123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- """
- Unit test for Mixed Integer Linear Programming
- """
- import re
- import numpy as np
- from numpy.testing import assert_allclose, assert_array_equal
- import pytest
- from .test_linprog import magic_square
- from scipy.optimize import milp, Bounds, LinearConstraint
- def test_milp_iv():
- message = "`c` must be a one-dimensional array of finite numbers with"
- with pytest.raises(ValueError, match=message):
- milp(np.zeros((3, 4)))
- with pytest.raises(ValueError, match=message):
- milp([])
- with pytest.raises(ValueError, match=message):
- milp(None)
- message = "`bounds` must be convertible into an instance of..."
- with pytest.raises(ValueError, match=message):
- milp(1, bounds=10)
- message = "`constraints` (or each element within `constraints`) must be"
- with pytest.raises(ValueError, match=re.escape(message)):
- milp(1, constraints=10)
- with pytest.raises(ValueError, match=re.escape(message)):
- milp(np.zeros(3), constraints=([[1, 2, 3]], [2, 3], [2, 3]))
- message = "The shape of `A` must be (len(b_l), len(c))."
- with pytest.raises(ValueError, match=re.escape(message)):
- milp(np.zeros(3), constraints=([[1, 2]], [2], [2]))
- message = ("`integrality` must contain integers 0-3 and be broadcastable "
- "to `c.shape`.")
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], integrality=[1, 2])
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], integrality=[1, 5, 3])
- message = "`lb`, `ub`, and `keep_feasible` must be broadcastable."
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], bounds=([1, 2], [3, 4, 5]))
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], bounds=([1, 2, 3], [4, 5]))
- message = "`bounds.lb` and `bounds.ub` must contain reals and..."
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], bounds=([1, 2], [3, 4]))
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], bounds=([1, 2, 3], ["3+4", 4, 5]))
- with pytest.raises(ValueError, match=message):
- milp([1, 2, 3], bounds=([1, 2, 3], [set(), 4, 5]))
- @pytest.mark.xfail(run=False,
- reason="Needs to be fixed in `_highs_wrapper`")
- def test_milp_options(capsys):
- # run=False now because of gh-16347
- message = "Unrecognized options detected: {'ekki'}..."
- options = {'ekki': True}
- with pytest.warns(RuntimeWarning, match=message):
- milp(1, options=options)
- A, b, c, numbers, M = magic_square(3)
- options = {"disp": True, "presolve": False, "time_limit": 0.05}
- res = milp(c=c, constraints=(A, b, b), bounds=(0, 1), integrality=1,
- options=options)
- captured = capsys.readouterr()
- assert "Presolve is switched off" in captured.out
- assert "Time Limit Reached" in captured.out
- assert not res.success
- def test_result():
- A, b, c, numbers, M = magic_square(3)
- res = milp(c=c, constraints=(A, b, b), bounds=(0, 1), integrality=1)
- assert res.status == 0
- assert res.success
- msg = "Optimization terminated successfully. (HiGHS Status 7:"
- assert res.message.startswith(msg)
- assert isinstance(res.x, np.ndarray)
- assert isinstance(res.fun, float)
- assert isinstance(res.mip_node_count, int)
- assert isinstance(res.mip_dual_bound, float)
- assert isinstance(res.mip_gap, float)
- A, b, c, numbers, M = magic_square(6)
- res = milp(c=c*0, constraints=(A, b, b), bounds=(0, 1), integrality=1,
- options={'time_limit': 0.05})
- assert res.status == 1
- assert not res.success
- msg = "Time limit reached. (HiGHS Status 13:"
- assert res.message.startswith(msg)
- assert (res.fun is res.mip_dual_bound is res.mip_gap
- is res.mip_node_count is res.x is None)
