123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420 |
- import numpy as np
- from numpy.testing import \
- assert_array_almost_equal, assert_almost_equal, \
- assert_allclose, assert_equal
- import pytest
- from scipy.signal import cont2discrete as c2d
- from scipy.signal import dlsim, ss2tf, ss2zpk, lsim2, lti
- from scipy.signal import tf2ss, impulse2, dimpulse, step2, dstep
- # Author: Jeffrey Armstrong <jeff@approximatrix.com>
- # March 29, 2011
- class TestC2D:
- def test_zoh(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [-0.33]])
- ad_truth = 1.648721270700128 * np.eye(2)
- bd_truth = np.full((2, 1), 0.324360635350064)
- # c and d in discrete should be equal to their continuous counterparts
- dt_requested = 0.5
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cc, cd)
- assert_array_almost_equal(dc, dd)
- assert_almost_equal(dt_requested, dt)
- def test_foh(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [-0.33]])
- # True values are verified with Matlab
- ad_truth = 1.648721270700128 * np.eye(2)
- bd_truth = np.full((2, 1), 0.420839287058789)
- cd_truth = cc
- dd_truth = np.array([[0.260262223725224],
- [0.297442541400256],
- [-0.144098411624840]])
- dt_requested = 0.5
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='foh')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- assert_almost_equal(dt_requested, dt)
- def test_impulse(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [0.0]])
- # True values are verified with Matlab
- ad_truth = 1.648721270700128 * np.eye(2)
- bd_truth = np.full((2, 1), 0.412180317675032)
- cd_truth = cc
- dd_truth = np.array([[0.4375], [0.5], [0.3125]])
- dt_requested = 0.5
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
- method='impulse')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- assert_almost_equal(dt_requested, dt)
- def test_gbt(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [-0.33]])
- dt_requested = 0.5
- alpha = 1.0 / 3.0
- ad_truth = 1.6 * np.eye(2)
- bd_truth = np.full((2, 1), 0.3)
- cd_truth = np.array([[0.9, 1.2],
- [1.2, 1.2],
- [1.2, 0.3]])
- dd_truth = np.array([[0.175],
- [0.2],
- [-0.205]])
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
- method='gbt', alpha=alpha)
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- def test_euler(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [-0.33]])
- dt_requested = 0.5
- ad_truth = 1.5 * np.eye(2)
- bd_truth = np.full((2, 1), 0.25)
- cd_truth = np.array([[0.75, 1.0],
- [1.0, 1.0],
- [1.0, 0.25]])
- dd_truth = dc
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
- method='euler')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- assert_almost_equal(dt_requested, dt)
- def test_backward_diff(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [-0.33]])
- dt_requested = 0.5
- ad_truth = 2.0 * np.eye(2)
- bd_truth = np.full((2, 1), 0.5)
- cd_truth = np.array([[1.5, 2.0],
- [2.0, 2.0],
- [2.0, 0.5]])
- dd_truth = np.array([[0.875],
- [1.0],
- [0.295]])
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
- method='backward_diff')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- def test_bilinear(self):
- ac = np.eye(2)
- bc = np.full((2, 1), 0.5)
- cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
- dc = np.array([[0.0], [0.0], [-0.33]])
- dt_requested = 0.5
- ad_truth = (5.0 / 3.0) * np.eye(2)
- bd_truth = np.full((2, 1), 1.0 / 3.0)
- cd_truth = np.array([[1.0, 4.0 / 3.0],
- [4.0 / 3.0, 4.0 / 3.0],
- [4.0 / 3.0, 1.0 / 3.0]])
- dd_truth = np.array([[0.291666666666667],
- [1.0 / 3.0],
- [-0.121666666666667]])
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
- method='bilinear')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- assert_almost_equal(dt_requested, dt)
