimal=4)
- r, p, k = residue([-4, 8], [1, 6, 8])
- assert_almost_equal(r, [8, -12])
- assert_almost_equal(p, [-2, -4])
- assert_equal(k.size, 0)
- r, p, k = residue([4, 1], [1, -1, -2])
- assert_almost_equal(r, [1, 3])
- assert_almost_equal(p, [-1, 2])
- assert_equal(k.size, 0)
- r, p, k = residue([4, 3], [2, -3.4, 1.98, -0.406])
- self.assert_rp_almost_equal(
- r, p, [-18.125 - 13.125j, -18.125 + 13.125j, 36.25],
- [0.5 - 0.2j, 0.5 + 0.2j, 0.7])
- assert_equal(k.size, 0)
- r, p, k = residue([2, 1], [1, 5, 8, 4])
- self.assert_rp_almost_equal(r, p, [-1, 1, 3], [-1, -2, -2])
- assert_equal(k.size, 0)
- r, p, k = residue([3, -1.1, 0.88, -2.396, 1.348],
- [1, -0.7, -0.14, 0.048])
- assert_almost_equal(r, [-3, 4, 1])
- assert_almost_equal(p, [0.2, -0.3, 0.8])
- assert_almost_equal(k, [3, 1])
- r, p, k = residue([1], [1, 2, -3])
- assert_almost_equal(r, [0.25, -0.25])
- assert_almost_equal(p, [1, -3])
- assert_equal(k.size, 0)
- r, p, k = residue([1, 0, -5], [1, 0, 0, 0, -1])
- self.assert_rp_almost_equal(r, p,
- [1, 1.5j, -1.5j, -1], [-1, -1j, 1j, 1])
- assert_equal(k.size, 0)
- r, p, k = residue([3, 8, 6], [1, 3, 3, 1])
- self.assert_rp_almost_equal(r, p, [1, 2, 3], [-1, -1, -1])
- assert_equal(k.size, 0)
- r, p, k = residue([3, -1], [1, -3, 2])
- assert_almost_equal(r, [-2, 5])
- assert_almost_equal(p, [1, 2])
- assert_equal(k.size, 0)
- r, p, k = residue([2, 3, -1], [1, -3, 2])
- assert_almost_equal(r, [-4, 13])
- assert_almost_equal(p, [1, 2])
- assert_almost_equal(k, [2])
- r, p, k = residue([7, 2, 3, -1], [1, -3, 2])
- assert_almost_equal(r, [-11, 69])
- assert_almost_equal(p, [1, 2])
- assert_almost_equal(k, [7, 23])
- r, p, k = residue([2, 3, -1], [1, -3, 4, -2])
- self.assert_rp_almost_equal(r, p, [4, -1 + 3.5j, -1 - 3.5j],
- [1, 1 - 1j, 1 + 1j])
- assert_almost_equal(k.size, 0)
- def test_residue_leading_zeros(self):
- # Leading zeros in numerator or denominator must not affect the answer.
- r0, p0, k0 = residue([5, 3, -2, 7], [-4, 0, 8, 3])
- r1, p1, k1 = residue([0, 5, 3, -2, 7], [-4, 0, 8, 3])
- r2, p2, k2 = residue([5, 3, -2, 7], [0, -4, 0, 8, 3])
- r3, p3, k3 = residue([0, 0, 5, 3, -2, 7], [0, 0, 0, -4, 0, 8, 3])
- assert_almost_equal(r0, r1)
- assert_almost_equal(r0, r2)
- assert_almost_equal(r0, r3)
- assert_almost_equal(p0, p1)
- assert_almost_equal(p0, p2)
- assert_almost_equal(p0, p3)
- assert_almost_equal(k0, k1)
- assert_almost_equal(k0, k2)
- assert_almost_equal(k0, k3)
- def test_resiude_degenerate(self):
- # Several tests for zero numerator and denominator.