- res = milp(1, bounds=(1, -1))
- assert res.status == 2
- assert not res.success
- msg = "The problem is infeasible. (HiGHS Status 8:"
- assert res.message.startswith(msg)
- assert (res.fun is res.mip_dual_bound is res.mip_gap
- is res.mip_node_count is res.x is None)
- res = milp(-1)
- assert res.status == 3
- assert not res.success
- msg = "The problem is unbounded. (HiGHS Status 10:"
- assert res.message.startswith(msg)
- assert (res.fun is res.mip_dual_bound is res.mip_gap
- is res.mip_node_count is res.x is None)
- def test_milp_optional_args():
- # check that arguments other than `c` are indeed optional
- res = milp(1)
- assert res.fun == 0
- assert_array_equal(res.x, [0])
- def test_milp_1():
- # solve magic square problem
- n = 3
- A, b, c, numbers, M = magic_square(n)
- res = milp(c=c*0, constraints=(A, b, b), bounds=(0, 1), integrality=1)
- # check that solution is a magic square
- x = np.round(res.x)
- s = (numbers.flatten() * x).reshape(n**2, n, n)
- square = np.sum(s, axis=0)
- np.testing.assert_allclose(square.sum(axis=0), M)
- np.testing.assert_allclose(square.sum(axis=1), M)
- np.testing.assert_allclose(np.diag(square).sum(), M)
- np.testing.assert_allclose(np.diag(square[:, ::-1]).sum(), M)
- def test_milp_2():
- # solve MIP with inequality constraints and all integer constraints
- # source: slide 5,
- # https://www.cs.upc.edu/~erodri/webpage/cps/theory/lp/milp/slides.pdf
- # also check that `milp` accepts all valid ways of specifying constraints
- c = -np.ones(2)
- A = [[-2, 2], [-8, 10]]
- b_l = [1, -np.inf]
- b_u = [np.inf, 13]
- linear_constraint = LinearConstraint(A, b_l, b_u)
- # solve original problem
- res1 = milp(c=c, constraints=(A, b_l, b_u), integrality=True)
- res2 = milp(c=c, constraints=linear_constraint, integrality=True)
- res3 = milp(c=c, constraints=[(A, b_l, b_u)], integrality=True)
- res4 = milp(c=c, constraints=[linear_constraint], integrality=True)
- res5 = milp(c=c, integrality=True,
- constraints=[(A[:1], b_l[:1], b_u[:1]),
- (A[1:], b_l[1:], b_u[1:])])
- res6 = milp(c=c, integrality=True,
- constraints=[LinearConstraint(A[:1], b_l[:1], b_u[:1]),
- LinearConstraint(A[1:], b_l[1:], b_u[1:])])
- res7 = milp(c=c, integrality=True,
- constraints=[(A[:1], b_l[:1], b_u[:1]),
- LinearConstraint(A[1:], b_l[1:], b_u[1:])])
- xs = np.array([res1.x, res2.x, res3.x, res4.x, res5.x, res6.x, res7.x])
- funs = np.array([res1.fun, res2.fun, res3.fun,
- res4.fun, res5.fun, res6.fun, res7.fun])
- np.testing.assert_allclose(xs, np.broadcast_to([1, 2], xs.shape))
- np.testing.assert_allclose(funs, -3)
- # solve relaxed problem
- res = milp(c=c, constraints=(A, b_l, b_u))
- np.testing.assert_allclose(res.x, [4, 4.5])
- np.testing.assert_allclose(res.fun, -8.5)
- def test_milp_3():
- # solve MIP with inequality constraints and all integer constraints
- # source: https://en.wikipedia.org/wiki/Integer_programming#Example
- c = [0, -1]
- A = [[-1, 1], [3, 2], [2, 3]]
- b_u = [1, 12, 12]
- b_l = np.full_like(b_u, -np.inf, dtype=np.float64)
- constraints = LinearConstraint(A, b_l, b_u)
- integrality = np.ones_like(c)
- # solve original problem
- res = milp(c=c, constraints=constraints, integrality=integrality)
- assert_allclose(res.fun, -2)
- # two optimal solutions possible, just need one of them
- assert np.allclose(res.x, [1, 2]) or np.allclose(res.x, [2, 2])
- # solve relaxed problem
- res = milp(c=c, constraints=constraints)
- assert_allclose(res.fun, -2.8)
- assert_allclose(res.x, [1.8, 2.8])
- def test_milp_4():
- # solve MIP with inequality constraints and only one integer constraint
