123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731 |
- import pytest
- import numpy as np
- from numpy.testing import (TestCase, assert_array_almost_equal,
- assert_array_equal, assert_, assert_allclose,
- assert_equal)
- from scipy.sparse import csr_matrix
- from scipy.sparse.linalg import LinearOperator
- from scipy.optimize._differentiable_functions import (ScalarFunction,
- VectorFunction,
- LinearVectorFunction,
- IdentityVectorFunction)
- from scipy.optimize import rosen, rosen_der, rosen_hess
- from scipy.optimize._hessian_update_strategy import BFGS
- class ExScalarFunction:
- def __init__(self):
- self.nfev = 0
- self.ngev = 0
- self.nhev = 0
- def fun(self, x):
- self.nfev += 1
- return 2*(x[0]**2 + x[1]**2 - 1) - x[0]
- def grad(self, x):
- self.ngev += 1
- return np.array([4*x[0]-1, 4*x[1]])
- def hess(self, x):
- self.nhev += 1
- return 4*np.eye(2)
- class TestScalarFunction(TestCase):
- def test_finite_difference_grad(self):
- ex = ExScalarFunction()
- nfev = 0
- ngev = 0
- x0 = [1.0, 0.0]
- analit = ScalarFunction(ex.fun, x0, (), ex.grad,
- ex.hess, None, (-np.inf, np.inf))
- nfev += 1
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev, nfev)
- approx = ScalarFunction(ex.fun, x0, (), '2-point',
- ex.hess, None, (-np.inf, np.inf))
- nfev += 3
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(analit.f, approx.f)
- assert_array_almost_equal(analit.g, approx.g)
- x = [10, 0.3]
- f_analit = analit.fun(x)
- g_analit = analit.grad(x)
- nfev += 1
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- f_approx = approx.fun(x)
- g_approx = approx.grad(x)
- nfev += 3
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_almost_equal(f_analit, f_approx)
- assert_array_almost_equal(g_analit, g_approx)
- x = [2.0, 1.0]
- g_analit = analit.grad(x)
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- g_approx = approx.grad(x)
- nfev += 3
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_almost_equal(g_analit, g_approx)
- x = [2.5, 0.3]
- f_analit = analit.fun(x)
- g_analit = analit.grad(x)
- nfev += 1
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- f_approx = approx.fun(x)
- g_approx = approx.grad(x)
- nfev += 3
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_almost_equal(f_analit, f_approx)
- assert_array_almost_equal(g_analit, g_approx)
- x = [2, 0.3]
- f_analit = analit.fun(x)
- g_analit = analit.grad(x)
- nfev += 1
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- f_approx = approx.fun(x)
- g_approx = approx.grad(x)
- nfev += 3
- ngev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_almost_equal(f_analit, f_approx)
- assert_array_almost_equal(g_analit, g_approx)
- def test_fun_and_grad(self):
- ex = ExScalarFunction()
- def fg_allclose(x, y):
- assert_allclose(x[0], y[0])
- assert_allclose(x[1], y[1])
- # with analytic gradient
- x0 = [2.0, 0.3]
- analit = ScalarFunction(ex.fun, x0, (), ex.grad,
- ex.hess, None, (-np.inf, np.inf))
- fg = ex.fun(x0), ex.grad(x0)
- fg_allclose(analit.fun_and_grad(x0), fg)
- assert analit.ngev == 1
- x0[1] = 1.
- fg = ex.fun(x0), ex.grad(x0)
- fg_allclose(analit.fun_and_grad(x0), fg)
- # with finite difference gradient
- x0 = [2.0, 0.3]
- sf = ScalarFunction(ex.fun, x0, (), '3-point',
- ex.hess, None, (-np.inf, np.inf))
- assert sf.ngev == 1
- fg = ex.fun(x0), ex.grad(x0)
- fg_allclose(sf.fun_and_grad(x0), fg)
- assert sf.ngev == 1
- x0[1] = 1.