- # Same continuous system again, but change sampling rate
- ad_truth = 1.4 * np.eye(2)
- bd_truth = np.full((2, 1), 0.2)
- cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]])
- dd_truth = np.array([[0.175], [0.2], [-0.205]])
- dt_requested = 1.0 / 3.0
- ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
- method='bilinear')
- assert_array_almost_equal(ad_truth, ad)
- assert_array_almost_equal(bd_truth, bd)
- assert_array_almost_equal(cd_truth, cd)
- assert_array_almost_equal(dd_truth, dd)
- assert_almost_equal(dt_requested, dt)
- def test_transferfunction(self):
- numc = np.array([0.25, 0.25, 0.5])
- denc = np.array([0.75, 0.75, 1.0])
- numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]])
- dend = np.array([1.0, -1.351394049721225, 0.606530659712634])
- dt_requested = 0.5
- num, den, dt = c2d((numc, denc), dt_requested, method='zoh')
- assert_array_almost_equal(numd, num)
- assert_array_almost_equal(dend, den)
- assert_almost_equal(dt_requested, dt)
- def test_zerospolesgain(self):
- zeros_c = np.array([0.5, -0.5])
- poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
- k_c = 1.0
- zeros_d = [1.23371727305860, 0.735356894461267]
- polls_d = [0.938148335039729 + 0.346233593780536j,
- 0.938148335039729 - 0.346233593780536j]
- k_d = 1.0
- dt_requested = 0.5
- zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested,
- method='zoh')
- assert_array_almost_equal(zeros_d, zeros)
- assert_array_almost_equal(polls_d, poles)
- assert_almost_equal(k_d, k)
- assert_almost_equal(dt_requested, dt)
- def test_gbt_with_sio_tf_and_zpk(self):
- """Test method='gbt' with alpha=0.25 for tf and zpk cases."""
- # State space coefficients for the continuous SIO system.
- A = -1.0
- B = 1.0
- C = 1.0
- D = 0.5
- # The continuous transfer function coefficients.
- cnum, cden = ss2tf(A, B, C, D)
- # Continuous zpk representation
- cz, cp, ck = ss2zpk(A, B, C, D)
- h = 1.0
- alpha = 0.25
- # Explicit formulas, in the scalar case.
- Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A)
- Bd = h * B / (1 - alpha * h * A)
- Cd = C / (1 - alpha * h * A)
- Dd = D + alpha * C * Bd
- # Convert the explicit solution to tf
- dnum, dden = ss2tf(Ad, Bd, Cd, Dd)
- # Compute the discrete tf using cont2discrete.
- c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha)
- assert_allclose(dnum, c2dnum)
- assert_allclose(dden, c2dden)
- # Convert explicit solution to zpk.
- dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd)
- # Compute the discrete zpk using cont2discrete.
- c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha)
- assert_allclose(dz, c2dz)
- assert_allclose(dp, c2dp)
- assert_allclose(dk, c2dk)
- def test_discrete_approx(self):
- """
- Test that the solution to the discrete approximation of a continuous
- system actually approximates the solution to the continuous system.
- This is an indirect test of the correctness of the implementation
- of cont2discrete.
- """
- def u(t):
- return np.sin(2.5 * t)
- a = np.array([[-0.01]])
- b = np.array([[1.0]])
- c = np.array([[1.0]])
- d = np.array([[0.2]])
- x0 = 1.0
- t = np.linspace(0, 10.0, 101)
- dt = t[1] - t[0]
- u1 = u(t)
- # Use lsim2 to compute the solution to the continuous system.
- t, yout, xout = lsim2((a, b, c, d), T=t, U=u1, X0=x0,
- rtol=1e-9, atol=1e-11)
- # Convert the continuous system to a discrete approximation.
- dsys = c2d((a, b, c, d), dt, method='bilinear')
- # Use dlsim with the pairwise averaged input to compute the output
- # of the discrete system.
- u2 = 0.5 * (u1[:-1] + u1[1:])
- t2 = t[:-1]
- td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0)
- # ymid is the average of consecutive terms of the "exact" output
- # computed by lsim2. This is what the discrete approximation
- # actually approximates.