- # source: https://www.mathworks.com/help/optim/ug/intlinprog.html
- c = [8, 1]
- integrality = [0, 1]
- A = [[1, 2], [-4, -1], [2, 1]]
- b_l = [-14, -np.inf, -np.inf]
- b_u = [np.inf, -33, 20]
- constraints = LinearConstraint(A, b_l, b_u)
- bounds = Bounds(-np.inf, np.inf)
- res = milp(c, integrality=integrality, bounds=bounds,
- constraints=constraints)
- assert_allclose(res.fun, 59)
- assert_allclose(res.x, [6.5, 7])
- def test_milp_5():
- # solve MIP with inequality and equality constraints
- # source: https://www.mathworks.com/help/optim/ug/intlinprog.html
- c = [-3, -2, -1]
- integrality = [0, 0, 1]
- lb = [0, 0, 0]
- ub = [np.inf, np.inf, 1]
- bounds = Bounds(lb, ub)
- A = [[1, 1, 1], [4, 2, 1]]
- b_l = [-np.inf, 12]
- b_u = [7, 12]
- constraints = LinearConstraint(A, b_l, b_u)
- res = milp(c, integrality=integrality, bounds=bounds,
- constraints=constraints)
- # there are multiple solutions
- assert_allclose(res.fun, -12)
- @pytest.mark.slow
- @pytest.mark.timeout(120) # prerelease_deps_coverage_64bit_blas job
- def test_milp_6():
- # solve a larger MIP with only equality constraints
- # source: https://www.mathworks.com/help/optim/ug/intlinprog.html
- integrality = 1
- A_eq = np.array([[22, 13, 26, 33, 21, 3, 14, 26],
- [39, 16, 22, 28, 26, 30, 23, 24],
- [18, 14, 29, 27, 30, 38, 26, 26],
- [41, 26, 28, 36, 18, 38, 16, 26]])
- b_eq = np.array([7872, 10466, 11322, 12058])
- c = np.array([2, 10, 13, 17, 7, 5, 7, 3])
- res = milp(c=c, constraints=(A_eq, b_eq, b_eq), integrality=integrality)
- np.testing.assert_allclose(res.fun, 1854)
- def test_infeasible_prob_16609():
- # Ensure presolve does not mark trivially infeasible problems
- # as Optimal -- see gh-16609
- c = [1.0, 0.0]
- integrality = [0, 1]
- lb = [0, -np.inf]
- ub = [np.inf, np.inf]
- bounds = Bounds(lb, ub)
- A_eq = [[0.0, 1.0]]
- b_eq = [0.5]
- constraints = LinearConstraint(A_eq, b_eq, b_eq)
- res = milp(c, integrality=integrality, bounds=bounds,
- constraints=constraints)
- np.testing.assert_equal(res.status, 2)
- _msg_time = "Time limit reached. (HiGHS Status 13:"
- _msg_iter = "Iteration limit reached. (HiGHS Status 14:"
- @pytest.mark.skipif(np.intp(0).itemsize < 8,
- reason="Unhandled 32-bit GCC FP bug")
- @pytest.mark.slow
- @pytest.mark.timeout(360)
- @pytest.mark.parametrize(["options", "msg"], [({"time_limit": 10}, _msg_time),
- ({"node_limit": 1}, _msg_iter)])
- def test_milp_timeout_16545(options, msg):
- # Ensure solution is not thrown away if MILP solver times out
- # -- see gh-16545
- rng = np.random.default_rng(5123833489170494244)
- A = rng.integers(0, 5, size=(100, 100))
- b_lb = np.full(100, fill_value=-np.inf)
- b_ub = np.full(100, fill_value=25)
- constraints = LinearConstraint(A, b_lb, b_ub)
- variable_lb = np.zeros(100)
- variable_ub = np.ones(100)
- variable_bounds = Bounds(variable_lb, variable_ub)
- integrality = np.ones(100)
- c_vector = -np.ones(100)
- res = milp(
- c_vector,
- integrality=integrality,
- bounds=variable_bounds,
- constraints=constraints,
- options=options,
- )
- assert res.message.startswith(msg)
- assert res["x"] is not None
- # ensure solution is feasible
- x = res["x"]
- tol = 1e-8 # sometimes needed due to finite numerical precision
- assert np.all(b_lb - tol <= A @ x) and np.all(A @ x <= b_ub + tol)
- assert np.all(variable_lb - tol <= x) and np.all(x <= variable_ub + tol)
- assert np.allclose(x, np.round(x))
- def test_three_constraints_16878():
- # `milp` failed when exactly three constraints were passed
- # Ensure that this is no longer the case.
