| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 | """Unit test for constraint conversion"""import numpy as npfrom numpy.testing import (assert_array_almost_equal,                           assert_allclose, assert_warns, suppress_warnings)import pytestfrom scipy.optimize import (NonlinearConstraint, LinearConstraint,                            OptimizeWarning, minimize, BFGS)from .test_minimize_constrained import (Maratos, HyperbolicIneq, Rosenbrock,                                        IneqRosenbrock, EqIneqRosenbrock,                                        BoundedRosenbrock, Elec)class TestOldToNew:    x0 = (2, 0)    bnds = ((0, None), (0, None))    method = "trust-constr"    def test_constraint_dictionary_1(self):        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2        cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},                {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},                {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})        with suppress_warnings() as sup:            sup.filter(UserWarning, "delta_grad == 0.0")            res = minimize(fun, self.x0, method=self.method,                           bounds=self.bnds, constraints=cons)        assert_allclose(res.x, [1.4, 1.7], rtol=1e-4)        assert_allclose(res.fun, 0.8, rtol=1e-4)    def test_constraint_dictionary_2(self):        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2        cons = {'type': 'eq',                'fun': lambda x, p1, p2: p1*x[0] - p2*x[1],                'args': (1, 1.1),                'jac': lambda x, p1, p2: np.array([[p1, -p2]])}        with suppress_warnings() as sup:            sup.filter(UserWarning, "delta_grad == 0.0")            res = minimize(fun, self.x0, method=self.method,                           bounds=self.bnds, constraints=cons)        assert_allclose(res.x, [1.7918552, 1.62895927])        assert_allclose(res.fun, 1.3857466063348418)    def test_constraint_dictionary_3(self):        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2        cons = [{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},                NonlinearConstraint(lambda x: x[0] - x[1], 0, 0)]        with suppress_warnings() as sup:            sup.filter(UserWarning, "delta_grad == 0.0")            res = minimize(fun, self.x0, method=self.method,                           bounds=self.bnds, constraints=cons)        assert_allclose(res.x, [1.75, 1.75], rtol=1e-4)        assert_allclose(res.fun, 1.125, rtol=1e-4)class TestNewToOld:    def test_multiple_constraint_objects(self):        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2        x0 = [2, 0, 1]        coni = []  # only inequality constraints (can use cobyla)        methods = ["slsqp", "cobyla", "trust-constr"]        # mixed old and new        coni.append([{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},                     NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])        coni.append([LinearConstraint([1, -2, 0], -2, np.inf),                     NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])        coni.append([NonlinearConstraint(lambda x: x[0] - 2 * x[1] + 2, 0, np.inf),                     NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])        for con in coni:            funs = {}            for method in methods:                with suppress_warnings() as sup:                    sup.filter(UserWarning)                    result = minimize(fun, x0, method=method, constraints=con)                    funs[method] = result.fun            assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-4)            assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-4)    def test_individual_constraint_objects(self):        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2        x0 = [2, 0, 1]        cone = []  # with equality constraints (can't use cobyla)        coni = []  # only inequality constraints (can use cobyla)        methods = ["slsqp", "cobyla", "trust-constr"]        # nonstandard data types for constraint equality bounds        cone.append(NonlinearConstraint(lambda x: x[0] - x[1], 1, 1))        cone.append(NonlinearConstraint(lambda x: x[0] - x[1], [1.21], [1.21]))        cone.append(NonlinearConstraint(lambda x: x[0] - x[1],                                        1.21, np.array([1.21])))        # multiple equalities        cone.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    1.21, 1.21))  # two same equalities        cone.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    [1.21, 1.4], [1.21, 1.4]))  # two different equalities        cone.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    [1.21, 1.21], 1.21))  # equality specified two ways        cone.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    [1.21, -np.inf], [1.21, np.inf]))  # equality + unbounded        # nonstandard data types for constraint inequality bounds        coni.append(NonlinearConstraint(lambda x: x[0] - x[1], 1.21, np.inf))        coni.append(NonlinearConstraint(lambda x: x[0] - x[1], [1.21], np.inf))        coni.append(NonlinearConstraint(lambda x: x[0] - x[1],                                        1.21, np.array([np.inf])))        coni.append(NonlinearConstraint(lambda x: x[0] - x[1], -np.inf, -3))        coni.append(NonlinearConstraint(lambda x: x[0] - x[1],                                        np.array(-np.inf), -3))        # multiple inequalities/equalities        coni.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    1.21, np.inf))  # two same inequalities        cone.