- r, p, k = residue([0, 0], [1, 6, 8])
- assert_almost_equal(r, [0, 0])
- assert_almost_equal(p, [-2, -4])
- assert_equal(k.size, 0)
- r, p, k = residue(0, 1)
- assert_equal(r.size, 0)
- assert_equal(p.size, 0)
- assert_equal(k.size, 0)
- with pytest.raises(ValueError, match="Denominator `a` is zero."):
- residue(1, 0)
- def test_residuez_general(self):
- r, p, k = residuez([1, 6, 6, 2], [1, -(2 + 1j), (1 + 2j), -1j])
- self.assert_rp_almost_equal(r, p, [-2+2.5j, 7.5+7.5j, -4.5-12j],
- [1j, 1, 1])
- assert_almost_equal(k, [2j])
- r, p, k = residuez([1, 2, 1], [1, -1, 0.3561])
- self.assert_rp_almost_equal(r, p,
- [-0.9041 - 5.9928j, -0.9041 + 5.9928j],
- [0.5 + 0.3257j, 0.5 - 0.3257j],
- decimal=4)
- assert_almost_equal(k, [2.8082], decimal=4)
- r, p, k = residuez([1, -1], [1, -5, 6])
- assert_almost_equal(r, [-1, 2])
- assert_almost_equal(p, [2, 3])
- assert_equal(k.size, 0)
- r, p, k = residuez([2, 3, 4], [1, 3, 3, 1])
- self.assert_rp_almost_equal(r, p, [4, -5, 3], [-1, -1, -1])
- assert_equal(k.size, 0)
- r, p, k = residuez([1, -10, -4, 4], [2, -2, -4])
- assert_almost_equal(r, [0.5, -1.5])
- assert_almost_equal(p, [-1, 2])
- assert_almost_equal(k, [1.5, -1])
- r, p, k = residuez([18], [18, 3, -4, -1])
- self.assert_rp_almost_equal(r, p,
- [0.36, 0.24, 0.4], [0.5, -1/3, -1/3])
- assert_equal(k.size, 0)
- r, p, k = residuez([2, 3], np.polymul([1, -1/2], [1, 1/4]))
- assert_almost_equal(r, [-10/3, 16/3])
- assert_almost_equal(p, [-0.25, 0.5])
- assert_equal(k.size, 0)
- r, p, k = residuez([1, -2, 1], [1, -1])
- assert_almost_equal(r, [0])
- assert_almost_equal(p, [1])
- assert_almost_equal(k, [1, -1])
- r, p, k = residuez(1, [1, -1j])
- assert_almost_equal(r, [1])
- assert_almost_equal(p, [1j])
- assert_equal(k.size, 0)
- r, p, k = residuez(1, [1, -1, 0.25])
- assert_almost_equal(r, [0, 1])
- assert_almost_equal(p, [0.5, 0.5])
- assert_equal(k.size, 0)
- r, p, k = residuez(1, [1, -0.75, .125])
- assert_almost_equal(r, [-1, 2])
- assert_almost_equal(p, [0.25, 0.5])
- assert_equal(k.size, 0)
- r, p, k = residuez([1, 6, 2], [1, -2, 1])
- assert_almost_equal(r, [-10, 9])
- assert_almost_equal(p, [1, 1])
- assert_almost_equal(k, [2])
- r, p, k = residuez([6, 2], [1, -2, 1])
- assert_almost_equal(r, [-2, 8])
- assert_almost_equal(p, [1, 1])
- assert_equal(k.size, 0)
- r, p, k = residuez([1, 6, 6, 2], [1, -2, 1])
- assert_almost_equal(r, [-24, 15])
- assert_almost_equal(p, [1, 1])
- assert_almost_equal(k, [10, 2])
- r, p, k = residuez([1, 0, 1], [1, 0, 0, 0, 0, -1])
- self.assert_rp_almost_equal(r, p,
- [0.2618 + 0.1902j, 0.2618 - 0.1902j,
- 0.4, 0.0382 - 0.1176j, 0.0382 + 0.1176j],
- [-0.8090 + 0.5878j, -0.8090 - 0.5878j,
- 1.0, 0.3090 + 0.9511j, 0.3090 - 0.9511j],
- decimal=4)
- assert_equal(k.size, 0)
- def test_residuez_trailing_zeros(self):
- # Trailing zeros in numerator or denominator must not affect the
- # answer.
