123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598 |
- # Author: Jeffrey Armstrong <jeff@approximatrix.com>
- # April 4, 2011
- import numpy as np
- from numpy.testing import (assert_equal,
- assert_array_almost_equal, assert_array_equal,
- assert_allclose, assert_, assert_almost_equal,
- suppress_warnings)
- from pytest import raises as assert_raises
- from scipy.signal import (dlsim, dstep, dimpulse, tf2zpk, lti, dlti,
- StateSpace, TransferFunction, ZerosPolesGain,
- dfreqresp, dbode, BadCoefficients)
- class TestDLTI:
- def test_dlsim(self):
- a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
- b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
- c = np.asarray([[0.1, 0.3]])
- d = np.asarray([[0.0, -0.1, 0.0]])
- dt = 0.5
- # Create an input matrix with inputs down the columns (3 cols) and its
- # respective time input vector
- u = np.hstack((np.linspace(0, 4.0, num=5)[:, np.newaxis],
- np.full((5, 1), 0.01),
- np.full((5, 1), -0.002)))
- t_in = np.linspace(0, 2.0, num=5)
- # Define the known result
- yout_truth = np.array([[-0.001,
- -0.00073,
- 0.039446,
- 0.0915387,
- 0.13195948]]).T
- xout_truth = np.asarray([[0, 0],
- [0.0012, 0.0005],
- [0.40233, 0.00071],
- [1.163368, -0.079327],
- [2.2402985, -0.3035679]])
- tout, yout, xout = dlsim((a, b, c, d, dt), u, t_in)
- assert_array_almost_equal(yout_truth, yout)
- assert_array_almost_equal(xout_truth, xout)
- assert_array_almost_equal(t_in, tout)
- # Make sure input with single-dimension doesn't raise error
- dlsim((1, 2, 3), 4)
- # Interpolated control - inputs should have different time steps
- # than the discrete model uses internally
- u_sparse = u[[0, 4], :]
- t_sparse = np.asarray([0.0, 2.0])
- tout, yout, xout = dlsim((a, b, c, d, dt), u_sparse, t_sparse)
- assert_array_almost_equal(yout_truth, yout)
- assert_array_almost_equal(xout_truth, xout)
- assert_equal(len(tout), yout.shape[0])
- # Transfer functions (assume dt = 0.5)
- num = np.asarray([1.0, -0.1])
- den = np.asarray([0.3, 1.0, 0.2])
- yout_truth = np.array([[0.0,
- 0.0,
- 3.33333333333333,
- -4.77777777777778,
- 23.0370370370370]]).T
- # Assume use of the first column of the control input built earlier
- tout, yout = dlsim((num, den, 0.5), u[:, 0], t_in)
- assert_array_almost_equal(yout, yout_truth)
- assert_array_almost_equal(t_in, tout)
- # Retest the same with a 1-D input vector
- uflat = np.asarray(u[:, 0])
- uflat = uflat.reshape((5,))
- tout, yout = dlsim((num, den, 0.5), uflat, t_in)
- assert_array_almost_equal(yout, yout_truth)
- assert_array_almost_equal(t_in, tout)
- # zeros-poles-gain representation
- zd = np.array([0.5, -0.5])
- pd = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
- k = 1.0
- yout_truth = np.array([[0.0, 1.0, 2.0, 2.25, 2.5]]).T
- tout, yout = dlsim((zd, pd, k, 0.5), u[:, 0], t_in)
- assert_array_almost_equal(yout, yout_truth)
- assert_array_almost_equal(t_in, tout)
- # Raise an error for continuous-time systems
- system = lti([1], [1, 1])
- assert_raises(AttributeError, dlsim, system, u)
- def test_dstep(self):
- a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
- b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
- c = np.asarray([[0.1, 0.3]])
- d = np.asarray([[0.0, -0.1, 0.0]])
- dt = 0.5
- # Because b.shape[1] == 3, dstep should result in a tuple of three
- # result vectors
- yout_step_truth = (np.asarray([0.0, 0.04, 0.052, 0.0404, 0.00956,
- -0.036324, -0.093318, -0.15782348,
- -0.226628324, -0.2969374948]),
- np.asarray([-0.1, -0.075, -0.058, -0.04815,
- -0.04453, -0.0461895, -0.0521812,
- -0.061588875, -0.073549579,
- -0.08727047595]),
- np.asarray([0.0, -0.01, -0.013, -0.0101, -0.00239,
- 0.009081, 0.0233295, 0.03945587,
- 0.056657081, 0.0742343737]))
- tout, yout = dstep((a, b, c, d, dt), n=10)
- assert_equal(len(yout), 3)