- fg = ex.fun(x0), ex.grad(x0)
- fg_allclose(sf.fun_and_grad(x0), fg)
- def test_finite_difference_hess_linear_operator(self):
- ex = ExScalarFunction()
- nfev = 0
- ngev = 0
- nhev = 0
- x0 = [1.0, 0.0]
- analit = ScalarFunction(ex.fun, x0, (), ex.grad,
- ex.hess, None, (-np.inf, np.inf))
- nfev += 1
- ngev += 1
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev, nhev)
- approx = ScalarFunction(ex.fun, x0, (), ex.grad,
- '2-point', None, (-np.inf, np.inf))
- assert_(isinstance(approx.H, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_equal(analit.f, approx.f)
- assert_array_almost_equal(analit.g, approx.g)
- assert_array_almost_equal(analit.H.dot(v), approx.H.dot(v))
- nfev += 1
- ngev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [2.0, 1.0]
- H_analit = analit.hess(x)
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- H_approx = approx.hess(x)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v))
- ngev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [2.1, 1.2]
- H_analit = analit.hess(x)
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- H_approx = approx.hess(x)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v))
- ngev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [2.5, 0.3]
- _ = analit.grad(x)
- H_analit = analit.hess(x)
- ngev += 1
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- _ = approx.grad(x)
- H_approx = approx.hess(x)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v))
- ngev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [5.2, 2.3]
- _ = analit.grad(x)
- H_analit = analit.hess(x)
- ngev += 1
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- _ = approx.grad(x)
- H_approx = approx.hess(x)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v))
- ngev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.ngev, ngev)
- assert_array_equal(analit.ngev+approx.ngev, ngev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- def test_x_storage_overlap(self):
- # Scalar_Function should not store references to arrays, it should
- # store copies - this checks that updating an array in-place causes
- # Scalar_Function.x to be updated.
- def f(x):
- return np.sum(np.asarray(x) ** 2)
- x = np.array([1., 2., 3.])
- sf = ScalarFunction(f, x, (), '3-point', lambda x: x, None, (-np.inf, np.inf))
- assert x is not sf.x
- assert_equal(sf.fun(x), 14.0)
- assert x is not sf.x
- x[0] = 0.
- f1 = sf.fun(x)
- assert_equal(f1, 13.0)
- x[0] = 1
- f2 = sf.fun(x)
- assert_equal(f2, 14.0)
- assert x is not sf.x
- # now test with a HessianUpdate strategy specified
- hess = BFGS()
- x = np.array([1., 2., 3.])
- sf = ScalarFunction(f, x, (), '3-point', hess, None, (-np.inf, np.inf))
- assert x is not sf.x
- assert_equal(sf.fun(x), 14.0)
- assert x is not sf.x
- x[0] = 0.
- f1 = sf.fun(x)
- assert_equal(f1, 13.0)
- x[0] = 1
- f2 = sf.fun(x)
- assert_equal(f2, 14.0)
- assert x is not sf.x
- # gh13740 x is changed in user function
- def ff(x):
- x *= x # overwrite x
- return np.sum(x)
- x = np.array([1., 2., 3.])
- sf = ScalarFunction(
- ff, x, (), '3-point', lambda x: x, None, (-np.inf, np.inf)
- )
- assert x is not sf.x
- assert_equal(sf.fun(x), 14.0)
- assert_equal(sf.x, np.array([1., 2., 3.]))
- assert x is not sf.x
- def test_lowest_x(self):
- # ScalarFunction should remember the lowest func(x) visited.
- x0 = np.array([2, 3, 4])
- sf = ScalarFunction(rosen, x0, (), rosen_der, rosen_hess,
- None, None)
- sf.fun([1, 1, 1])
- sf.fun(x0)
- sf.fun([1.01, 1, 1.0])
- sf.grad([1.01, 1, 1.0])
- assert_equal(sf._lowest_f, 0.0)
- assert_equal(sf._lowest_x, [1.0, 1.0, 1.0])
- sf = ScalarFunction(rosen, x0, (), '2-point', rosen_hess,
- None, (-np.inf, np.inf))
- sf.fun([1, 1, 1])
- sf.fun(x0)
- sf.fun([1.01, 1, 1.0])
- sf.grad([1.01, 1, 1.0])
- assert_equal(sf._lowest_f, 0.0)
- assert_equal(sf._lowest_x, [1.0, 1.0, 1.0])
- class ExVectorialFunction:
- def __init__(self):
- self.nfev = 0
- self.njev = 0
- self.nhev = 0
- def fun(self, x):
- self.nfev += 1
- return np.array([2*(x[0]**2 + x[1]**2 - 1) - x[0],
- 4*(x[0]**3 + x[1]**2 - 4) - 3*x[0]])
- def jac(self, x):
- self.njev += 1
- return np.array([[4*x[0]-1, 4*x[1]],
- [12*x[0]**2-3, 8*x[1]]])
- def hess(self, x, v):
- self.nhev += 1
- return v[0]*4*np.eye(2) + v[1]*np.array([[24*x[0], 0],
- [0, 8]])
- class TestVectorialFunction(TestCase):
