123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Author: Brian M. Clapper, G. Varoquaux, Lars Buitinck
- # License: BSD
- from numpy.testing import assert_array_equal
- import pytest
- import numpy as np
- from scipy.optimize import linear_sum_assignment
- from scipy.sparse import random
- from scipy.sparse._sputils import matrix
- from scipy.sparse.csgraph import min_weight_full_bipartite_matching
- from scipy.sparse.csgraph.tests.test_matching import (
- linear_sum_assignment_assertions, linear_sum_assignment_test_cases
- )
- def test_linear_sum_assignment_input_shape():
- with pytest.raises(ValueError, match="expected a matrix"):
- linear_sum_assignment([1, 2, 3])
- def test_linear_sum_assignment_input_object():
- C = [[1, 2, 3], [4, 5, 6]]
- assert_array_equal(linear_sum_assignment(C),
- linear_sum_assignment(np.asarray(C)))
- assert_array_equal(linear_sum_assignment(C),
- linear_sum_assignment(matrix(C)))
- def test_linear_sum_assignment_input_bool():
- I = np.identity(3)
- assert_array_equal(linear_sum_assignment(I.astype(np.bool_)),
- linear_sum_assignment(I))
- def test_linear_sum_assignment_input_string():
- I = np.identity(3)
- with pytest.raises(TypeError, match="Cannot cast array data"):
- linear_sum_assignment(I.astype(str))
- def test_linear_sum_assignment_input_nan():
- I = np.diag([np.nan, 1, 1])
- with pytest.raises(ValueError, match="contains invalid numeric entries"):
- linear_sum_assignment(I)
- def test_linear_sum_assignment_input_neginf():
- I = np.diag([1, -np.inf, 1])
- with pytest.raises(ValueError, match="contains invalid numeric entries"):
- linear_sum_assignment(I)
- def test_linear_sum_assignment_input_inf():
- I = np.identity(3)
- I[:, 0] = np.inf
- with pytest.raises(ValueError, match="cost matrix is infeasible"):
- linear_sum_assignment(I)
- def test_constant_cost_matrix():
- # Fixes #11602
- n = 8
- C = np.ones((n, n))
- row_ind, col_ind = linear_sum_assignment(C)
- assert_array_equal(row_ind, np.arange(n))
- assert_array_equal(col_ind, np.arange(n))
- @pytest.mark.parametrize('num_rows,num_cols', [(0, 0), (2, 0), (0, 3)])
- def test_linear_sum_assignment_trivial_cost(num_rows, num_cols):
- C = np.empty(shape=(num_cols, num_rows))
- row_ind, col_ind = linear_sum_assignment(C)
- assert len(row_ind) == 0
- assert len(col_ind) == 0
- @pytest.mark.parametrize('sign,test_case', linear_sum_assignment_test_cases)
- def test_linear_sum_assignment_small_inputs(sign, test_case):
- linear_sum_assignment_assertions(
- linear_sum_assignment, np.array, sign, test_case)
- # Tests that combine scipy.optimize.linear_sum_assignment and
- # scipy.sparse.csgraph.min_weight_full_bipartite_matching
- def test_two_methods_give_same_result_on_many_sparse_inputs():
- # As opposed to the test above, here we do not spell out the expected
- # output; only assert that the two methods give the same result.
- # Concretely, the below tests 100 cases of size 100x100, out of which
- # 36 are infeasible.
- np.random.seed(1234)
- for _ in range(100):
- lsa_raises = False
- mwfbm_raises = False
- sparse = random(100, 100, density=0.06,
- data_rvs=lambda size: np.random.randint(1, 100, size))
- # In csgraph, zeros correspond to missing edges, so we explicitly
- # replace those with infinities
- dense = np.full(sparse.shape, np.inf)
- dense[sparse.row, sparse.col] = sparse.data
- sparse = sparse.tocsr()
- try:
- row_ind, col_ind = linear_sum_assignment(dense)
- lsa_cost = dense[row_ind, col_ind].sum()
- except ValueError:
- lsa_raises = True
- try:
- row_ind, col_ind = min_weight_full_bipartite_matching(sparse)
- mwfbm_cost = sparse[row_ind, col_ind].sum()
- except ValueError:
- mwfbm_raises = True
- # Ensure that if one method raises, so does the other one.
- assert lsa_raises == mwfbm_raises
- if not lsa_raises:
- assert lsa_cost == mwfbm_cost
|