- for i in range(0, len(yout)):
- assert_equal(yout[i].shape[0], 10)
- assert_array_almost_equal(yout[i].flatten(), yout_step_truth[i])
- # Check that the other two inputs (tf, zpk) will work as well
- tfin = ([1.0], [1.0, 1.0], 0.5)
- yout_tfstep = np.asarray([0.0, 1.0, 0.0])
- tout, yout = dstep(tfin, n=3)
- assert_equal(len(yout), 1)
- assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
- zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
- tout, yout = dstep(zpkin, n=3)
- assert_equal(len(yout), 1)
- assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
- # Raise an error for continuous-time systems
- system = lti([1], [1, 1])
- assert_raises(AttributeError, dstep, system)
- def test_dimpulse(self):
- a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
- b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
- c = np.asarray([[0.1, 0.3]])
- d = np.asarray([[0.0, -0.1, 0.0]])
- dt = 0.5
- # Because b.shape[1] == 3, dimpulse should result in a tuple of three
- # result vectors
- yout_imp_truth = (np.asarray([0.0, 0.04, 0.012, -0.0116, -0.03084,
- -0.045884, -0.056994, -0.06450548,
- -0.068804844, -0.0703091708]),
- np.asarray([-0.1, 0.025, 0.017, 0.00985, 0.00362,
- -0.0016595, -0.0059917, -0.009407675,
- -0.011960704, -0.01372089695]),
- np.asarray([0.0, -0.01, -0.003, 0.0029, 0.00771,
- 0.011471, 0.0142485, 0.01612637,
- 0.017201211, 0.0175772927]))
- tout, yout = dimpulse((a, b, c, d, dt), n=10)
- assert_equal(len(yout), 3)
- for i in range(0, len(yout)):
- assert_equal(yout[i].shape[0], 10)
- assert_array_almost_equal(yout[i].flatten(), yout_imp_truth[i])
- # Check that the other two inputs (tf, zpk) will work as well
- tfin = ([1.0], [1.0, 1.0], 0.5)
- yout_tfimpulse = np.asarray([0.0, 1.0, -1.0])
- tout, yout = dimpulse(tfin, n=3)
- assert_equal(len(yout), 1)
- assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
- zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
- tout, yout = dimpulse(zpkin, n=3)
- assert_equal(len(yout), 1)
- assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
- # Raise an error for continuous-time systems
- system = lti([1], [1, 1])
- assert_raises(AttributeError, dimpulse, system)
- def test_dlsim_trivial(self):
- a = np.array([[0.0]])
- b = np.array([[0.0]])
- c = np.array([[0.0]])
- d = np.array([[0.0]])
- n = 5
- u = np.zeros(n).reshape(-1, 1)
- tout, yout, xout = dlsim((a, b, c, d, 1), u)
- assert_array_equal(tout, np.arange(float(n)))
- assert_array_equal(yout, np.zeros((n, 1)))
- assert_array_equal(xout, np.zeros((n, 1)))
- def test_dlsim_simple1d(self):
- a = np.array([[0.5]])
- b = np.array([[0.0]])
- c = np.array([[1.0]])
- d = np.array([[0.0]])
- n = 5
- u = np.zeros(n).reshape(-1, 1)
- tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
- assert_array_equal(tout, np.arange(float(n)))
- expected = (0.5 ** np.arange(float(n))).reshape(-1, 1)
- assert_array_equal(yout, expected)
- assert_array_equal(xout, expected)
- def test_dlsim_simple2d(self):
- lambda1 = 0.5
- lambda2 = 0.25
- a = np.array([[lambda1, 0.0],
- [0.0, lambda2]])
- b = np.array([[0.0],
- [0.0]])
- c = np.array([[1.0, 0.0],
- [0.0, 1.0]])
- d = np.array([[0.0],
- [0.0]])
- n = 5
- u = np.zeros(n).reshape(-1, 1)
- tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
- assert_array_equal(tout, np.arange(float(n)))
- # The analytical solution:
- expected = (np.array([lambda1, lambda2]) **
- np.arange(float(n)).reshape(-1, 1))
- assert_array_equal(yout, expected)
- assert_array_equal(xout, expected)
- def test_more_step_and_impulse(self):
- lambda1 = 0.5
- lambda2 = 0.75
- a = np.array([[lambda1, 0.0],
- [0.0, lambda2]])
- b = np.array([[1.0, 0.0],
- [0.0, 1.0]])
- c = np.array([[1.0, 1.0]])
- d = np.array([[0.0, 0.0]])
- n = 10
- # Check a step response.
