123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- import pytest
- import numpy as np
- from numpy.testing import (assert_allclose, assert_equal,
- assert_almost_equal, assert_array_equal,
- assert_array_almost_equal)
- from scipy.ndimage import convolve1d
- from scipy.signal import savgol_coeffs, savgol_filter
- from scipy.signal._savitzky_golay import _polyder
- def check_polyder(p, m, expected):
- dp = _polyder(p, m)
- assert_array_equal(dp, expected)
- def test_polyder():
- cases = [
- ([5], 0, [5]),
- ([5], 1, [0]),
- ([3, 2, 1], 0, [3, 2, 1]),
- ([3, 2, 1], 1, [6, 2]),
- ([3, 2, 1], 2, [6]),
- ([3, 2, 1], 3, [0]),
- ([[3, 2, 1], [5, 6, 7]], 0, [[3, 2, 1], [5, 6, 7]]),
- ([[3, 2, 1], [5, 6, 7]], 1, [[6, 2], [10, 6]]),
- ([[3, 2, 1], [5, 6, 7]], 2, [[6], [10]]),
- ([[3, 2, 1], [5, 6, 7]], 3, [[0], [0]]),
- ]
- for p, m, expected in cases:
- check_polyder(np.array(p).T, m, np.array(expected).T)
- #--------------------------------------------------------------------
- # savgol_coeffs tests
- #--------------------------------------------------------------------
- def alt_sg_coeffs(window_length, polyorder, pos):
- """This is an alternative implementation of the SG coefficients.
- It uses numpy.polyfit and numpy.polyval. The results should be
- equivalent to those of savgol_coeffs(), but this implementation
- is slower.
- window_length should be odd.
- """
- if pos is None:
- pos = window_length // 2
- t = np.arange(window_length)
- unit = (t == pos).astype(int)
- h = np.polyval(np.polyfit(t, unit, polyorder), t)
- return h
- def test_sg_coeffs_trivial():
- # Test a trivial case of savgol_coeffs: polyorder = window_length - 1
- h = savgol_coeffs(1, 0)
- assert_allclose(h, [1])
- h = savgol_coeffs(3, 2)
- assert_allclose(h, [0, 1, 0], atol=1e-10)
- h = savgol_coeffs(5, 4)
- assert_allclose(h, [0, 0, 1, 0, 0], atol=1e-10)
- h = savgol_coeffs(5, 4, pos=1)
- assert_allclose(h, [0, 0, 0, 1, 0], atol=1e-10)
- h = savgol_coeffs(5, 4, pos=1, use='dot')
- assert_allclose(h, [0, 1, 0, 0, 0], atol=1e-10)
- def compare_coeffs_to_alt(window_length, order):
- # For the given window_length and order, compare the results
- # of savgol_coeffs and alt_sg_coeffs for pos from 0 to window_length - 1.
- # Also include pos=None.
- for pos in [None] + list(range(window_length)):
- h1 = savgol_coeffs(window_length, order, pos=pos, use='dot')
- h2 = alt_sg_coeffs(window_length, order, pos=pos)
- assert_allclose(h1, h2, atol=1e-10,
- err_msg=("window_length = %d, order = %d, pos = %s" %
- (window_length, order, pos)))
- def test_sg_coeffs_compare():
- # Compare savgol_coeffs() to alt_sg_coeffs().
- for window_length in range(1, 8, 2):
- for order in range(window_length):
- compare_coeffs_to_alt(window_length, order)
- def test_sg_coeffs_exact():
- polyorder = 4
- window_length = 9
- halflen = window_length // 2
- x = np.linspace(0, 21, 43)
- delta = x[1] - x[0]
- # The data is a cubic polynomial. We'll use an order 4
- # SG filter, so the filtered values should equal the input data
- # (except within half window_length of the edges).
- y = 0.5 * x ** 3 - x
- h = savgol_coeffs(window_length, polyorder)
- y0 = convolve1d(y, h)
- assert_allclose(y0[halflen:-halflen], y[halflen:-halflen])
- # Check the same input, but use deriv=1. dy is the exact result.
- dy = 1.5 * x ** 2 - 1
- h = savgol_coeffs(window_length, polyorder, deriv=1, delta=delta)
- y1 = convolve1d(y, h)
- assert_allclose(y1[halflen:-halflen], dy[halflen:-halflen])
- # Check the same input, but use deriv=2. d2y is the exact result.
- d2y = 3.0 * x
- h = savgol_coeffs(window_length, polyorder, deriv=2, delta=delta)
- y2 = convolve1d(y, h)
- assert_allclose(y2[halflen:-halflen], d2y[halflen:-halflen])
- def test_sg_coeffs_deriv():
- # The data in `x` is a sampled parabola, so using savgol_coeffs with an
- # order 2 or higher polynomial should give exact results.
