123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- import math
- import numpy as np
- import pytest
- from numpy.testing import assert_allclose, assert_, assert_array_equal
- from scipy.optimize import fmin_cobyla, minimize
- class TestCobyla:
- def setup_method(self):
- self.x0 = [4.95, 0.66]
- self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3]
- self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5,
- 'maxiter': 100}
- def fun(self, x):
- return x[0]**2 + abs(x[1])**3
- def con1(self, x):
- return x[0]**2 + x[1]**2 - 25
- def con2(self, x):
- return -self.con1(x)
- def test_simple(self):
- # use disp=True as smoke test for gh-8118
- x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
- rhoend=1e-5, maxfun=100, disp=True)
- assert_allclose(x, self.solution, atol=1e-4)
- def test_minimize_simple(self):
- class Callback:
- def __init__(self):
- self.n_calls = 0
- self.last_x = None
- def __call__(self, x):
- self.n_calls += 1
- self.last_x = x
- callback = Callback()
- # Minimize with method='COBYLA'
- cons = ({'type': 'ineq', 'fun': self.con1},
- {'type': 'ineq', 'fun': self.con2})
- sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons,
- callback=callback, options=self.opts)
- assert_allclose(sol.x, self.solution, atol=1e-4)
- assert_(sol.success, sol.message)
- assert_(sol.maxcv < 1e-5, sol)
- assert_(sol.nfev < 70, sol)
- assert_(sol.fun < self.fun(self.solution) + 1e-3, sol)
- assert_(sol.nfev == callback.n_calls,
- "Callback is not called exactly once for every function eval.")
- assert_array_equal(sol.x, callback.last_x,
- "Last design vector sent to the callback is not equal to returned value.")
- def test_minimize_constraint_violation(self):
- np.random.seed(1234)
- pb = np.random.rand(10, 10)
- spread = np.random.rand(10)
- def p(w):
- return pb.dot(w)
- def f(w):
- return -(w * spread).sum()
- def c1(w):
- return 500 - abs(p(w)).sum()
- def c2(w):
- return 5 - abs(p(w).sum())
- def c3(w):
- return 5 - abs(p(w)).max()
- cons = ({'type': 'ineq', 'fun': c1},
- {'type': 'ineq', 'fun': c2},
- {'type': 'ineq', 'fun': c3})
- w0 = np.zeros((10, 1))
- message = 'Use of `minimize` with `x0.ndim != 1` is deprecated.'
- with pytest.warns(DeprecationWarning, match=message):
- sol = minimize(f, w0, method='cobyla', constraints=cons,
- options={'catol': 1e-6})
- assert_(sol.maxcv > 1e-6)
- assert_(not sol.success)
- def test_vector_constraints():
- # test that fmin_cobyla and minimize can take a combination
- # of constraints, some returning a number and others an array
- def fun(x):
- return (x[0] - 1)**2 + (x[1] - 2.5)**2
- def fmin(x):
- return fun(x) - 1
- def cons1(x):
- a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]])
- return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] +
- a[i, 2] for i in range(len(a))])
- def cons2(x):
- return x # identity, acts as bounds x > 0
- x0 = np.array([2, 0])
- cons_list = [fun, cons1, cons2]
- xsol = [1.4, 1.7]
- fsol = 0.8
- # testing fmin_cobyla
- sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5)
- assert_allclose(sol, xsol, atol=1e-4)
- sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5)
- assert_allclose(fun(sol), 1, atol=1e-4)
- # testing minimize
- constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list]
- sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
- assert_allclose(sol.x, xsol, atol=1e-4)
- assert_(sol.success, sol.message)
- assert_allclose(sol.fun, fsol, atol=1e-4)
- constraints = {'type': 'ineq', 'fun': fmin}
- sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
- assert_allclose(sol.fun, 1, atol=1e-4)
|