- def test_finite_difference_jac(self):
- ex = ExVectorialFunction()
- nfev = 0
- njev = 0
- x0 = [1.0, 0.0]
- analit = VectorFunction(ex.fun, x0, ex.jac, ex.hess, None, None,
- (-np.inf, np.inf), None)
- nfev += 1
- njev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev, njev)
- approx = VectorFunction(ex.fun, x0, '2-point', ex.hess, None, None,
- (-np.inf, np.inf), None)
- nfev += 3
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(analit.f, approx.f)
- assert_array_almost_equal(analit.J, approx.J)
- x = [10, 0.3]
- f_analit = analit.fun(x)
- J_analit = analit.jac(x)
- nfev += 1
- njev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- f_approx = approx.fun(x)
- J_approx = approx.jac(x)
- nfev += 3
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_almost_equal(f_analit, f_approx)
- assert_array_almost_equal(J_analit, J_approx, decimal=4)
- x = [2.0, 1.0]
- J_analit = analit.jac(x)
- njev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- J_approx = approx.jac(x)
- nfev += 3
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_almost_equal(J_analit, J_approx)
- x = [2.5, 0.3]
- f_analit = analit.fun(x)
- J_analit = analit.jac(x)
- nfev += 1
- njev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- f_approx = approx.fun(x)
- J_approx = approx.jac(x)
- nfev += 3
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_almost_equal(f_analit, f_approx)
- assert_array_almost_equal(J_analit, J_approx)
- x = [2, 0.3]
- f_analit = analit.fun(x)
- J_analit = analit.jac(x)
- nfev += 1
- njev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- f_approx = approx.fun(x)
- J_approx = approx.jac(x)
- nfev += 3
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_almost_equal(f_analit, f_approx)
- assert_array_almost_equal(J_analit, J_approx)
- def test_finite_difference_hess_linear_operator(self):
- ex = ExVectorialFunction()
- nfev = 0
- njev = 0
- nhev = 0
- x0 = [1.0, 0.0]
- v0 = [1.0, 2.0]
- analit = VectorFunction(ex.fun, x0, ex.jac, ex.hess, None, None,
- (-np.inf, np.inf), None)
- nfev += 1
- njev += 1
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev, nhev)
- approx = VectorFunction(ex.fun, x0, ex.jac, '2-point', None, None,
- (-np.inf, np.inf), None)
- assert_(isinstance(approx.H, LinearOperator))
- for p in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_equal(analit.f, approx.f)
- assert_array_almost_equal(analit.J, approx.J)
- assert_array_almost_equal(analit.H.dot(p), approx.H.dot(p))
- nfev += 1
- njev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [2.0, 1.0]
- H_analit = analit.hess(x, v0)
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- H_approx = approx.hess(x, v0)
- assert_(isinstance(H_approx, LinearOperator))
- for p in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(p), H_approx.dot(p),
- decimal=5)
- njev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [2.1, 1.2]
- v = [1.0, 1.0]
- H_analit = analit.hess(x, v)
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- H_approx = approx.hess(x, v)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v))
- njev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [2.5, 0.3]
- _ = analit.jac(x)
- H_analit = analit.hess(x, v0)
- njev += 1
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- _ = approx.jac(x)
- H_approx = approx.hess(x, v0)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v), decimal=4)
- njev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- x = [5.2, 2.3]
- v = [2.3, 5.2]
- _ = analit.jac(x)
- H_analit = analit.hess(x, v)
- njev += 1
- nhev += 1
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- _ = approx.jac(x)
- H_approx = approx.hess(x, v)
- assert_(isinstance(H_approx, LinearOperator))
- for v in ([1.0, 2.0], [3.0, 4.0], [5.0, 2.0]):
- assert_array_almost_equal(H_analit.dot(v), H_approx.dot(v), decimal=4)
- njev += 4
- assert_array_equal(ex.nfev, nfev)
- assert_array_equal(analit.nfev+approx.nfev, nfev)
- assert_array_equal(ex.njev, njev)
- assert_array_equal(analit.njev+approx.njev, njev)
- assert_array_equal(ex.nhev, nhev)
- assert_array_equal(analit.nhev+approx.nhev, nhev)
- def test_x_storage_overlap(self):
- # VectorFunction should not store references to arrays, it should
- # store copies - this checks that updating an array in-place causes
- # Scalar_Function.x to be updated.
