123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- """
- Unit test for Linear Programming via Simplex Algorithm.
- """
- import numpy as np
- from numpy.testing import assert_, assert_allclose, assert_equal
- from pytest import raises as assert_raises
- from scipy.optimize._linprog_util import _clean_inputs, _LPProblem
- from copy import deepcopy
- from datetime import date
- def test_aliasing():
- """
- Test for ensuring that no objects referred to by `lp` attributes,
- `c`, `A_ub`, `b_ub`, `A_eq`, `b_eq`, `bounds`, have been modified
- by `_clean_inputs` as a side effect.
- """
- lp = _LPProblem(
- c=1,
- A_ub=[[1]],
- b_ub=[1],
- A_eq=[[1]],
- b_eq=[1],
- bounds=(-np.inf, np.inf)
- )
- lp_copy = deepcopy(lp)
- _clean_inputs(lp)
- assert_(lp.c == lp_copy.c, "c modified by _clean_inputs")
- assert_(lp.A_ub == lp_copy.A_ub, "A_ub modified by _clean_inputs")
- assert_(lp.b_ub == lp_copy.b_ub, "b_ub modified by _clean_inputs")
- assert_(lp.A_eq == lp_copy.A_eq, "A_eq modified by _clean_inputs")
- assert_(lp.b_eq == lp_copy.b_eq, "b_eq modified by _clean_inputs")
- assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
- def test_aliasing2():
- """
- Similar purpose as `test_aliasing` above.
- """
- lp = _LPProblem(
- c=np.array([1, 1]),
- A_ub=np.array([[1, 1], [2, 2]]),
- b_ub=np.array([[1], [1]]),
- A_eq=np.array([[1, 1]]),
- b_eq=np.array([1]),
- bounds=[(-np.inf, np.inf), (None, 1)]
- )
- lp_copy = deepcopy(lp)
- _clean_inputs(lp)
- assert_allclose(lp.c, lp_copy.c, err_msg="c modified by _clean_inputs")
- assert_allclose(lp.A_ub, lp_copy.A_ub, err_msg="A_ub modified by _clean_inputs")
- assert_allclose(lp.b_ub, lp_copy.b_ub, err_msg="b_ub modified by _clean_inputs")
- assert_allclose(lp.A_eq, lp_copy.A_eq, err_msg="A_eq modified by _clean_inputs")
- assert_allclose(lp.b_eq, lp_copy.b_eq, err_msg="b_eq modified by _clean_inputs")
- assert_(lp.bounds == lp_copy.bounds, "bounds modified by _clean_inputs")
- def test_missing_inputs():
- c = [1, 2]
- A_ub = np.array([[1, 1], [2, 2]])
- b_ub = np.array([1, 1])
- A_eq = np.array([[1, 1], [2, 2]])
- b_eq = np.array([1, 1])
- assert_raises(TypeError, _clean_inputs)
- assert_raises(TypeError, _clean_inputs, _LPProblem(c=None))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=A_ub, b_ub=None))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_ub=b_ub))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=None, b_ub=b_ub))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=A_eq, b_eq=None))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, b_eq=b_eq))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=None, b_eq=b_eq))
- def test_too_many_dimensions():
- cb = [1, 2, 3, 4]
- A = np.random.rand(4, 4)
- bad2D = [[1, 2], [3, 4]]
- bad3D = np.random.rand(4, 4, 4)
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=bad2D, A_ub=A, b_ub=cb))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad3D, b_ub=cb))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=A, b_ub=bad2D))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad3D, b_eq=cb))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=A, b_eq=bad2D))
- def test_too_few_dimensions():
- bad = np.random.rand(4, 4).ravel()
- cb = np.random.rand(4)
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_ub=bad, b_ub=cb))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=cb, A_eq=bad, b_eq=cb))
- def test_inconsistent_dimensions():
- m = 2
- n = 4
- c = [1, 2, 3, 4]
- Agood = np.random.rand(m, n)
- Abad = np.random.rand(m, n + 1)
- bgood = np.random.rand(m)
- bbad = np.random.rand(m + 1)
- boundsbad = [(0, 1)] * (n + 1)
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Abad, b_ub=bgood))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_ub=Agood, b_ub=bbad))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Abad, b_eq=bgood))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, A_eq=Agood, b_eq=bbad))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, bounds=boundsbad))
- assert_raises(ValueError, _clean_inputs, _LPProblem(c=c, bounds=[[1, 2], [2, 3], [3, 4], [4, 5, 6]]))
- def test_type_errors():
- lp = _LPProblem(
- c=[1, 2],
- A_ub=np.array([[1, 1], [2, 2]]),
- b_ub=np.array([1, 1]),
- A_eq=np.array([[1, 1], [2, 2]]),
- b_eq=np.array([1, 1]),
- bounds=[(0, 1)]
- )
- bad = "hello"
- assert_raises(TypeError, _clean_inputs, lp._replace(c=bad))
- assert_raises(TypeError, _clean_inputs, lp._replace(A_ub=bad))
- assert_raises(TypeError, _clean_inputs, lp._replace(b_ub=bad))
- assert_raises(TypeError, _clean_inputs, lp._replace(A_eq=bad))
- assert_raises(TypeError, _clean_inputs, lp._replace(b_eq=bad))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=bad))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds="hi"))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=["hi"]))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[("hi")]))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, "")]))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2), (1, "")]))