- r0, p0, k0 = residuez([5, 3, -2, 7], [-4, 0, 8, 3])
- r1, p1, k1 = residuez([5, 3, -2, 7, 0], [-4, 0, 8, 3])
- r2, p2, k2 = residuez([5, 3, -2, 7], [-4, 0, 8, 3, 0])
- r3, p3, k3 = residuez([5, 3, -2, 7, 0, 0], [-4, 0, 8, 3, 0, 0, 0])
- assert_almost_equal(r0, r1)
- assert_almost_equal(r0, r2)
- assert_almost_equal(r0, r3)
- assert_almost_equal(p0, p1)
- assert_almost_equal(p0, p2)
- assert_almost_equal(p0, p3)
- assert_almost_equal(k0, k1)
- assert_almost_equal(k0, k2)
- assert_almost_equal(k0, k3)
- def test_residuez_degenerate(self):
- r, p, k = residuez([0, 0], [1, 6, 8])
- assert_almost_equal(r, [0, 0])
- assert_almost_equal(p, [-2, -4])
- assert_equal(k.size, 0)
- r, p, k = residuez(0, 1)
- assert_equal(r.size, 0)
- assert_equal(p.size, 0)
- assert_equal(k.size, 0)
- with pytest.raises(ValueError, match="Denominator `a` is zero."):
- residuez(1, 0)
- with pytest.raises(ValueError,
- match="First coefficient of determinant `a` must "
- "be non-zero."):
- residuez(1, [0, 1, 2, 3])
- def test_inverse_unique_roots_different_rtypes(self):
- # This test was inspired by github issue 2496.
- r = [3 / 10, -1 / 6, -2 / 15]
- p = [0, -2, -5]
- k = []
- b_expected = [0, 1, 3]
- a_expected = [1, 7, 10, 0]
- # With the default tolerance, the rtype does not matter
- # for this example.
- for rtype in ('avg', 'mean', 'min', 'minimum', 'max', 'maximum'):
- b, a = invres(r, p, k, rtype=rtype)
- assert_allclose(b, b_expected)
- assert_allclose(a, a_expected)
- b, a = invresz(r, p, k, rtype=rtype)
- assert_allclose(b, b_expected)
- assert_allclose(a, a_expected)
- def test_inverse_repeated_roots_different_rtypes(self):
- r = [3 / 20, -7 / 36, -1 / 6, 2 / 45]
- p = [0, -2, -2, -5]
- k = []
- b_expected = [0, 0, 1, 3]
- b_expected_z = [-1/6, -2/3, 11/6, 3]
- a_expected = [1, 9, 24, 20, 0]
- for rtype in ('avg', 'mean', 'min', 'minimum', 'max', 'maximum'):
- b, a = invres(r, p, k, rtype=rtype)
- assert_allclose(b, b_expected, atol=1e-14)
- assert_allclose(a, a_expected)
- b, a = invresz(r, p, k, rtype=rtype)
- assert_allclose(b, b_expected_z, atol=1e-14)
- assert_allclose(a, a_expected)
- def test_inverse_bad_rtype(self):
- r = [3 / 20, -7 / 36, -1 / 6, 2 / 45]
- p = [0, -2, -2, -5]
- k = []
- with pytest.raises(ValueError, match="`rtype` must be one of"):
- invres(r, p, k, rtype='median')
- with pytest.raises(ValueError, match="`rtype` must be one of"):
- invresz(r, p, k, rtype='median')
- def test_invresz_one_coefficient_bug(self):
- # Regression test for issue in gh-4646.