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    [1.21, -np.inf], [1.21, 1.4]))  # mixed equality/inequality        coni.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    [1.1, .8], [1.2, 1.4]))  # bounded above and below        coni.append(NonlinearConstraint(                    lambda x: [x[0] - x[1], x[1] - x[2]],                    [-1.2, -1.4], [-1.1, -.8]))  # - bounded above and below        # quick check of LinearConstraint class (very little new code to test)        cone.append(LinearConstraint([1, -1, 0], 1.21, 1.21))        cone.append(LinearConstraint([[1, -1, 0], [0, 1, -1]], 1.21, 1.21))        cone.append(LinearConstraint([[1, -1, 0], [0, 1, -1]],                                     [1.21, -np.inf], [1.21, 1.4]))        for con in coni:            funs = {}            for method in methods:                with suppress_warnings() as sup:                    sup.filter(UserWarning)                    result = minimize(fun, x0, method=method, constraints=con)                    funs[method] = result.fun            assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-3)            assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-3)        for con in cone:            funs = {}            for method in methods[::2]:  # skip cobyla                with suppress_warnings() as sup:                    sup.filter(UserWarning)                    result = minimize(fun, x0, method=method, constraints=con)                    funs[method] = result.fun            assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-3)class TestNewToOldSLSQP:    method = 'slsqp'    elec = Elec(n_electrons=2)    elec.x_opt = np.array([-0.58438468, 0.58438466, 0.73597047,                           -0.73597044, 0.34180668, -0.34180667])    brock = BoundedRosenbrock()    brock.x_opt = [0, 0]    list_of_problems = [Maratos(),                        HyperbolicIneq(),                        Rosenbrock(),                        IneqRosenbrock(),                        EqIneqRosenbrock(),                        elec,                        brock                        ]    def test_list_of_problems(self):        for prob in self.list_of_problems:            with suppress_warnings() as sup:                sup.filter(UserWarning)                result = minimize(prob.fun, prob.x0,                                  method=self.method,                                  bounds=prob.bounds,                                  constraints=prob.constr)            assert_array_almost_equal(result.x, prob.x_opt, decimal=3)    def test_warn_mixed_constraints(self):        # warns about inefficiency of mixed equality/inequality constraints        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2        cons = NonlinearConstraint(lambda x: [x[0]**2 - x[1], x[1] - x[2]],                                   [1.1, .8], [1.1, 1.4])        bnds = ((0, None), (0, None), (0, None))        with suppress_warnings() as sup:            sup.filter(UserWarning, "delta_grad == 0.0")            assert_warns(OptimizeWarning, minimize, fun, (2, 0, 1),                         method=self.method, bounds=bnds, constraints=cons)    def test_warn_ignored_options(self):        # warns about constraint options being ignored        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2        x0 = (2, 0, 1)        if self.method == "slsqp":            bnds = ((0, None), (0, None), (0, None))        else:            bnds = None        cons = NonlinearConstraint(lambda x: x[0], 2, np.inf)        res = minimize(fun, x0, method=self.method,                       bounds=bnds, constraints=cons)        # no warnings without constraint options        assert_allclose(res.fun, 1)        cons = LinearConstraint([1, 0, 0], 2, np.inf)        res = minimize(fun, x0, method=self.method,                       bounds=bnds, constraints=cons)        # no warnings without constraint options        assert_allclose(res.fun, 1)        cons = []        cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,                                        keep_feasible=True))        cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,                                        hess=BFGS()))        cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,                                        finite_diff_jac_sparsity=42))        cons.append(NonlinearConstraint(lambda x: x[0]**2, 2, np.inf,                                        finite_diff_rel_step=42))        cons.append(LinearConstraint([1, 0, 0], 2, np.inf,                                     keep_feasible=True))        for con in cons:            assert_warns(OptimizeWarning, minimize, fun, x0,                         method=self.method, bounds=bnds, constraints=cons)class TestNewToOldCobyla:    method = 'cobyla'    list_of_problems = [                        Elec(n_electrons=2),                        Elec(n_electrons=4),                        ]    @pytest.mark.slow    def test_list_of_problems(self):        for prob in self.list_of_problems:            with suppress_warnings() as sup:                sup.filter(UserWarning)                truth = minimize(prob.fun, prob.x0,                                 method='trust-constr',                                 bounds=prob.bounds,                                 constraints=prob.constr)                result = minimize(prob.fun, prob.x0,                                  method=self.method,                                  bounds=prob.bounds,                                  constraints=prob.constr)            assert_allclose(result.fun, truth.fun, rtol=1e-3)
 |