- ts, ys = dstep((a, b, c, d, 1), n=n)
- # Create the exact step response.
- stp0 = (1.0 / (1 - lambda1)) * (1.0 - lambda1 ** np.arange(n))
- stp1 = (1.0 / (1 - lambda2)) * (1.0 - lambda2 ** np.arange(n))
- assert_allclose(ys[0][:, 0], stp0)
- assert_allclose(ys[1][:, 0], stp1)
- # Check an impulse response with an initial condition.
- x0 = np.array([1.0, 1.0])
- ti, yi = dimpulse((a, b, c, d, 1), n=n, x0=x0)
- # Create the exact impulse response.
- imp = (np.array([lambda1, lambda2]) **
- np.arange(-1, n + 1).reshape(-1, 1))
- imp[0, :] = 0.0
- # Analytical solution to impulse response
- y0 = imp[:n, 0] + np.dot(imp[1:n + 1, :], x0)
- y1 = imp[:n, 1] + np.dot(imp[1:n + 1, :], x0)
- assert_allclose(yi[0][:, 0], y0)
- assert_allclose(yi[1][:, 0], y1)
- # Check that dt=0.1, n=3 gives 3 time values.
- system = ([1.0], [1.0, -0.5], 0.1)
- t, (y,) = dstep(system, n=3)
- assert_allclose(t, [0, 0.1, 0.2])
- assert_array_equal(y.T, [[0, 1.0, 1.5]])
- t, (y,) = dimpulse(system, n=3)
- assert_allclose(t, [0, 0.1, 0.2])
- assert_array_equal(y.T, [[0, 1, 0.5]])
- class TestDlti:
- def test_dlti_instantiation(self):
- # Test that lti can be instantiated.
- dt = 0.05
- # TransferFunction
- s = dlti([1], [-1], dt=dt)
- assert_(isinstance(s, TransferFunction))
- assert_(isinstance(s, dlti))
- assert_(not isinstance(s, lti))
- assert_equal(s.dt, dt)
- # ZerosPolesGain
- s = dlti(np.array([]), np.array([-1]), 1, dt=dt)
- assert_(isinstance(s, ZerosPolesGain))
- assert_(isinstance(s, dlti))
- assert_(not isinstance(s, lti))
- assert_equal(s.dt, dt)
- # StateSpace
- s = dlti([1], [-1], 1, 3, dt=dt)
- assert_(isinstance(s, StateSpace))
- assert_(isinstance(s, dlti))
- assert_(not isinstance(s, lti))
- assert_equal(s.dt, dt)
- # Number of inputs
- assert_raises(ValueError, dlti, 1)
- assert_raises(ValueError, dlti, 1, 1, 1, 1, 1)
- class TestStateSpaceDisc:
- def test_initialization(self):
- # Check that all initializations work
- dt = 0.05
- StateSpace(1, 1, 1, 1, dt=dt)
- StateSpace([1], [2], [3], [4], dt=dt)
- StateSpace(np.array([[1, 2], [3, 4]]), np.array([[1], [2]]),
- np.array([[1, 0]]), np.array([[0]]), dt=dt)
- StateSpace(1, 1, 1, 1, dt=True)
- def test_conversion(self):
- # Check the conversion functions
- s = StateSpace(1, 2, 3, 4, dt=0.05)
- assert_(isinstance(s.to_ss(), StateSpace))
- assert_(isinstance(s.to_tf(), TransferFunction))
- assert_(isinstance(s.to_zpk(), ZerosPolesGain))
- # Make sure copies work
- assert_(StateSpace(s) is not s)
- assert_(s.to_ss() is not s)
- def test_properties(self):
- # Test setters/getters for cross class properties.
- # This implicitly tests to_tf() and to_zpk()
- # Getters
- s = StateSpace(1, 1, 1, 1, dt=0.05)
- assert_equal(s.poles, [1])
- assert_equal(s.zeros, [0])
- class TestTransferFunction:
- def test_initialization(self):
- # Check that all initializations work
- dt = 0.05
- TransferFunction(1, 1, dt=dt)
- TransferFunction([1], [2], dt=dt)
- TransferFunction(np.array([1]), np.array([2]), dt=dt)
- TransferFunction(1, 1, dt=True)
- def test_conversion(self):
- # Check the conversion functions
- s = TransferFunction([1, 0], [1, -1], dt=0.05)
- assert_(isinstance(s.to_ss(), StateSpace))
- assert_(isinstance(s.to_tf(), TransferFunction))
- assert_(isinstance(s.to_zpk(), ZerosPolesGain))
- # Make sure copies work
- assert_(TransferFunction(s) is not s)
- assert_(s.to_tf() is not s)
- def test_properties(self):
- # Test setters/getters for cross class properties.