- r = [1]
- p = [2]
- k = [0]
- b, a = invresz(r, p, k)
- assert_allclose(b, [1.0])
- assert_allclose(a, [1.0, -2.0])
- def test_invres(self):
- b, a = invres([1], [1], [])
- assert_almost_equal(b, [1])
- assert_almost_equal(a, [1, -1])
- b, a = invres([1 - 1j, 2, 0.5 - 3j], [1, 0.5j, 1 + 1j], [])
- assert_almost_equal(b, [3.5 - 4j, -8.5 + 0.25j, 3.5 + 3.25j])
- assert_almost_equal(a, [1, -2 - 1.5j, 0.5 + 2j, 0.5 - 0.5j])
- b, a = invres([0.5, 1], [1 - 1j, 2 + 2j], [1, 2, 3])
- assert_almost_equal(b, [1, -1 - 1j, 1 - 2j, 0.5 - 3j, 10])
- assert_almost_equal(a, [1, -3 - 1j, 4])
- b, a = invres([-1, 2, 1j, 3 - 1j, 4, -2],
- [-1, 2 - 1j, 2 - 1j, 3, 3, 3], [])
- assert_almost_equal(b, [4 - 1j, -28 + 16j, 40 - 62j, 100 + 24j,
- -292 + 219j, 192 - 268j])
- assert_almost_equal(a, [1, -12 + 2j, 53 - 20j, -96 + 68j, 27 - 72j,
- 108 - 54j, -81 + 108j])
- b, a = invres([-1, 1j], [1, 1], [1, 2])
- assert_almost_equal(b, [1, 0, -4, 3 + 1j])
- assert_almost_equal(a, [1, -2, 1])
- def test_invresz(self):
- b, a = invresz([1], [1], [])
- assert_almost_equal(b, [1])
- assert_almost_equal(a, [1, -1])
- b, a = invresz([1 - 1j, 2, 0.5 - 3j], [1, 0.5j, 1 + 1j], [])
- assert_almost_equal(b, [3.5 - 4j, -8.5 + 0.25j, 3.5 + 3.25j])
- assert_almost_equal(a, [1, -2 - 1.5j, 0.5 + 2j, 0.5 - 0.5j])
- b, a = invresz([0.5, 1], [1 - 1j, 2 + 2j], [1, 2, 3])
- assert_almost_equal(b, [2.5, -3 - 1j, 1 - 2j, -1 - 3j, 12])
- assert_almost_equal(a, [1, -3 - 1j, 4])
- b, a = invresz([-1, 2, 1j, 3 - 1j, 4, -2],
- [-1, 2 - 1j, 2 - 1j, 3, 3, 3], [])
- assert_almost_equal(b, [6, -50 + 11j, 100 - 72j, 80 + 58j,
- -354 + 228j, 234 - 297j])
- assert_almost_equal(a, [1, -12 + 2j, 53 - 20j, -96 + 68j, 27 - 72j,
- 108 - 54j, -81 + 108j])
- b, a = invresz([-1, 1j], [1, 1], [1, 2])
- assert_almost_equal(b, [1j, 1, -3, 2])
- assert_almost_equal(a, [1, -2, 1])
- def test_inverse_scalar_arguments(self):
- b, a = invres(1, 1, 1)
- assert_almost_equal(b, [1, 0])
- assert_almost_equal(a, [1, -1])
- b, a = invresz(1, 1, 1)
- assert_almost_equal(b, [2, -1])
- assert_almost_equal(a, [1, -1])
- class TestVectorstrength:
- def test_single_1dperiod(self):
- events = np.array([.5])
- period = 5.
- targ_strength = 1.
- targ_phase = .1
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 0)
- assert_equal(phase.ndim, 0)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_single_2dperiod(self):
- events = np.array([.5])
- period = [1, 2, 5.]
- targ_strength = [1.] * 3
- targ_phase = np.array([.5, .25, .1])
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 1)
- assert_equal(phase.ndim, 1)
- assert_array_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_equal_1dperiod(self):
- events = np.array([.25, .25, .25, .25, .25, .25])
- period = 2
- targ_strength = 1.
- targ_phase = .125
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 0)
- assert_equal(phase.ndim, 0)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_equal_2dperiod(self):
- events = np.array([.25, .25, .25, .25, .25, .25])
- period = [1, 2, ]
- targ_strength = [1.] * 2
- targ_phase = np.array([.25, .125])
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 1)
- assert_equal(phase.ndim, 1)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_spaced_1dperiod(self):
- events = np.array([.1, 1.1, 2.1, 4.1, 10.1])
- period = 1
- targ_strength = 1.
- targ_phase = .1
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 0)
- assert_equal(phase.ndim, 0)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_spaced_2dperiod(self):
- events = np.array([.1, 1.1, 2.1, 4.1, 10.1])
- period = [1, .5]
- targ_strength = [1.] * 2
- targ_phase = np.array([.1, .2])
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 1)
- assert_equal(phase.ndim, 1)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_partial_1dperiod(self):
- events = np.array([.25, .5, .75])
- period = 1
- targ_strength = 1. / 3.