- assert_raises(TypeError, _clean_inputs, lp._replace(bounds=[(1, date(2020, 2, 29))]))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[[[1, 2]]]))
- def test_non_finite_errors():
- lp = _LPProblem(
- c=[1, 2],
- A_ub=np.array([[1, 1], [2, 2]]),
- b_ub=np.array([1, 1]),
- A_eq=np.array([[1, 1], [2, 2]]),
- b_eq=np.array([1, 1]),
- bounds=[(0, 1)]
- )
- assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, None]))
- assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.inf, 0]))
- assert_raises(ValueError, _clean_inputs, lp._replace(c=[0, -np.inf]))
- assert_raises(ValueError, _clean_inputs, lp._replace(c=[np.nan, 0]))
- assert_raises(ValueError, _clean_inputs, lp._replace(A_ub=[[1, 2], [None, 1]]))
- assert_raises(ValueError, _clean_inputs, lp._replace(b_ub=[np.inf, 1]))
- assert_raises(ValueError, _clean_inputs, lp._replace(A_eq=[[1, 2], [1, -np.inf]]))
- assert_raises(ValueError, _clean_inputs, lp._replace(b_eq=[1, np.nan]))
- def test__clean_inputs1():
- lp = _LPProblem(
- c=[1, 2],
- A_ub=[[1, 1], [2, 2]],
- b_ub=[1, 1],
- A_eq=[[1, 1], [2, 2]],
- b_eq=[1, 1],
- bounds=None
- )
- lp_cleaned = _clean_inputs(lp)
- assert_allclose(lp_cleaned.c, np.array(lp.c))
- assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
- assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
- assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
- assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
- assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
- assert_(lp_cleaned.c.shape == (2,), "")
- assert_(lp_cleaned.A_ub.shape == (2, 2), "")
- assert_(lp_cleaned.b_ub.shape == (2,), "")
- assert_(lp_cleaned.A_eq.shape == (2, 2), "")
- assert_(lp_cleaned.b_eq.shape == (2,), "")
- def test__clean_inputs2():
- lp = _LPProblem(
- c=1,
- A_ub=[[1]],
- b_ub=1,
- A_eq=[[1]],
- b_eq=1,
- bounds=(0, 1)
- )
- lp_cleaned = _clean_inputs(lp)
- assert_allclose(lp_cleaned.c, np.array(lp.c))
- assert_allclose(lp_cleaned.A_ub, np.array(lp.A_ub))
- assert_allclose(lp_cleaned.b_ub, np.array(lp.b_ub))
- assert_allclose(lp_cleaned.A_eq, np.array(lp.A_eq))
- assert_allclose(lp_cleaned.b_eq, np.array(lp.b_eq))
- assert_equal(lp_cleaned.bounds, [(0, 1)])
- assert_(lp_cleaned.c.shape == (1,), "")
- assert_(lp_cleaned.A_ub.shape == (1, 1), "")
- assert_(lp_cleaned.b_ub.shape == (1,), "")
- assert_(lp_cleaned.A_eq.shape == (1, 1), "")
- assert_(lp_cleaned.b_eq.shape == (1,), "")
- def test__clean_inputs3():
- lp = _LPProblem(
- c=[[1, 2]],
- A_ub=np.random.rand(2, 2),
- b_ub=[[1], [2]],
- A_eq=np.random.rand(2, 2),
- b_eq=[[1], [2]],
- bounds=[(0, 1)]
- )
- lp_cleaned = _clean_inputs(lp)
- assert_allclose(lp_cleaned.c, np.array([1, 2]))
- assert_allclose(lp_cleaned.b_ub, np.array([1, 2]))
- assert_allclose(lp_cleaned.b_eq, np.array([1, 2]))
- assert_equal(lp_cleaned.bounds, [(0, 1)] * 2)
- assert_(lp_cleaned.c.shape == (2,), "")
- assert_(lp_cleaned.b_ub.shape == (2,), "")
- assert_(lp_cleaned.b_eq.shape == (2,), "")
- def test_bad_bounds():
- lp = _LPProblem(c=[1, 2])
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=(1, 2, 2)))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2, 2)]))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2), (1, 2, 2)]))
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2), (1, 2), (1, 2)]))
- lp = _LPProblem(c=[1, 2, 3, 4])
- assert_raises(ValueError, _clean_inputs, lp._replace(bounds=[(1, 2, 3, 4), (1, 2, 3, 4)]))
- def test_good_bounds():
- lp = _LPProblem(c=[1, 2])
- lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
- assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[]))
- assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[[]]))
- assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
- assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
- assert_equal(lp_cleaned.bounds, [(1, 2)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
- assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
- assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 2)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None), (-np.inf, None)]))
- assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 2)
- lp = _LPProblem(c=[1, 2, 3, 4])
- lp_cleaned = _clean_inputs(lp) # lp.bounds is None by default
- assert_equal(lp_cleaned.bounds, [(0, np.inf)] * 4)
- lp_cleaned = _clean_inputs(lp._replace(bounds=(1, 2)))
- assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, 2)]))
- assert_equal(lp_cleaned.bounds, [(1, 2)] * 4)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(1, None)]))
- assert_equal(lp_cleaned.bounds, [(1, np.inf)] * 4)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, 1)]))
- assert_equal(lp_cleaned.bounds, [(-np.inf, 1)] * 4)
- lp_cleaned = _clean_inputs(lp._replace(bounds=[(None, None), (-np.inf, None), (None, np.inf), (-np.inf, np.inf)]))
- assert_equal(lp_cleaned.bounds, [(-np.inf, np.inf)] * 4)
|