- rng = np.random.default_rng(5123833489170494244)
- A = rng.integers(0, 5, size=(6, 6))
- bl = np.full(6, fill_value=-np.inf)
- bu = np.full(6, fill_value=10)
- constraints = [LinearConstraint(A[:2], bl[:2], bu[:2]),
- LinearConstraint(A[2:4], bl[2:4], bu[2:4]),
- LinearConstraint(A[4:], bl[4:], bu[4:])]
- constraints2 = [(A[:2], bl[:2], bu[:2]),
- (A[2:4], bl[2:4], bu[2:4]),
- (A[4:], bl[4:], bu[4:])]
- lb = np.zeros(6)
- ub = np.ones(6)
- variable_bounds = Bounds(lb, ub)
- c = -np.ones(6)
- res1 = milp(c, bounds=variable_bounds, constraints=constraints)
- res2 = milp(c, bounds=variable_bounds, constraints=constraints2)
- ref = milp(c, bounds=variable_bounds, constraints=(A, bl, bu))
- assert res1.success and res2.success
- assert_allclose(res1.x, ref.x)
- assert_allclose(res2.x, ref.x)
- @pytest.mark.xslow
- def test_mip_rel_gap_passdown():
- # Solve problem with decreasing mip_gap to make sure mip_rel_gap decreases
- # Adapted from test_linprog::TestLinprogHiGHSMIP::test_mip_rel_gap_passdown
- # MIP taken from test_mip_6 above
- A_eq = np.array([[22, 13, 26, 33, 21, 3, 14, 26],
- [39, 16, 22, 28, 26, 30, 23, 24],
- [18, 14, 29, 27, 30, 38, 26, 26],
- [41, 26, 28, 36, 18, 38, 16, 26]])
- b_eq = np.array([7872, 10466, 11322, 12058])
- c = np.array([2, 10, 13, 17, 7, 5, 7, 3])
- mip_rel_gaps = [0.25, 0.01, 0.001]
- sol_mip_gaps = []
- for mip_rel_gap in mip_rel_gaps:
- res = milp(c=c, bounds=(0, np.inf), constraints=(A_eq, b_eq, b_eq),
- integrality=True, options={"mip_rel_gap": mip_rel_gap})
- # assert that the solution actually has mip_gap lower than the
- # required mip_rel_gap supplied
- assert res.mip_gap <= mip_rel_gap
- # check that `res.mip_gap` is as defined in the documentation
- assert res.mip_gap == (res.fun - res.mip_dual_bound)/res.fun
- sol_mip_gaps.append(res.mip_gap)
- # make sure that the mip_rel_gap parameter is actually doing something
- # check that differences between solution gaps are declining
- # monotonically with the mip_rel_gap parameter.
- assert np.all(np.diff(sol_mip_gaps) < 0)
|