test_odr.py 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. import tempfile
  2. import shutil
  3. import os
  4. import numpy as np
  5. from numpy import pi
  6. from numpy.testing import (assert_array_almost_equal,
  7. assert_equal, assert_warns)
  8. import pytest
  9. from pytest import raises as assert_raises
  10. from scipy.odr import (Data, Model, ODR, RealData, OdrStop, OdrWarning,
  11. multilinear, exponential, unilinear, quadratic,
  12. polynomial)
  13. class TestODR:
  14. # Bad Data for 'x'
  15. def test_bad_data(self):
  16. assert_raises(ValueError, Data, 2, 1)
  17. assert_raises(ValueError, RealData, 2, 1)
  18. # Empty Data for 'x'
  19. def empty_data_func(self, B, x):
  20. return B[0]*x + B[1]
  21. def test_empty_data(self):
  22. beta0 = [0.02, 0.0]
  23. linear = Model(self.empty_data_func)
  24. empty_dat = Data([], [])
  25. assert_warns(OdrWarning, ODR,
  26. empty_dat, linear, beta0=beta0)
  27. empty_dat = RealData([], [])
  28. assert_warns(OdrWarning, ODR,
  29. empty_dat, linear, beta0=beta0)
  30. # Explicit Example
  31. def explicit_fcn(self, B, x):
  32. ret = B[0] + B[1] * np.power(np.exp(B[2]*x) - 1.0, 2)
  33. return ret
  34. def explicit_fjd(self, B, x):
  35. eBx = np.exp(B[2]*x)
  36. ret = B[1] * 2.0 * (eBx-1.0) * B[2] * eBx
  37. return ret
  38. def explicit_fjb(self, B, x):
  39. eBx = np.exp(B[2]*x)
  40. res = np.vstack([np.ones(x.shape[-1]),
  41. np.power(eBx-1.0, 2),
  42. B[1]*2.0*(eBx-1.0)*eBx*x])
  43. return res
  44. def test_explicit(self):
  45. explicit_mod = Model(
  46. self.explicit_fcn,
  47. fjacb=self.explicit_fjb,
  48. fjacd=self.explicit_fjd,
  49. meta=dict(name='Sample Explicit Model',
  50. ref='ODRPACK UG, pg. 39'),
  51. )
  52. explicit_dat = Data([0.,0.,5.,7.,7.5,10.,16.,26.,30.,34.,34.5,100.],
  53. [1265.,1263.6,1258.,1254.,1253.,1249.8,1237.,1218.,1220.6,
  54. 1213.8,1215.5,1212.])
  55. explicit_odr = ODR(explicit_dat, explicit_mod, beta0=[1500.0, -50.0, -0.1],
  56. ifixx=[0,0,1,1,1,1,1,1,1,1,1,0])
  57. explicit_odr.set_job(deriv=2)
  58. explicit_odr.set_iprint(init=0, iter=0, final=0)
  59. out = explicit_odr.run()
  60. assert_array_almost_equal(
  61. out.beta,
  62. np.array([1.2646548050648876e+03, -5.4018409956678255e+01,
  63. -8.7849712165253724e-02]),
  64. )
  65. assert_array_almost_equal(
  66. out.sd_beta,
  67. np.array([1.0349270280543437, 1.583997785262061, 0.0063321988657267]),
  68. )
  69. assert_array_almost_equal(
  70. out.cov_beta,
  71. np.array([[4.4949592379003039e-01, -3.7421976890364739e-01,
  72. -8.0978217468468912e-04],
  73. [-3.7421976890364739e-01, 1.0529686462751804e+00,
  74. -1.9453521827942002e-03],
  75. [-8.0978217468468912e-04, -1.9453521827942002e-03,
  76. 1.6827336938454476e-05]]),
  77. )
  78. # Implicit Example
  79. def implicit_fcn(self, B, x):
  80. return (B[2]*np.power(x[0]-B[0], 2) +
  81. 2.0*B[3]*(x[0]-B[0])*(x[1]-B[1]) +
  82. B[4]*np.power(x[1]-B[1], 2) - 1.0)