- # This implicitly tests to_ss() and to_zpk()
- # Getters
- s = TransferFunction([1, 0], [1, -1], dt=0.05)
- assert_equal(s.poles, [1])
- assert_equal(s.zeros, [0])
- class TestZerosPolesGain:
- def test_initialization(self):
- # Check that all initializations work
- dt = 0.05
- ZerosPolesGain(1, 1, 1, dt=dt)
- ZerosPolesGain([1], [2], 1, dt=dt)
- ZerosPolesGain(np.array([1]), np.array([2]), 1, dt=dt)
- ZerosPolesGain(1, 1, 1, dt=True)
- def test_conversion(self):
- # Check the conversion functions
- s = ZerosPolesGain(1, 2, 3, dt=0.05)
- assert_(isinstance(s.to_ss(), StateSpace))
- assert_(isinstance(s.to_tf(), TransferFunction))
- assert_(isinstance(s.to_zpk(), ZerosPolesGain))
- # Make sure copies work
- assert_(ZerosPolesGain(s) is not s)
- assert_(s.to_zpk() is not s)
- class Test_dfreqresp:
- def test_manual(self):
- # Test dfreqresp() real part calculation (manual sanity check).
- # 1st order low-pass filter: H(z) = 1 / (z - 0.2),
- system = TransferFunction(1, [1, -0.2], dt=0.1)
- w = [0.1, 1, 10]
- w, H = dfreqresp(system, w=w)
- # test real
- expected_re = [1.2383, 0.4130, -0.7553]
- assert_almost_equal(H.real, expected_re, decimal=4)
- # test imag
- expected_im = [-0.1555, -1.0214, 0.3955]
- assert_almost_equal(H.imag, expected_im, decimal=4)
- def test_auto(self):
- # Test dfreqresp() real part calculation.
- # 1st order low-pass filter: H(z) = 1 / (z - 0.2),
- system = TransferFunction(1, [1, -0.2], dt=0.1)
- w = [0.1, 1, 10, 100]
- w, H = dfreqresp(system, w=w)
- jw = np.exp(w * 1j)
- y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
- # test real
- expected_re = y.real
- assert_almost_equal(H.real, expected_re)
- # test imag
- expected_im = y.imag
- assert_almost_equal(H.imag, expected_im)
- def test_freq_range(self):
- # Test that freqresp() finds a reasonable frequency range.
- # 1st order low-pass filter: H(z) = 1 / (z - 0.2),
- # Expected range is from 0.01 to 10.
- system = TransferFunction(1, [1, -0.2], dt=0.1)
- n = 10
- expected_w = np.linspace(0, np.pi, 10, endpoint=False)
- w, H = dfreqresp(system, n=n)
- assert_almost_equal(w, expected_w)
- def test_pole_one(self):
- # Test that freqresp() doesn't fail on a system with a pole at 0.
- # integrator, pole at zero: H(s) = 1 / s
- system = TransferFunction([1], [1, -1], dt=0.1)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, message="divide by zero")
- sup.filter(RuntimeWarning, message="invalid value encountered")
- w, H = dfreqresp(system, n=2)
- assert_equal(w[0], 0.) # a fail would give not-a-number
- def test_error(self):
- # Raise an error for continuous-time systems
- system = lti([1], [1, 1])
- assert_raises(AttributeError, dfreqresp, system)
- def test_from_state_space(self):
- # H(z) = 2 / z^3 - 0.5 * z^2
- system_TF = dlti([2], [1, -0.5, 0, 0])
- A = np.array([[0.5, 0, 0],
- [1, 0, 0],
- [0, 1, 0]])
- B = np.array([[1, 0, 0]]).T
- C = np.array([[0, 0, 2]])
- D = 0
- system_SS = dlti(A, B, C, D)
- w = 10.0**np.arange(-3,0,.5)
- with suppress_warnings() as sup:
- sup.filter(BadCoefficients)
- w1, H1 = dfreqresp(system_TF, w=w)
- w2, H2 = dfreqresp(system_SS, w=w)
- assert_almost_equal(H1, H2)
- def test_from_zpk(self):
- # 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
- system_ZPK = dlti([],[0.2],0.3)
- system_TF = dlti(0.3, [1, -0.2])
- w = [0.1, 1, 10, 100]
- w1, H1 = dfreqresp(system_ZPK, w=w)
- w2, H2 = dfreqresp(system_TF, w=w)
- assert_almost_equal(H1, H2)
- class Test_bode:
- def test_manual(self):
- # Test bode() magnitude calculation (manual sanity check).