- i = np.array([-2.0, 0.0, 2.0, 4.0, 6.0])
- x = i ** 2 / 4
- dx = i / 2
- d2x = np.full_like(i, 0.5)
- for pos in range(x.size):
- coeffs0 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot')
- assert_allclose(coeffs0.dot(x), x[pos], atol=1e-10)
- coeffs1 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=1)
- assert_allclose(coeffs1.dot(x), dx[pos], atol=1e-10)
- coeffs2 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=2)
- assert_allclose(coeffs2.dot(x), d2x[pos], atol=1e-10)
- def test_sg_coeffs_deriv_gt_polyorder():
- """
- If deriv > polyorder, the coefficients should be all 0.
- This is a regression test for a bug where, e.g.,
- savgol_coeffs(5, polyorder=1, deriv=2)
- raised an error.
- """
- coeffs = savgol_coeffs(5, polyorder=1, deriv=2)
- assert_array_equal(coeffs, np.zeros(5))
- coeffs = savgol_coeffs(7, polyorder=4, deriv=6)
- assert_array_equal(coeffs, np.zeros(7))
- def test_sg_coeffs_large():
- # Test that for large values of window_length and polyorder the array of
- # coefficients returned is symmetric. The aim is to ensure that
- # no potential numeric overflow occurs.
- coeffs0 = savgol_coeffs(31, 9)
- assert_array_almost_equal(coeffs0, coeffs0[::-1])
- coeffs1 = savgol_coeffs(31, 9, deriv=1)
- assert_array_almost_equal(coeffs1, -coeffs1[::-1])
- # --------------------------------------------------------------------
- # savgol_coeffs tests for even window length
- # --------------------------------------------------------------------
- def test_sg_coeffs_even_window_length():
- # Simple case - deriv=0, polyorder=0, 1
- window_lengths = [4, 6, 8, 10, 12, 14, 16]
- for length in window_lengths:
- h_p_d = savgol_coeffs(length, 0, 0)
- assert_allclose(h_p_d, 1/length)
- # Verify with closed forms
- # deriv=1, polyorder=1, 2
- def h_p_d_closed_form_1(k, m):
- return 6*(k - 0.5)/((2*m + 1)*m*(2*m - 1))
- # deriv=2, polyorder=2
- def h_p_d_closed_form_2(k, m):
- numer = 15*(-4*m**2 + 1 + 12*(k - 0.5)**2)
- denom = 4*(2*m + 1)*(m + 1)*m*(m - 1)*(2*m - 1)
- return numer/denom
- for length in window_lengths:
- m = length//2
- expected_output = [h_p_d_closed_form_1(k, m)
- for k in range(-m + 1, m + 1)][::-1]
- actual_output = savgol_coeffs(length, 1, 1)
- assert_allclose(expected_output, actual_output)
- actual_output = savgol_coeffs(length, 2, 1)
- assert_allclose(expected_output, actual_output)
- expected_output = [h_p_d_closed_form_2(k, m)
- for k in range(-m + 1, m + 1)][::-1]
- actual_output = savgol_coeffs(length, 2, 2)
- assert_allclose(expected_output, actual_output)
- actual_output = savgol_coeffs(length, 3, 2)
- assert_allclose(expected_output, actual_output)
- #--------------------------------------------------------------------
- # savgol_filter tests
- #--------------------------------------------------------------------
- def test_sg_filter_trivial():
- """ Test some trivial edge cases for savgol_filter()."""
- x = np.array([1.0])
- y = savgol_filter(x, 1, 0)
- assert_equal(y, [1.0])
- # Input is a single value. With a window length of 3 and polyorder 1,
- # the value in y is from the straight-line fit of (-1,0), (0,3) and
- # (1, 0) at 0. This is just the average of the three values, hence 1.0.
- x = np.array([3.0])
- y = savgol_filter(x, 3, 1, mode='constant')
- assert_almost_equal(y, [1.0], decimal=15)
- x = np.array([3.0])
- y = savgol_filter(x, 3, 1, mode='nearest')
- assert_almost_equal(y, [3.0], decimal=15)
- x = np.array([1.0] * 3)
- y = savgol_filter(x, 3, 1, mode='wrap')
- assert_almost_equal(y, [1.0, 1.0, 1.0], decimal=15)
- def test_sg_filter_basic():
- # Some basic test cases for savgol_filter().