  83. def test_implicit(self):
  84. implicit_mod = Model(
  85. self.implicit_fcn,
  86. implicit=1,
  87. meta=dict(name='Sample Implicit Model',
  88. ref='ODRPACK UG, pg. 49'),
  89. )
  90. implicit_dat = Data([
  91. [0.5,1.2,1.6,1.86,2.12,2.36,2.44,2.36,2.06,1.74,1.34,0.9,-0.28,
  92. -0.78,-1.36,-1.9,-2.5,-2.88,-3.18,-3.44],
  93. [-0.12,-0.6,-1.,-1.4,-2.54,-3.36,-4.,-4.75,-5.25,-5.64,-5.97,-6.32,
  94. -6.44,-6.44,-6.41,-6.25,-5.88,-5.5,-5.24,-4.86]],
  95. 1,
  96. )
  97. implicit_odr = ODR(implicit_dat, implicit_mod,
  98. beta0=[-1.0, -3.0, 0.09, 0.02, 0.08])
  99. out = implicit_odr.run()
  100. assert_array_almost_equal(
  101. out.beta,
  102. np.array([-0.9993809167281279, -2.9310484652026476, 0.0875730502693354,
  103. 0.0162299708984738, 0.0797537982976416]),
  104. )
  105. assert_array_almost_equal(
  106. out.sd_beta,
  107. np.array([0.1113840353364371, 0.1097673310686467, 0.0041060738314314,
  108. 0.0027500347539902, 0.0034962501532468]),
  109. )
  110. assert_array_almost_equal(
  111. out.cov_beta,
  112. np.array([[2.1089274602333052e+00, -1.9437686411979040e+00,
  113. 7.0263550868344446e-02, -4.7175267373474862e-02,
  114. 5.2515575927380355e-02],
  115. [-1.9437686411979040e+00, 2.0481509222414456e+00,
  116. -6.1600515853057307e-02, 4.6268827806232933e-02,
  117. -5.8822307501391467e-02],
  118. [7.0263550868344446e-02, -6.1600515853057307e-02,
  119. 2.8659542561579308e-03, -1.4628662260014491e-03,
  120. 1.4528860663055824e-03],
  121. [-4.7175267373474862e-02, 4.6268827806232933e-02,
  122. -1.4628662260014491e-03, 1.2855592885514335e-03,
  123. -1.2692942951415293e-03],
  124. [5.2515575927380355e-02, -5.8822307501391467e-02,
  125. 1.4528860663055824e-03, -1.2692942951415293e-03,
  126. 2.0778813389755596e-03]]),
  127. )
  128. # Multi-variable Example
  129. def multi_fcn(self, B, x):
  130. if (x < 0.0).any():
  131. raise OdrStop
  132. theta = pi*B[3]/2.
  133. ctheta = np.cos(theta)
  134. stheta = np.sin(theta)
  135. omega = np.power(2.*pi*x*np.exp(-B[2]), B[3])
  136. phi = np.arctan2((omega*stheta), (1.0 + omega*ctheta))
  137. r = (B[0] - B[1]) * np.power(np.sqrt(np.power(1.0 + omega*ctheta, 2) +
  138. np.power(omega*stheta, 2)), -B[4])
  139. ret = np.vstack([B[1] + r*np.cos(B[4]*phi),
  140. r*np.sin(B[4]*phi)])
  141. return ret
  142. def test_multi(self):
  143. multi_mod = Model(
  144. self.multi_fcn,
  145. meta=dict(name='Sample Multi-Response Model',
  146. ref='ODRPACK UG, pg. 56'),
  147. )
  148. multi_x = np.array([30.0, 50.0, 70.0, 100.0, 150.0, 200.0, 300.0, 500.0,
  149. 700.0, 1000.0, 1500.0, 2000.0, 3000.0, 5000.0, 7000.0, 10000.0,
  150. 15000.0, 20000.0, 30000.0, 50000.0, 70000.0, 100000.0, 150000.0])
  151. multi_y = np.array([
  152. [4.22, 4.167, 4.132, 4.038, 4.019, 3.956, 3.884, 3.784, 3.713,
  153. 3.633, 3.54, 3.433, 3.358, 3.258, 3.193, 3.128, 3.059, 2.984,
  154. 2.934, 2.876, 2.838, 2.798, 2.759],
  155. [0.136, 0.167, 0.188, 0.212, 0.236, 0.257, 0.276, 0.297, 0.309,