- ex = ExVectorialFunction()
- x0 = np.array([1.0, 0.0])
- vf = VectorFunction(ex.fun, x0, '3-point', ex.hess, None, None,
- (-np.inf, np.inf), None)
- assert x0 is not vf.x
- assert_equal(vf.fun(x0), ex.fun(x0))
- assert x0 is not vf.x
- x0[0] = 2.
- assert_equal(vf.fun(x0), ex.fun(x0))
- assert x0 is not vf.x
- x0[0] = 1.
- assert_equal(vf.fun(x0), ex.fun(x0))
- assert x0 is not vf.x
- # now test with a HessianUpdate strategy specified
- hess = BFGS()
- x0 = np.array([1.0, 0.0])
- vf = VectorFunction(ex.fun, x0, '3-point', hess, None, None,
- (-np.inf, np.inf), None)
- with pytest.warns(UserWarning):
- # filter UserWarning because ExVectorialFunction is linear and
- # a quasi-Newton approximation is used for the Hessian.
- assert x0 is not vf.x
- assert_equal(vf.fun(x0), ex.fun(x0))
- assert x0 is not vf.x
- x0[0] = 2.
- assert_equal(vf.fun(x0), ex.fun(x0))
- assert x0 is not vf.x
- x0[0] = 1.
- assert_equal(vf.fun(x0), ex.fun(x0))
- assert x0 is not vf.x
- def test_LinearVectorFunction():
- A_dense = np.array([
- [-1, 2, 0],
- [0, 4, 2]
- ])
- x0 = np.zeros(3)
- A_sparse = csr_matrix(A_dense)
- x = np.array([1, -1, 0])
- v = np.array([-1, 1])
- Ax = np.array([-3, -4])
- f1 = LinearVectorFunction(A_dense, x0, None)
- assert_(not f1.sparse_jacobian)
- f2 = LinearVectorFunction(A_dense, x0, True)
- assert_(f2.sparse_jacobian)
- f3 = LinearVectorFunction(A_dense, x0, False)
- assert_(not f3.sparse_jacobian)
- f4 = LinearVectorFunction(A_sparse, x0, None)
- assert_(f4.sparse_jacobian)
- f5 = LinearVectorFunction(A_sparse, x0, True)
- assert_(f5.sparse_jacobian)
- f6 = LinearVectorFunction(A_sparse, x0, False)
- assert_(not f6.sparse_jacobian)
- assert_array_equal(f1.fun(x), Ax)
- assert_array_equal(f2.fun(x), Ax)
- assert_array_equal(f1.jac(x), A_dense)
- assert_array_equal(f2.jac(x).toarray(), A_sparse.toarray())
- assert_array_equal(f1.hess(x, v).toarray(), np.zeros((3, 3)))
- def test_LinearVectorFunction_memoization():
- A = np.array([[-1, 2, 0], [0, 4, 2]])
- x0 = np.array([1, 2, -1])
- fun = LinearVectorFunction(A, x0, False)
- assert_array_equal(x0, fun.x)
- assert_array_equal(A.dot(x0), fun.f)
- x1 = np.array([-1, 3, 10])
- assert_array_equal(A, fun.jac(x1))
- assert_array_equal(x1, fun.x)
- assert_array_equal(A.dot(x0), fun.f)
- assert_array_equal(A.dot(x1), fun.fun(x1))
- assert_array_equal(A.dot(x1), fun.f)
- def test_IdentityVectorFunction():
- x0 = np.zeros(3)
- f1 = IdentityVectorFunction(x0, None)
- f2 = IdentityVectorFunction(x0, False)
- f3 = IdentityVectorFunction(x0, True)
- assert_(f1.sparse_jacobian)
- assert_(not f2.sparse_jacobian)
- assert_(f3.sparse_jacobian)
- x = np.array([-1, 2, 1])
- v = np.array([-2, 3, 0])
- assert_array_equal(f1.fun(x), x)
- assert_array_equal(f2.fun(x), x)
- assert_array_equal(f1.jac(x).toarray(), np.eye(3))
- assert_array_equal(f2.jac(x), np.eye(3))
- assert_array_equal(f1.hess(x, v).toarray(), np.zeros((3, 3)))
|