123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- """
- Unit tests for TNC optimization routine from tnc.py
- """
- import pytest
- from numpy.testing import assert_allclose, assert_equal
- import numpy as np
- from math import pow
- from scipy import optimize
- from scipy.sparse._sputils import matrix
- class TestTnc:
- """TNC non-linear optimization.
- These tests are taken from Prof. K. Schittkowski's test examples
- for constrained non-linear programming.
- http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm
- """
- def setup_method(self):
- # options for minimize
- self.opts = {'disp': False, 'maxfun': 200}
- # objective functions and Jacobian for each test
- def f1(self, x, a=100.0):
- return a * pow((x[1] - pow(x[0], 2)), 2) + pow(1.0 - x[0], 2)
- def g1(self, x, a=100.0):
- dif = [0, 0]
- dif[1] = 2 * a * (x[1] - pow(x[0], 2))
- dif[0] = -2.0 * (x[0] * (dif[1] - 1.0) + 1.0)
- return dif
- def fg1(self, x, a=100.0):
- return self.f1(x, a), self.g1(x, a)
- def f3(self, x):
- return x[1] + pow(x[1] - x[0], 2) * 1.0e-5
- def g3(self, x):
- dif = [0, 0]
- dif[0] = -2.0 * (x[1] - x[0]) * 1.0e-5
- dif[1] = 1.0 - dif[0]
- return dif
- def fg3(self, x):
- return self.f3(x), self.g3(x)
- def f4(self, x):
- return pow(x[0] + 1.0, 3) / 3.0 + x[1]
- def g4(self, x):
- dif = [0, 0]
- dif[0] = pow(x[0] + 1.0, 2)
- dif[1] = 1.0
- return dif
- def fg4(self, x):
- return self.f4(x), self.g4(x)
- def f5(self, x):
- return np.sin(x[0] + x[1]) + pow(x[0] - x[1], 2) - \
- 1.5 * x[0] + 2.5 * x[1] + 1.0
- def g5(self, x):
- dif = [0, 0]
- v1 = np.cos(x[0] + x[1])
- v2 = 2.0*(x[0] - x[1])
- dif[0] = v1 + v2 - 1.5
- dif[1] = v1 - v2 + 2.5
- return dif
- def fg5(self, x):
- return self.f5(x), self.g5(x)
- def f38(self, x):
- return (100.0 * pow(x[1] - pow(x[0], 2), 2) +
- pow(1.0 - x[0], 2) + 90.0 * pow(x[3] - pow(x[2], 2), 2) +
- pow(1.0 - x[2], 2) + 10.1 * (pow(x[1] - 1.0, 2) +
- pow(x[3] - 1.0, 2)) +
- 19.8 * (x[1] - 1.0) * (x[3] - 1.0)) * 1.0e-5
- def g38(self, x):
- dif = [0, 0, 0, 0]
- dif[0] = (-400.0 * x[0] * (x[1] - pow(x[0], 2)) -
- 2.0 * (1.0 - x[0])) * 1.0e-5
- dif[1] = (200.0 * (x[1] - pow(x[0], 2)) + 20.2 * (x[1] - 1.0) +
- 19.8 * (x[3] - 1.0)) * 1.0e-5
- dif[2] = (- 360.0 * x[2] * (x[3] - pow(x[2], 2)) -
- 2.0 * (1.0 - x[2])) * 1.0e-5
- dif[3] = (180.0 * (x[3] - pow(x[2], 2)) + 20.2 * (x[3] - 1.0) +
- 19.8 * (x[1] - 1.0)) * 1.0e-5
- return dif
- def fg38(self, x):
- return self.f38(x), self.g38(x)
- def f45(self, x):
- return 2.0 - x[0] * x[1] * x[2] * x[3] * x[4] / 120.0
- def g45(self, x):
- dif = [0] * 5
- dif[0] = - x[1] * x[2] * x[3] * x[4] / 120.0
- dif[1] = - x[0] * x[2] * x[3] * x[4] / 120.0
- dif[2] = - x[0] * x[1] * x[3] * x[4] / 120.0
- dif[3] = - x[0] * x[1] * x[2] * x[4] / 120.0
- dif[4] = - x[0] * x[1] * x[2] * x[3] / 120.0
- return dif
- def fg45(self, x):
- return self.f45(x), self.g45(x)
- # tests
- # minimize with method=TNC
- def test_minimize_tnc1(self):
- x0, bnds = [-2, 1], ([-np.inf, None], [-1.5, None])
- xopt = [1, 1]
- iterx = [] # to test callback
- res = optimize.minimize(self.f1, x0, method='TNC', jac=self.g1,
- bounds=bnds, options=self.opts,
- callback=iterx.append)
- assert_allclose(res.fun, self.f1(xopt), atol=1e-8)
- assert_equal(len(iterx), res.nit)
- def test_minimize_tnc1b(self):
- x0, bnds = matrix([-2, 1]), ([-np.inf, None],[-1.5, None])
- xopt = [1, 1]
- message = 'Use of `minimize` with `x0.ndim != 1` is deprecated.'