- # 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
- dt = 0.1
- system = TransferFunction(0.3, [1, -0.2], dt=dt)
- w = [0.1, 0.5, 1, np.pi]
- w2, mag, phase = dbode(system, w=w)
- # Test mag
- expected_mag = [-8.5329, -8.8396, -9.6162, -12.0412]
- assert_almost_equal(mag, expected_mag, decimal=4)
- # Test phase
- expected_phase = [-7.1575, -35.2814, -67.9809, -180.0000]
- assert_almost_equal(phase, expected_phase, decimal=4)
- # Test frequency
- assert_equal(np.array(w) / dt, w2)
- def test_auto(self):
- # Test bode() magnitude calculation.
- # 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
- system = TransferFunction(0.3, [1, -0.2], dt=0.1)
- w = np.array([0.1, 0.5, 1, np.pi])
- w2, mag, phase = dbode(system, w=w)
- jw = np.exp(w * 1j)
- y = np.polyval(system.num, jw) / np.polyval(system.den, jw)
- # Test mag
- expected_mag = 20.0 * np.log10(abs(y))
- assert_almost_equal(mag, expected_mag)
- # Test phase
- expected_phase = np.rad2deg(np.angle(y))
- assert_almost_equal(phase, expected_phase)
- def test_range(self):
- # Test that bode() finds a reasonable frequency range.
- # 1st order low-pass filter: H(s) = 0.3 / (z - 0.2),
- dt = 0.1
- system = TransferFunction(0.3, [1, -0.2], dt=0.1)
- n = 10
- # Expected range is from 0.01 to 10.
- expected_w = np.linspace(0, np.pi, n, endpoint=False) / dt
- w, mag, phase = dbode(system, n=n)
- assert_almost_equal(w, expected_w)
- def test_pole_one(self):
- # Test that freqresp() doesn't fail on a system with a pole at 0.
- # integrator, pole at zero: H(s) = 1 / s
- system = TransferFunction([1], [1, -1], dt=0.1)
- with suppress_warnings() as sup:
- sup.filter(RuntimeWarning, message="divide by zero")
- sup.filter(RuntimeWarning, message="invalid value encountered")
- w, mag, phase = dbode(system, n=2)
- assert_equal(w[0], 0.) # a fail would give not-a-number
- def test_imaginary(self):
- # bode() should not fail on a system with pure imaginary poles.
- # The test passes if bode doesn't raise an exception.
- system = TransferFunction([1], [1, 0, 100], dt=0.1)
- dbode(system, n=2)
- def test_error(self):
- # Raise an error for continuous-time systems
- system = lti([1], [1, 1])
- assert_raises(AttributeError, dbode, system)
- class TestTransferFunctionZConversion:
- """Test private conversions between 'z' and 'z**-1' polynomials."""
- def test_full(self):
- # Numerator and denominator same order
- num = [2, 3, 4]
- den = [5, 6, 7]
- num2, den2 = TransferFunction._z_to_zinv(num, den)
- assert_equal(num, num2)
- assert_equal(den, den2)
- num2, den2 = TransferFunction._zinv_to_z(num, den)
- assert_equal(num, num2)
- assert_equal(den, den2)
- def test_numerator(self):
- # Numerator lower order than denominator
- num = [2, 3]
- den = [5, 6, 7]
- num2, den2 = TransferFunction._z_to_zinv(num, den)
- assert_equal([0, 2, 3], num2)
- assert_equal(den, den2)
- num2, den2 = TransferFunction._zinv_to_z(num, den)
- assert_equal([2, 3, 0], num2)
- assert_equal(den, den2)
- def test_denominator(self):
- # Numerator higher order than denominator
- num = [2, 3, 4]
- den = [5, 6]
- num2, den2 = TransferFunction._z_to_zinv(num, den)
- assert_equal(num, num2)
- assert_equal([0, 5, 6], den2)
- num2, den2 = TransferFunction._zinv_to_z(num, den)
- assert_equal(num, num2)
- assert_equal([5, 6, 0], den2)
|