- targ_phase = .5
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 0)
- assert_equal(phase.ndim, 0)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_partial_2dperiod(self):
- events = np.array([.25, .5, .75])
- period = [1., 1., 1., 1.]
- targ_strength = [1. / 3.] * 4
- targ_phase = np.array([.5, .5, .5, .5])
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 1)
- assert_equal(phase.ndim, 1)
- assert_almost_equal(strength, targ_strength)
- assert_almost_equal(phase, 2 * np.pi * targ_phase)
- def test_opposite_1dperiod(self):
- events = np.array([0, .25, .5, .75])
- period = 1.
- targ_strength = 0
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 0)
- assert_equal(phase.ndim, 0)
- assert_almost_equal(strength, targ_strength)
- def test_opposite_2dperiod(self):
- events = np.array([0, .25, .5, .75])
- period = [1.] * 10
- targ_strength = [0.] * 10
- strength, phase = vectorstrength(events, period)
- assert_equal(strength.ndim, 1)
- assert_equal(phase.ndim, 1)
- assert_almost_equal(strength, targ_strength)
- def test_2d_events_ValueError(self):
- events = np.array([[1, 2]])
- period = 1.
- assert_raises(ValueError, vectorstrength, events, period)
- def test_2d_period_ValueError(self):
- events = 1.
- period = np.array([[1]])
- assert_raises(ValueError, vectorstrength, events, period)
- def test_zero_period_ValueError(self):
- events = 1.
- period = 0
- assert_raises(ValueError, vectorstrength, events, period)
- def test_negative_period_ValueError(self):
- events = 1.
- period = -1
- assert_raises(ValueError, vectorstrength, events, period)
- def cast_tf2sos(b, a):
- """Convert TF2SOS, casting to complex128 and back to the original dtype."""
- # tf2sos does not support all of the dtypes that we want to check, e.g.:
- #
- # TypeError: array type complex256 is unsupported in linalg
- #
- # so let's cast, convert, and cast back -- should be fine for the
- # systems and precisions we are testing.
- dtype = np.asarray(b).dtype
- b = np.array(b, np.complex128)
- a = np.array(a, np.complex128)
- return tf2sos(b, a).astype(dtype)
- def assert_allclose_cast(actual, desired, rtol=1e-7, atol=0):
- """Wrap assert_allclose while casting object arrays."""
- if actual.dtype.kind == 'O':
- dtype = np.array(actual.flat[0]).dtype
- actual, desired = actual.astype(dtype), desired.astype(dtype)
- assert_allclose(actual, desired, rtol, atol)
- @pytest.mark.parametrize('func', (sosfilt, lfilter))
- def test_nonnumeric_dtypes(func):
- x = [Decimal(1), Decimal(2), Decimal(3)]
- b = [Decimal(1), Decimal(2), Decimal(3)]
- a = [Decimal(1), Decimal(2), Decimal(3)]
- x = np.array(x)
- assert x.dtype.kind == 'O'
- desired = lfilter(np.array(b, float), np.array(a, float), x.astype(float))
- if func is sosfilt:
- actual = sosfilt([b + a], x)
- else:
- actual = lfilter(b, a, x)
- assert all(isinstance(x, Decimal) for x in actual)
- assert_allclose(actual.astype(float), desired.astype(float))
- # Degenerate cases
- if func is lfilter:
- args = [1., 1.]
- else:
- args = [tf2sos(1., 1.)]
- with pytest.raises(ValueError, match='must be at least 1-D'):
- func(*args, x=1.)