- with pytest.warns(DeprecationWarning, match=message):
- x = optimize.minimize(self.f1, x0, method='TNC',
- bounds=bnds, options=self.opts).x
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-4)
- def test_minimize_tnc1c(self):
- x0, bnds = [-2, 1], ([-np.inf, None],[-1.5, None])
- xopt = [1, 1]
- x = optimize.minimize(self.fg1, x0, method='TNC',
- jac=True, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8)
- def test_minimize_tnc2(self):
- x0, bnds = [-2, 1], ([-np.inf, None], [1.5, None])
- xopt = [-1.2210262419616387, 1.5]
- x = optimize.minimize(self.f1, x0, method='TNC',
- jac=self.g1, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8)
- def test_minimize_tnc3(self):
- x0, bnds = [10, 1], ([-np.inf, None], [0.0, None])
- xopt = [0, 0]
- x = optimize.minimize(self.f3, x0, method='TNC',
- jac=self.g3, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f3(x), self.f3(xopt), atol=1e-8)
- def test_minimize_tnc4(self):
- x0,bnds = [1.125, 0.125], [(1, None), (0, None)]
- xopt = [1, 0]
- x = optimize.minimize(self.f4, x0, method='TNC',
- jac=self.g4, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f4(x), self.f4(xopt), atol=1e-8)
- def test_minimize_tnc5(self):
- x0, bnds = [0, 0], [(-1.5, 4),(-3, 3)]
- xopt = [-0.54719755119659763, -1.5471975511965976]
- x = optimize.minimize(self.f5, x0, method='TNC',
- jac=self.g5, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f5(x), self.f5(xopt), atol=1e-8)
- def test_minimize_tnc38(self):
- x0, bnds = np.array([-3, -1, -3, -1]), [(-10, 10)]*4
- xopt = [1]*4
- x = optimize.minimize(self.f38, x0, method='TNC',
- jac=self.g38, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f38(x), self.f38(xopt), atol=1e-8)
- def test_minimize_tnc45(self):
- x0, bnds = [2] * 5, [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
- xopt = [1, 2, 3, 4, 5]
- x = optimize.minimize(self.f45, x0, method='TNC',
- jac=self.g45, bounds=bnds,
- options=self.opts).x
- assert_allclose(self.f45(x), self.f45(xopt), atol=1e-8)
- # fmin_tnc
- def test_tnc1(self):
- fg, x, bounds = self.fg1, [-2, 1], ([-np.inf, None], [-1.5, None])
- xopt = [1, 1]
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds, args=(100.0, ),
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc1b(self):
- x, bounds = [-2, 1], ([-np.inf, None], [-1.5, None])
- xopt = [1, 1]
- x, nf, rc = optimize.fmin_tnc(self.f1, x, approx_grad=True,
- bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-4,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc1c(self):
- x, bounds = [-2, 1], ([-np.inf, None], [-1.5, None])
- xopt = [1, 1]
- x, nf, rc = optimize.fmin_tnc(self.f1, x, fprime=self.g1,
- bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc2(self):
- fg, x, bounds = self.fg1, [-2, 1], ([-np.inf, None], [1.5, None])
- xopt = [-1.2210262419616387, 1.5]
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f1(x), self.f1(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc3(self):
- fg, x, bounds = self.fg3, [10, 1], ([-np.inf, None], [0.0, None])
- xopt = [0, 0]
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f3(x), self.f3(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc4(self):
- fg, x, bounds = self.fg4, [1.125, 0.125], [(1, None), (0, None)]
- xopt = [1, 0]
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f4(x), self.f4(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc5(self):
- fg, x, bounds = self.fg5, [0, 0], [(-1.5, 4),(-3, 3)]
- xopt = [-0.54719755119659763, -1.5471975511965976]
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f5(x), self.f5(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc38(self):
- fg, x, bounds = self.fg38, np.array([-3, -1, -3, -1]), [(-10, 10)]*4
- xopt = [1]*4
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f38(x), self.f38(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_tnc45(self):
- fg, x, bounds = self.fg45, [2] * 5, [(0, 1), (0, 2), (0, 3),
- (0, 4), (0, 5)]
- xopt = [1, 2, 3, 4, 5]
- x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
- messages=optimize._tnc.MSG_NONE,
- maxfun=200)
- assert_allclose(self.f45(x), self.f45(xopt), atol=1e-8,
- err_msg="TNC failed with status: " +
- optimize._tnc.RCSTRINGS[rc])
- def test_raising_exceptions(self):
- # tnc was ported to cython from hand-crafted cpython code
- # check that Exception handling works.
- def myfunc(x):
- raise RuntimeError("myfunc")
- def myfunc1(x):
- return optimize.rosen(x)
- def callback(x):
- raise ValueError("callback")
- with pytest.raises(RuntimeError):
- optimize.minimize(myfunc, [0, 1], method="TNC")
- with pytest.raises(ValueError):
- optimize.minimize(
- myfunc1, [0, 1], method="TNC", callback=callback
- )
- def test_callback_shouldnt_affect_minimization(self):
- # gh14879. The output of a TNC minimization was different depending
- # on whether a callback was used or not. The two should be equivalent.
- # The issue was that TNC was unscaling/scaling x, and this process was
- # altering x in the process. Now the callback uses an unscaled
- # temporary copy of x.
- def callback(x):
- pass
- fun = optimize.rosen
- bounds = [(0, 10)] * 4
- x0 = [1, 2, 3, 4.]
- res = optimize.minimize(
- fun, x0, bounds=bounds, method="TNC", options={"maxfun": 1000}
- )
- res2 = optimize.minimize(
- fun, x0, bounds=bounds, method="TNC", options={"maxfun": 1000},
- callback=callback
- )
- assert_allclose(res2.x, res.x)
- assert_allclose(res2.fun, res.fun)
- assert_equal(res2.nfev, res.nfev)
- def test_maxiter_depreciations(self):
- msg = "'maxiter' has been deprecated in favor of 'maxfun'"
- with pytest.warns(DeprecationWarning, match=msg):
- optimize.minimize(
- self.f1, [1, 3], method="TNC", options={"maxiter": 1}
- )
|