  156. 0.311, 0.314, 0.311, 0.305, 0.289, 0.277, 0.255, 0.24, 0.218,
  157. 0.202, 0.182, 0.168, 0.153, 0.139],
  158. ])
  159. n = len(multi_x)
  160. multi_we = np.zeros((2, 2, n), dtype=float)
  161. multi_ifixx = np.ones(n, dtype=int)
  162. multi_delta = np.zeros(n, dtype=float)
  163. multi_we[0,0,:] = 559.6
  164. multi_we[1,0,:] = multi_we[0,1,:] = -1634.0
  165. multi_we[1,1,:] = 8397.0
  166. for i in range(n):
  167. if multi_x[i] < 100.0:
  168. multi_ifixx[i] = 0
  169. elif multi_x[i] <= 150.0:
  170. pass # defaults are fine
  171. elif multi_x[i] <= 1000.0:
  172. multi_delta[i] = 25.0
  173. elif multi_x[i] <= 10000.0:
  174. multi_delta[i] = 560.0
  175. elif multi_x[i] <= 100000.0:
  176. multi_delta[i] = 9500.0
  177. else:
  178. multi_delta[i] = 144000.0
  179. if multi_x[i] == 100.0 or multi_x[i] == 150.0:
  180. multi_we[:,:,i] = 0.0
  181. multi_dat = Data(multi_x, multi_y, wd=1e-4/np.power(multi_x, 2),
  182. we=multi_we)
  183. multi_odr = ODR(multi_dat, multi_mod, beta0=[4.,2.,7.,.4,.5],
  184. delta0=multi_delta, ifixx=multi_ifixx)
  185. multi_odr.set_job(deriv=1, del_init=1)
  186. out = multi_odr.run()
  187. assert_array_almost_equal(
  188. out.beta,
  189. np.array([4.3799880305938963, 2.4333057577497703, 8.0028845899503978,
  190. 0.5101147161764654, 0.5173902330489161]),
  191. )
  192. assert_array_almost_equal(
  193. out.sd_beta,
  194. np.array([0.0130625231081944, 0.0130499785273277, 0.1167085962217757,
  195. 0.0132642749596149, 0.0288529201353984]),
  196. )
  197. assert_array_almost_equal(
  198. out.cov_beta,
  199. np.array([[0.0064918418231375, 0.0036159705923791, 0.0438637051470406,
  200. -0.0058700836512467, 0.011281212888768],
  201. [0.0036159705923791, 0.0064793789429006, 0.0517610978353126,
  202. -0.0051181304940204, 0.0130726943624117],
  203. [0.0438637051470406, 0.0517610978353126, 0.5182263323095322,
  204. -0.0563083340093696, 0.1269490939468611],
  205. [-0.0058700836512467, -0.0051181304940204, -0.0563083340093696,
  206. 0.0066939246261263, -0.0140184391377962],
  207. [0.011281212888768, 0.0130726943624117, 0.1269490939468611,
  208. -0.0140184391377962, 0.0316733013820852]]),
  209. )
  210. # Pearson's Data
  211. # K. Pearson, Philosophical Magazine, 2, 559 (1901)
  212. def pearson_fcn(self, B, x):
  213. return B[0] + B[1]*x
  214. def test_pearson(self):
  215. p_x = np.array([0.,.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4])
  216. p_y = np.array([5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5])
  217. p_sx = np.array([.03,.03,.04,.035,.07,.11,.13,.22,.74,1.])
  218. p_sy = np.array([1.,.74,.5,.35,.22,.22,.12,.12,.1,.04])
  219. p_dat = RealData(p_x, p_y, sx=p_sx, sy=p_sy)
  220. # Reverse the data to test invariance of results
  221. pr_dat = RealData(p_y, p_x, sx=p_sy, sy=p_sx)
  222. p_mod = Model(self.pearson_fcn, meta=dict(name='Uni-linear Fit'))
  223. p_odr = ODR(p_dat, p_mod, beta0=[1.,1.])