- @pytest.mark.parametrize('dt', 'fdgFDGO')
- class TestSOSFilt:
- # The test_rank* tests are pulled from _TestLinearFilter
- def test_rank1(self, dt):
- x = np.linspace(0, 5, 6).astype(dt)
- b = np.array([1, -1]).astype(dt)
- a = np.array([0.5, -0.5]).astype(dt)
- # Test simple IIR
- y_r = np.array([0, 2, 4, 6, 8, 10.]).astype(dt)
- sos = cast_tf2sos(b, a)
- assert sos.dtype.char == dt
- assert_array_almost_equal(sosfilt(cast_tf2sos(b, a), x), y_r)
- # Test simple FIR
- b = np.array([1, 1]).astype(dt)
- # NOTE: This was changed (rel. to TestLinear...) to add a pole @zero:
- a = np.array([1, 0]).astype(dt)
- y_r = np.array([0, 1, 3, 5, 7, 9.]).astype(dt)
- assert_array_almost_equal(sosfilt(cast_tf2sos(b, a), x), y_r)
- b = [1, 1, 0]
- a = [1, 0, 0]
- x = np.ones(8)
- sos = np.concatenate((b, a))
- sos.shape = (1, 6)
- y = sosfilt(sos, x)
- assert_allclose(y, [1, 2, 2, 2, 2, 2, 2, 2])
- def test_rank2(self, dt):
- shape = (4, 3)
- x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
- x = x.astype(dt)
- b = np.array([1, -1]).astype(dt)
- a = np.array([0.5, 0.5]).astype(dt)
- y_r2_a0 = np.array([[0, 2, 4], [6, 4, 2], [0, 2, 4], [6, 4, 2]],
- dtype=dt)
- y_r2_a1 = np.array([[0, 2, 0], [6, -4, 6], [12, -10, 12],
- [18, -16, 18]], dtype=dt)
- y = sosfilt(cast_tf2sos(b, a), x, axis=0)
- assert_array_almost_equal(y_r2_a0, y)
- y = sosfilt(cast_tf2sos(b, a), x, axis=1)
- assert_array_almost_equal(y_r2_a1, y)
- def test_rank3(self, dt):
- shape = (4, 3, 2)
- x = np.linspace(0, np.prod(shape) - 1, np.prod(shape)).reshape(shape)
- b = np.array([1, -1]).astype(dt)
- a = np.array([0.5, 0.5]).astype(dt)
- # Test last axis
- y = sosfilt(cast_tf2sos(b, a), x)
- for i in range(x.shape[0]):
- for j in range(x.shape[1]):
- assert_array_almost_equal(y[i, j], lfilter(b, a, x[i, j]))
- def test_initial_conditions(self, dt):
- b1, a1 = signal.butter(2, 0.25, 'low')
- b2, a2 = signal.butter(2, 0.75, 'low')
- b3, a3 = signal.butter(2, 0.75, 'low')
- b = np.convolve(np.convolve(b1, b2), b3)
- a = np.convolve(np.convolve(a1, a2), a3)
- sos = np.array((np.r_[b1, a1], np.r_[b2, a2], np.r_[b3, a3]))
- x = np.random.rand(50).astype(dt)
- # Stopping filtering and continuing
- y_true, zi = lfilter(b, a, x[:20], zi=np.zeros(6))
- y_true = np.r_[y_true, lfilter(b, a, x[20:], zi=zi)[0]]
- assert_allclose_cast(y_true, lfilter(b, a, x))
- y_sos, zi = sosfilt(sos, x[:20], zi=np.zeros((3, 2)))
- y_sos = np.r_[y_sos, sosfilt(sos, x[20:], zi=zi)[0]]
- assert_allclose_cast(y_true, y_sos)
- # Use a step function
- zi = sosfilt_zi(sos)
- x = np.ones(8, dt)
- y, zf = sosfilt(sos, x, zi=zi)
- assert_allclose_cast(y, np.ones(8))
- assert_allclose_cast(zf, zi)
- # Initial condition shape matching
- x.shape = (1, 1) + x.shape # 3D
- assert_raises(ValueError, sosfilt, sos, x, zi=zi)
- zi_nd = zi.copy()
- zi_nd.shape = (zi.shape[0], 1, 1, zi.shape[-1])
- assert_raises(ValueError, sosfilt, sos, x,
- zi=zi_nd[:, :, :, [0, 1, 1]])
- y, zf = sosfilt(sos, x, zi=zi_nd)
- assert_allclose_cast(y[0, 0], np.ones(8))
- assert_allclose_cast(zf[:, 0, 0, :], zi)
- def test_initial_conditions_3d_axis1(self, dt):
- # Test the use of zi when sosfilt is applied to axis 1 of a 3-d input.
- # Input array is x.