- x = np.array([1.0, 2.0, 1.0])
- y = savgol_filter(x, 3, 1, mode='constant')
- assert_allclose(y, [1.0, 4.0 / 3, 1.0])
- y = savgol_filter(x, 3, 1, mode='mirror')
- assert_allclose(y, [5.0 / 3, 4.0 / 3, 5.0 / 3])
- y = savgol_filter(x, 3, 1, mode='wrap')
- assert_allclose(y, [4.0 / 3, 4.0 / 3, 4.0 / 3])
- def test_sg_filter_2d():
- x = np.array([[1.0, 2.0, 1.0],
- [2.0, 4.0, 2.0]])
- expected = np.array([[1.0, 4.0 / 3, 1.0],
- [2.0, 8.0 / 3, 2.0]])
- y = savgol_filter(x, 3, 1, mode='constant')
- assert_allclose(y, expected)
- y = savgol_filter(x.T, 3, 1, mode='constant', axis=0)
- assert_allclose(y, expected.T)
- def test_sg_filter_interp_edges():
- # Another test with low degree polynomial data, for which we can easily
- # give the exact results. In this test, we use mode='interp', so
- # savgol_filter should match the exact solution for the entire data set,
- # including the edges.
- t = np.linspace(-5, 5, 21)
- delta = t[1] - t[0]
- # Polynomial test data.
- x = np.array([t,
- 3 * t ** 2,
- t ** 3 - t])
- dx = np.array([np.ones_like(t),
- 6 * t,
- 3 * t ** 2 - 1.0])
- d2x = np.array([np.zeros_like(t),
- np.full_like(t, 6),
- 6 * t])
- window_length = 7
- y = savgol_filter(x, window_length, 3, axis=-1, mode='interp')
- assert_allclose(y, x, atol=1e-12)
- y1 = savgol_filter(x, window_length, 3, axis=-1, mode='interp',
- deriv=1, delta=delta)
- assert_allclose(y1, dx, atol=1e-12)
- y2 = savgol_filter(x, window_length, 3, axis=-1, mode='interp',
- deriv=2, delta=delta)
- assert_allclose(y2, d2x, atol=1e-12)
- # Transpose everything, and test again with axis=0.
- x = x.T
- dx = dx.T
- d2x = d2x.T
- y = savgol_filter(x, window_length, 3, axis=0, mode='interp')
- assert_allclose(y, x, atol=1e-12)
- y1 = savgol_filter(x, window_length, 3, axis=0, mode='interp',
- deriv=1, delta=delta)
- assert_allclose(y1, dx, atol=1e-12)
- y2 = savgol_filter(x, window_length, 3, axis=0, mode='interp',
- deriv=2, delta=delta)
- assert_allclose(y2, d2x, atol=1e-12)
- def test_sg_filter_interp_edges_3d():
- # Test mode='interp' with a 3-D array.
- t = np.linspace(-5, 5, 21)
- delta = t[1] - t[0]
- x1 = np.array([t, -t])
- x2 = np.array([t ** 2, 3 * t ** 2 + 5])
- x3 = np.array([t ** 3, 2 * t ** 3 + t ** 2 - 0.5 * t])
- dx1 = np.array([np.ones_like(t), -np.ones_like(t)])
- dx2 = np.array([2 * t, 6 * t])
- dx3 = np.array([3 * t ** 2, 6 * t ** 2 + 2 * t - 0.5])
- # z has shape (3, 2, 21)
- z = np.array([x1, x2, x3])
- dz = np.array([dx1, dx2, dx3])
- y = savgol_filter(z, 7, 3, axis=-1, mode='interp', delta=delta)
- assert_allclose(y, z, atol=1e-10)
- dy = savgol_filter(z, 7, 3, axis=-1, mode='interp', deriv=1, delta=delta)
- assert_allclose(dy, dz, atol=1e-10)
- # z has shape (3, 21, 2)
- z = np.array([x1.T, x2.T, x3.T])
- dz = np.array([dx1.T, dx2.T, dx3.T])
- y = savgol_filter(z, 7, 3, axis=1, mode='interp', delta=delta)
- assert_allclose(y, z, atol=1e-10)
- dy = savgol_filter(z, 7, 3, axis=1, mode='interp', deriv=1, delta=delta)
- assert_allclose(dy, dz, atol=1e-10)
- # z has shape (21, 3, 2)
- z = z.swapaxes(0, 1).copy()
- dz = dz.swapaxes(0, 1).copy()
- y = savgol_filter(z, 7, 3, axis=0, mode='interp', delta=delta)
- assert_allclose(y, z, atol=1e-10)
- dy = savgol_filter(z, 7, 3, axis=0, mode='interp', deriv=1, delta=delta)
- assert_allclose(dy, dz, atol=1e-10)
- def test_sg_filter_valid_window_length_3d():
- """Tests that the window_length check is using the correct axis."""
- x = np.ones((10, 20, 30))
- savgol_filter(x, window_length=29, polyorder=3, mode='interp')
- with pytest.raises(ValueError, match='window_length must be less than'):
- # window_length is more than x.shape[-1].
- savgol_filter(x, window_length=31, polyorder=3, mode='interp')
- savgol_filter(x, window_length=9, polyorder=3, axis=0, mode='interp')
- with pytest.raises(ValueError, match='window_length must be less than'):
- # window_length is more than x.shape[0].
- savgol_filter(x, window_length=11, polyorder=3, axis=0, mode='interp')
|