  224. pr_odr = ODR(pr_dat, p_mod, beta0=[1.,1.])
  225. out = p_odr.run()
  226. assert_array_almost_equal(
  227. out.beta,
  228. np.array([5.4767400299231674, -0.4796082367610305]),
  229. )
  230. assert_array_almost_equal(
  231. out.sd_beta,
  232. np.array([0.3590121690702467, 0.0706291186037444]),
  233. )
  234. assert_array_almost_equal(
  235. out.cov_beta,
  236. np.array([[0.0854275622946333, -0.0161807025443155],
  237. [-0.0161807025443155, 0.003306337993922]]),
  238. )
  239. rout = pr_odr.run()
  240. assert_array_almost_equal(
  241. rout.beta,
  242. np.array([11.4192022410781231, -2.0850374506165474]),
  243. )
  244. assert_array_almost_equal(
  245. rout.sd_beta,
  246. np.array([0.9820231665657161, 0.3070515616198911]),
  247. )
  248. assert_array_almost_equal(
  249. rout.cov_beta,
  250. np.array([[0.6391799462548782, -0.1955657291119177],
  251. [-0.1955657291119177, 0.0624888159223392]]),
  252. )
  253. # Lorentz Peak
  254. # The data is taken from one of the undergraduate physics labs I performed.
  255. def lorentz(self, beta, x):
  256. return (beta[0]*beta[1]*beta[2] / np.sqrt(np.power(x*x -
  257. beta[2]*beta[2], 2.0) + np.power(beta[1]*x, 2.0)))
  258. def test_lorentz(self):
  259. l_sy = np.array([.29]*18)
  260. l_sx = np.array([.000972971,.000948268,.000707632,.000706679,
  261. .000706074, .000703918,.000698955,.000456856,
  262. .000455207,.000662717,.000654619,.000652694,
  263. .000000859202,.00106589,.00106378,.00125483, .00140818,.00241839])
  264. l_dat = RealData(
  265. [3.9094, 3.85945, 3.84976, 3.84716, 3.84551, 3.83964, 3.82608,
  266. 3.78847, 3.78163, 3.72558, 3.70274, 3.6973, 3.67373, 3.65982,
  267. 3.6562, 3.62498, 3.55525, 3.41886],
  268. [652, 910.5, 984, 1000, 1007.5, 1053, 1160.5, 1409.5, 1430, 1122,
  269. 957.5, 920, 777.5, 709.5, 698, 578.5, 418.5, 275.5],
  270. sx=l_sx,
  271. sy=l_sy,
  272. )
  273. l_mod = Model(self.lorentz, meta=dict(name='Lorentz Peak'))
  274. l_odr = ODR(l_dat, l_mod, beta0=(1000., .1, 3.8))
  275. out = l_odr.run()
  276. assert_array_almost_equal(
  277. out.beta,
  278. np.array([1.4306780846149925e+03, 1.3390509034538309e-01,
  279. 3.7798193600109009e+00]),
  280. )
  281. assert_array_almost_equal(
  282. out.sd_beta,
  283. np.array([7.3621186811330963e-01, 3.5068899941471650e-04,
  284. 2.4451209281408992e-04]),
  285. )
  286. assert_array_almost_equal(
  287. out.cov_beta,
  288. np.array([[2.4714409064597873e-01, -6.9067261911110836e-05,
  289. -3.1236953270424990e-05],
  290. [-6.9067261911110836e-05, 5.6077531517333009e-08,
  291. 3.6133261832722601e-08],
  292. [-3.1236953270424990e-05, 3.6133261832722601e-08,
  293. 2.7261220025171730e-08]]),
  294. )
  295. def test_ticket_1253(self):
  296. def linear(c, x):
  297. return c[0]*x+c[1]
  298. c = [2.0, 3.0]
  299. x = np.linspace(0, 10)
  300. y = linear(c, x)
  301. model = Model(linear)
  302. data = Data(x, y, wd=1.0, we=1.0)
  303. job = ODR(data, model, beta0=[1.0, 1.0])
  304. result = job.run()
  305. assert_equal(result.info, 2)
  306. # Verify fix for gh-9140
  307. def test_ifixx(self):
  308. x1 = [-2.01, -0.99, -0.001, 1.02, 1.98]
  309. x2 = [3.98, 1.01, 0.001, 0.998, 4.01]
  310. fix = np.vstack((np.zeros_like(x1, dtype=int), np.ones_like(x2, dtype=int)))
  311. data = Data(np.vstack((x1, x2)), y=1, fix=fix)
  312. model = Model(lambda beta, x: x[1, :] - beta[0] * x[0, :]**2., implicit=True)
  313. odr1 = ODR(data, model, beta0=np.array([1.]))