- x = np.random.RandomState(159).randint(0, 5, size=(2, 15, 3))
- x = x.astype(dt)
- # Design a filter in ZPK format and convert to SOS
- zpk = signal.butter(6, 0.35, output='zpk')
- sos = zpk2sos(*zpk)
- nsections = sos.shape[0]
- # Filter along this axis.
- axis = 1
- # Initial conditions, all zeros.
- shp = list(x.shape)
- shp[axis] = 2
- shp = [nsections] + shp
- z0 = np.zeros(shp)
- # Apply the filter to x.
- yf, zf = sosfilt(sos, x, axis=axis, zi=z0)
- # Apply the filter to x in two stages.
- y1, z1 = sosfilt(sos, x[:, :5, :], axis=axis, zi=z0)
- y2, z2 = sosfilt(sos, x[:, 5:, :], axis=axis, zi=z1)
- # y should equal yf, and z2 should equal zf.
- y = np.concatenate((y1, y2), axis=axis)
- assert_allclose_cast(y, yf, rtol=1e-10, atol=1e-13)
- assert_allclose_cast(z2, zf, rtol=1e-10, atol=1e-13)
- # let's try the "step" initial condition
- zi = sosfilt_zi(sos)
- zi.shape = [nsections, 1, 2, 1]
- zi = zi * x[:, 0:1, :]
- y = sosfilt(sos, x, axis=axis, zi=zi)[0]
- # check it against the TF form
- b, a = zpk2tf(*zpk)
- zi = lfilter_zi(b, a)
- zi.shape = [1, zi.size, 1]
- zi = zi * x[:, 0:1, :]
- y_tf = lfilter(b, a, x, axis=axis, zi=zi)[0]
- assert_allclose_cast(y, y_tf, rtol=1e-10, atol=1e-13)
- def test_bad_zi_shape(self, dt):
- # The shape of zi is checked before using any values in the
- # arguments, so np.empty is fine for creating the arguments.
- x = np.empty((3, 15, 3), dt)
- sos = np.zeros((4, 6))
- zi = np.empty((4, 3, 3, 2)) # Correct shape is (4, 3, 2, 3)
- with pytest.raises(ValueError, match='should be all ones'):
- sosfilt(sos, x, zi=zi, axis=1)
- sos[:, 3] = 1.
- with pytest.raises(ValueError, match='Invalid zi shape'):
- sosfilt(sos, x, zi=zi, axis=1)
- def test_sosfilt_zi(self, dt):
- sos = signal.butter(6, 0.2, output='sos')
- zi = sosfilt_zi(sos)
- y, zf = sosfilt(sos, np.ones(40, dt), zi=zi)
- assert_allclose_cast(zf, zi, rtol=1e-13)
- # Expected steady state value of the step response of this filter:
- ss = np.prod(sos[:, :3].sum(axis=-1) / sos[:, 3:].sum(axis=-1))
- assert_allclose_cast(y, ss, rtol=1e-13)
- # zi as array-like
- _, zf = sosfilt(sos, np.ones(40, dt), zi=zi.tolist())
- assert_allclose_cast(zf, zi, rtol=1e-13)
- class TestDeconvolve:
- def test_basic(self):
- # From docstring example
- original = [0, 1, 0, 0, 1, 1, 0, 0]
- impulse_response = [2, 1]
- recorded = [0, 2, 1, 0, 2, 3, 1, 0, 0]
- recovered, remainder = signal.deconvolve(recorded, impulse_response)
- assert_allclose(recovered, original)
- def test_n_dimensional_signal(self):
- recorded = [[0, 0], [0, 0]]
- impulse_response = [0, 0]
- with pytest.raises(ValueError, match="signal must be 1-D."):
- quotient, remainder = signal.deconvolve(recorded, impulse_response)
- def test_n_dimensional_divisor(self):
- recorded = [0, 0]
- impulse_response = [[0, 0], [0, 0]]
- with pytest.raises(ValueError, match="divisor must be 1-D."):
- quotient, remainder = signal.deconvolve(recorded, impulse_response)
- class TestDetrend:
- def test_basic(self):