- ymid = 0.5 * (yout[:-1] + yout[1:])
- assert_allclose(yd2.ravel(), ymid, rtol=1e-4)
- def test_simo_tf(self):
- # See gh-5753
- tf = ([[1, 0], [1, 1]], [1, 1])
- num, den, dt = c2d(tf, 0.01)
- assert_equal(dt, 0.01) # sanity check
- assert_allclose(den, [1, -0.990404983], rtol=1e-3)
- assert_allclose(num, [[1, -1], [1, -0.99004983]], rtol=1e-3)
- def test_multioutput(self):
- ts = 0.01 # time step
- tf = ([[1, -3], [1, 5]], [1, 1])
- num, den, dt = c2d(tf, ts)
- tf1 = (tf[0][0], tf[1])
- num1, den1, dt1 = c2d(tf1, ts)
- tf2 = (tf[0][1], tf[1])
- num2, den2, dt2 = c2d(tf2, ts)
- # Sanity checks
- assert_equal(dt, dt1)
- assert_equal(dt, dt2)
- # Check that we get the same results
- assert_allclose(num, np.vstack((num1, num2)), rtol=1e-13)
- # Single input, so the denominator should
- # not be multidimensional like the numerator
- assert_allclose(den, den1, rtol=1e-13)
- assert_allclose(den, den2, rtol=1e-13)
- class TestC2dLti:
- def test_c2d_ss(self):
- # StateSpace
- A = np.array([[-0.3, 0.1], [0.2, -0.7]])
- B = np.array([[0], [1]])
- C = np.array([[1, 0]])
- D = 0
- A_res = np.array([[0.985136404135682, 0.004876671474795],
- [0.009753342949590, 0.965629718236502]])
- B_res = np.array([[0.000122937599964], [0.049135527547844]])
- sys_ssc = lti(A, B, C, D)
- sys_ssd = sys_ssc.to_discrete(0.05)
- assert_allclose(sys_ssd.A, A_res)
- assert_allclose(sys_ssd.B, B_res)
- assert_allclose(sys_ssd.C, C)
- assert_allclose(sys_ssd.D, D)
- def test_c2d_tf(self):
- sys = lti([0.5, 0.3], [1.0, 0.4])
- sys = sys.to_discrete(0.005)
- # Matlab results
- num_res = np.array([0.5, -0.485149004980066])
- den_res = np.array([1.0, -0.980198673306755])
- # Somehow a lot of numerical errors
- assert_allclose(sys.den, den_res, atol=0.02)
- assert_allclose(sys.num, num_res, atol=0.02)
- class TestC2dInvariants:
- # Some test cases for checking the invariances.
- # Array of triplets: (system, sample time, number of samples)
- cases = [
- (tf2ss([1, 1], [1, 1.5, 1]), 0.25, 10),
- (tf2ss([1, 2], [1, 1.5, 3, 1]), 0.5, 10),
- (tf2ss(0.1, [1, 1, 2, 1]), 0.5, 10),
- ]
- # Some options for lsim2 and derived routines
- tolerances = {'rtol': 1e-9, 'atol': 1e-11}
- # Check that systems discretized with the impulse-invariant
- # method really hold the invariant
- @pytest.mark.parametrize("sys,sample_time,samples_number", cases)
- def test_impulse_invariant(self, sys, sample_time, samples_number):
- time = np.arange(samples_number) * sample_time
- _, yout_cont = impulse2(sys, T=time, **self.tolerances)
- _, yout_disc = dimpulse(c2d(sys, sample_time, method='impulse'),
- n=len(time))
- assert_allclose(sample_time * yout_cont.ravel(), yout_disc[0].ravel())
- # Step invariant should hold for ZOH discretized systems
- @pytest.mark.parametrize("sys,sample_time,samples_number", cases)
- def test_step_invariant(self, sys, sample_time, samples_number):
- time = np.arange(samples_number) * sample_time
- _, yout_cont = step2(sys, T=time, **self.tolerances)
- _, yout_disc = dstep(c2d(sys, sample_time, method='zoh'), n=len(time))
- assert_allclose(yout_cont.ravel(), yout_disc[0].ravel())
- # Linear invariant should hold for FOH discretized systems
- @pytest.mark.parametrize("sys,sample_time,samples_number", cases)
- def test_linear_invariant(self, sys, sample_time, samples_number):
- time = np.arange(samples_number) * sample_time
- _, yout_cont, _ = lsim2(sys, T=time, U=time, **self.tolerances)
- _, yout_disc, _ = dlsim(c2d(sys, sample_time, method='foh'), u=time)
- assert_allclose(yout_cont.ravel(), yout_disc.ravel())
|