  314. sol1 = odr1.run()
  315. odr2 = ODR(data, model, beta0=np.array([1.]), ifixx=fix)
  316. sol2 = odr2.run()
  317. assert_equal(sol1.beta, sol2.beta)
  318. # verify bugfix for #11800 in #11802
  319. def test_ticket_11800(self):
  320. # parameters
  321. beta_true = np.array([1.0, 2.3, 1.1, -1.0, 1.3, 0.5])
  322. nr_measurements = 10
  323. std_dev_x = 0.01
  324. x_error = np.array([[0.00063445, 0.00515731, 0.00162719, 0.01022866,
  325. -0.01624845, 0.00482652, 0.00275988, -0.00714734, -0.00929201, -0.00687301],
  326. [-0.00831623, -0.00821211, -0.00203459, 0.00938266, -0.00701829,
  327. 0.0032169, 0.00259194, -0.00581017, -0.0030283, 0.01014164]])
  328. std_dev_y = 0.05
  329. y_error = np.array([[0.05275304, 0.04519563, -0.07524086, 0.03575642,
  330. 0.04745194, 0.03806645, 0.07061601, -0.00753604, -0.02592543, -0.02394929],
  331. [0.03632366, 0.06642266, 0.08373122, 0.03988822, -0.0092536,
  332. -0.03750469, -0.03198903, 0.01642066, 0.01293648, -0.05627085]])
  333. beta_solution = np.array([
  334. 2.62920235756665876536e+00, -1.26608484996299608838e+02, 1.29703572775403074502e+02,
  335. -1.88560985401185465804e+00, 7.83834160771274923718e+01, -7.64124076838087091801e+01])
  336. # model's function and Jacobians
  337. def func(beta, x):
  338. y0 = beta[0] + beta[1] * x[0, :] + beta[2] * x[1, :]
  339. y1 = beta[3] + beta[4] * x[0, :] + beta[5] * x[1, :]
  340. return np.vstack((y0, y1))
  341. def df_dbeta_odr(beta, x):
  342. nr_meas = np.shape(x)[1]
  343. zeros = np.zeros(nr_meas)
  344. ones = np.ones(nr_meas)
  345. dy0 = np.array([ones, x[0, :], x[1, :], zeros, zeros, zeros])
  346. dy1 = np.array([zeros, zeros, zeros, ones, x[0, :], x[1, :]])
  347. return np.stack((dy0, dy1))
  348. def df_dx_odr(beta, x):
  349. nr_meas = np.shape(x)[1]
  350. ones = np.ones(nr_meas)
  351. dy0 = np.array([beta[1] * ones, beta[2] * ones])
  352. dy1 = np.array([beta[4] * ones, beta[5] * ones])
  353. return np.stack((dy0, dy1))
  354. # do measurements with errors in independent and dependent variables
  355. x0_true = np.linspace(1, 10, nr_measurements)
  356. x1_true = np.linspace(1, 10, nr_measurements)
  357. x_true = np.array([x0_true, x1_true])
  358. y_true = func(beta_true, x_true)
  359. x_meas = x_true + x_error
  360. y_meas = y_true + y_error
  361. # estimate model's parameters
  362. model_f = Model(func, fjacb=df_dbeta_odr, fjacd=df_dx_odr)
  363. data = RealData(x_meas, y_meas, sx=std_dev_x, sy=std_dev_y)
  364. odr_obj = ODR(data, model_f, beta0=0.9 * beta_true, maxit=100)
  365. #odr_obj.set_iprint(init=2, iter=0, iter_step=1, final=1)
  366. odr_obj.set_job(deriv=3)
  367. odr_out = odr_obj.run()
  368. # check results
  369. assert_equal(odr_out.info, 1)
  370. assert_array_almost_equal(odr_out.beta, beta_solution)
  371. def test_multilinear_model(self):
  372. x = np.linspace(0.0, 5.0)
  373. y = 10.0 + 5.0 * x
  374. data = Data(x, y)
  375. odr_obj = ODR(data, multilinear)