- detrended = detrend(array([1, 2, 3]))
- detrended_exact = array([0, 0, 0])
- assert_array_almost_equal(detrended, detrended_exact)
- def test_copy(self):
- x = array([1, 1.2, 1.5, 1.6, 2.4])
- copy_array = detrend(x, overwrite_data=False)
- inplace = detrend(x, overwrite_data=True)
- assert_array_almost_equal(copy_array, inplace)
- class TestUniqueRoots:
- def test_real_no_repeat(self):
- p = [-1.0, -0.5, 0.3, 1.2, 10.0]
- unique, multiplicity = unique_roots(p)
- assert_almost_equal(unique, p, decimal=15)
- assert_equal(multiplicity, np.ones(len(p)))
- def test_real_repeat(self):
- p = [-1.0, -0.95, -0.89, -0.8, 0.5, 1.0, 1.05]
- unique, multiplicity = unique_roots(p, tol=1e-1, rtype='min')
- assert_almost_equal(unique, [-1.0, -0.89, 0.5, 1.0], decimal=15)
- assert_equal(multiplicity, [2, 2, 1, 2])
- unique, multiplicity = unique_roots(p, tol=1e-1, rtype='max')
- assert_almost_equal(unique, [-0.95, -0.8, 0.5, 1.05], decimal=15)
- assert_equal(multiplicity, [2, 2, 1, 2])
- unique, multiplicity = unique_roots(p, tol=1e-1, rtype='avg')
- assert_almost_equal(unique, [-0.975, -0.845, 0.5, 1.025], decimal=15)
- assert_equal(multiplicity, [2, 2, 1, 2])
- def test_complex_no_repeat(self):
- p = [-1.0, 1.0j, 0.5 + 0.5j, -1.0 - 1.0j, 3.0 + 2.0j]
- unique, multiplicity = unique_roots(p)
- assert_almost_equal(unique, p, decimal=15)
- assert_equal(multiplicity, np.ones(len(p)))
- def test_complex_repeat(self):
- p = [-1.0, -1.0 + 0.05j, -0.95 + 0.15j, -0.90 + 0.15j, 0.0,
- 0.5 + 0.5j, 0.45 + 0.55j]
- unique, multiplicity = unique_roots(p, tol=1e-1, rtype='min')
- assert_almost_equal(unique, [-1.0, -0.95 + 0.15j, 0.0, 0.45 + 0.55j],
- decimal=15)
- assert_equal(multiplicity, [2, 2, 1, 2])
- unique, multiplicity = unique_roots(p, tol=1e-1, rtype='max')
- assert_almost_equal(unique,
- [-1.0 + 0.05j, -0.90 + 0.15j, 0.0, 0.5 + 0.5j],
- decimal=15)
- assert_equal(multiplicity, [2, 2, 1, 2])
- unique, multiplicity = unique_roots(p, tol=1e-1, rtype='avg')
- assert_almost_equal(
- unique, [-1.0 + 0.025j, -0.925 + 0.15j, 0.0, 0.475 + 0.525j],
- decimal=15)
- assert_equal(multiplicity, [2, 2, 1, 2])
- def test_gh_4915(self):
- p = np.roots(np.convolve(np.ones(5), np.ones(5)))
- true_roots = [-(-1)**(1/5), (-1)**(4/5), -(-1)**(3/5), (-1)**(2/5)]
- unique, multiplicity = unique_roots(p)
- unique = np.sort(unique)
- assert_almost_equal(np.sort(unique), true_roots, decimal=7)
- assert_equal(multiplicity, [2, 2, 2, 2])
- def test_complex_roots_extra(self):
- unique, multiplicity = unique_roots([1.0, 1.0j, 1.0])
- assert_almost_equal(unique, [1.0, 1.0j], decimal=15)
- assert_equal(multiplicity, [2, 1])
- unique, multiplicity = unique_roots([1, 1 + 2e-9, 1e-9 + 1j], tol=0.1)
- assert_almost_equal(unique, [1.0, 1e-9 + 1.0j], decimal=15)
- assert_equal(multiplicity, [2, 1])
- def test_single_unique_root(self):
- p = np.random.rand(100) + 1j * np.random.rand(100)
- unique, multiplicity = unique_roots(p, 2)
- assert_almost_equal(unique, [np.min(p)], decimal=15)
- assert_equal(multiplicity, [100])
|