  376. output = odr_obj.run()
  377. assert_array_almost_equal(output.beta, [10.0, 5.0])
  378. def test_exponential_model(self):
  379. x = np.linspace(0.0, 5.0)
  380. y = -10.0 + np.exp(0.5*x)
  381. data = Data(x, y)
  382. odr_obj = ODR(data, exponential)
  383. output = odr_obj.run()
  384. assert_array_almost_equal(output.beta, [-10.0, 0.5])
  385. def test_polynomial_model(self):
  386. x = np.linspace(0.0, 5.0)
  387. y = 1.0 + 2.0 * x + 3.0 * x ** 2 + 4.0 * x ** 3
  388. poly_model = polynomial(3)
  389. data = Data(x, y)
  390. odr_obj = ODR(data, poly_model)
  391. output = odr_obj.run()
  392. assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0, 4.0])
  393. def test_unilinear_model(self):
  394. x = np.linspace(0.0, 5.0)
  395. y = 1.0 * x + 2.0
  396. data = Data(x, y)
  397. odr_obj = ODR(data, unilinear)
  398. output = odr_obj.run()
  399. assert_array_almost_equal(output.beta, [1.0, 2.0])
  400. def test_quadratic_model(self):
  401. x = np.linspace(0.0, 5.0)
  402. y = 1.0 * x ** 2 + 2.0 * x + 3.0
  403. data = Data(x, y)
  404. odr_obj = ODR(data, quadratic)
  405. output = odr_obj.run()
  406. assert_array_almost_equal(output.beta, [1.0, 2.0, 3.0])
  407. def test_work_ind(self):
  408. def func(par, x):
  409. b0, b1 = par
  410. return b0 + b1 * x
  411. # generate some data
  412. n_data = 4
  413. x = np.arange(n_data)
  414. y = np.where(x % 2, x + 0.1, x - 0.1)
  415. x_err = np.full(n_data, 0.1)
  416. y_err = np.full(n_data, 0.1)
  417. # do the fitting
  418. linear_model = Model(func)
  419. real_data = RealData(x, y, sx=x_err, sy=y_err)
  420. odr_obj = ODR(real_data, linear_model, beta0=[0.4, 0.4])
  421. odr_obj.set_job(fit_type=0)
  422. out = odr_obj.run()
  423. sd_ind = out.work_ind['sd']
  424. assert_array_almost_equal(out.sd_beta,
  425. out.work[sd_ind:sd_ind + len(out.sd_beta)])
  426. @pytest.mark.skipif(True, reason="Fortran I/O prone to crashing so better "
  427. "not to run this test, see gh-13127")
  428. def test_output_file_overwrite(self):
  429. """
  430. Verify fix for gh-1892
  431. """
  432. def func(b, x):
  433. return b[0] + b[1] * x
  434. p = Model(func)
  435. data = Data(np.arange(10), 12 * np.arange(10))
  436. tmp_dir = tempfile.mkdtemp()
  437. error_file_path = os.path.join(tmp_dir, "error.dat")
  438. report_file_path = os.path.join(tmp_dir, "report.dat")
  439. try:
  440. ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
  441. rptfile=report_file_path).run()
  442. ODR(data, p, beta0=[0.1, 13], errfile=error_file_path,
  443. rptfile=report_file_path, overwrite=True).run()
  444. finally:
  445. # remove output files for clean up
  446. shutil.rmtree(tmp_dir)
  447. def test_odr_model_default_meta(self):
  448. def func(b, x):
  449. return b[0] + b[1] * x
  450. p = Model(func)
  451. p.set_meta(name='Sample Model Meta', ref='ODRPACK')
  452. assert_equal(p.meta, {'name': 'Sample Model Meta', 'ref': 'ODRPACK'})