1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371 |
- import numpy
- from numpy.testing import (assert_, assert_equal, assert_array_equal,
- assert_array_almost_equal)
- import pytest
- from pytest import raises as assert_raises
- from scipy import ndimage
- from . import types
- class TestNdimageMorphology:
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_bf01(self, dtype):
- # brute force (bf) distance transform
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_bf(data, 'euclidean',
- return_indices=True)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 2, 4, 2, 1, 0, 0],
- [0, 0, 1, 4, 8, 4, 1, 0, 0],
- [0, 0, 1, 2, 4, 2, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out * out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 3, 2, 1, 2, 3, 3, 3],
- [4, 4, 4, 4, 6, 4, 4, 4, 4],
- [5, 5, 6, 6, 7, 6, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 1, 2, 4, 6, 7, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_bf02(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_bf(data, 'cityblock',
- return_indices=True)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 2, 2, 2, 1, 0, 0],
- [0, 0, 1, 2, 3, 2, 1, 0, 0],
- [0, 0, 1, 2, 2, 2, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 3, 3, 1, 3, 3, 3, 3],
- [4, 4, 4, 4, 7, 4, 4, 4, 4],
- [5, 5, 6, 7, 7, 7, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 1, 1, 4, 7, 7, 7, 8],
- [0, 1, 1, 1, 4, 7, 7, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(expected, ft)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_bf03(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_bf(data, 'chessboard',
- return_indices=True)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 2, 1, 1, 0, 0],
- [0, 0, 1, 2, 2, 2, 1, 0, 0],
- [0, 0, 1, 1, 2, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 4, 2, 2, 2, 4, 3, 3],
- [4, 4, 5, 6, 6, 6, 5, 4, 4],
- [5, 5, 6, 6, 7, 6, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 5, 6, 6, 7, 8],
- [0, 1, 1, 2, 6, 6, 7, 7, 8],
- [0, 1, 1, 2, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 6, 6, 7, 7, 8],
- [0, 1, 2, 4, 5, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_bf04(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- tdt, tft = ndimage.distance_transform_bf(data, return_indices=1)
- dts = []
- fts = []
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ndimage.distance_transform_bf(data, distances=dt)
- dts.append(dt)
- ft = ndimage.distance_transform_bf(
- data, return_distances=False, return_indices=1)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_bf(
- data, return_distances=False, return_indices=True, indices=ft)
- fts.append(ft)
- dt, ft = ndimage.distance_transform_bf(
- data, return_indices=1)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = ndimage.distance_transform_bf(
- data, distances=dt, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- dt = ndimage.distance_transform_bf(
- data, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_bf(
- data, distances=dt, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- for dt in dts:
- assert_array_almost_equal(tdt, dt)
- for ft in fts:
- assert_array_almost_equal(tft, ft)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_bf05(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_bf(
- data, 'euclidean', return_indices=True, sampling=[2, 2])
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 4, 4, 4, 0, 0, 0],
- [0, 0, 4, 8, 16, 8, 4, 0, 0],
- [0, 0, 4, 16, 32, 16, 4, 0, 0],
- [0, 0, 4, 8, 16, 8, 4, 0, 0],
- [0, 0, 0, 4, 4, 4, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out * out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 1, 2, 2, 2, 2],
- [3, 3, 3, 2, 1, 2, 3, 3, 3],
- [4, 4, 4, 4, 6, 4, 4, 4, 4],
- [5, 5, 6, 6, 7, 6, 6, 5, 5],
- [6, 6, 6, 7, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 1, 2, 4, 6, 7, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_bf06(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_bf(
- data, 'euclidean', return_indices=True, sampling=[2, 1])
- expected = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 4, 1, 0, 0, 0],
- [0, 0, 1, 4, 8, 4, 1, 0, 0],
- [0, 0, 1, 4, 9, 4, 1, 0, 0],
- [0, 0, 1, 4, 8, 4, 1, 0, 0],
- [0, 0, 0, 1, 4, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]]
- assert_array_almost_equal(out * out, expected)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 2, 2, 2, 2, 2, 2],
- [3, 3, 3, 3, 2, 3, 3, 3, 3],
- [4, 4, 4, 4, 4, 4, 4, 4, 4],
- [5, 5, 5, 5, 6, 5, 5, 5, 5],
- [6, 6, 6, 6, 7, 6, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 6, 6, 6, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 1, 1, 7, 7, 7, 7, 8],
- [0, 1, 1, 1, 6, 7, 7, 7, 8],
- [0, 1, 2, 2, 4, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- def test_distance_transform_bf07(self):
- # test input validation per discussion on PR #13302
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]])
- with assert_raises(RuntimeError):
- ndimage.distance_transform_bf(
- data, return_distances=False, return_indices=False
- )
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_cdt01(self, dtype):
- # chamfer type distance (cdt) transform
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_cdt(
- data, 'cityblock', return_indices=True)
- bf = ndimage.distance_transform_bf(data, 'cityblock')
- assert_array_almost_equal(bf, out)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 1, 1, 1, 2, 2, 2],
- [3, 3, 2, 1, 1, 1, 2, 3, 3],
- [4, 4, 4, 4, 1, 4, 4, 4, 4],
- [5, 5, 5, 5, 7, 7, 6, 5, 5],
- [6, 6, 6, 6, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 1, 1, 4, 7, 7, 7, 8],
- [0, 1, 1, 1, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_cdt02(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_cdt(data, 'chessboard',
- return_indices=True)
- bf = ndimage.distance_transform_bf(data, 'chessboard')
- assert_array_almost_equal(bf, out)
- expected = [[[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 1, 1],
- [2, 2, 2, 1, 1, 1, 2, 2, 2],
- [3, 3, 2, 2, 1, 2, 2, 3, 3],
- [4, 4, 3, 2, 2, 2, 3, 4, 4],
- [5, 5, 4, 6, 7, 6, 4, 5, 5],
- [6, 6, 6, 6, 7, 7, 6, 6, 6],
- [7, 7, 7, 7, 7, 7, 7, 7, 7],
- [8, 8, 8, 8, 8, 8, 8, 8, 8]],
- [[0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 2, 3, 4, 6, 7, 8],
- [0, 1, 1, 2, 2, 6, 6, 7, 8],
- [0, 1, 1, 1, 2, 6, 7, 7, 8],
- [0, 1, 1, 2, 6, 6, 7, 7, 8],
- [0, 1, 2, 2, 5, 6, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8],
- [0, 1, 2, 3, 4, 5, 6, 7, 8]]]
- assert_array_almost_equal(ft, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_cdt03(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- tdt, tft = ndimage.distance_transform_cdt(data, return_indices=True)
- dts = []
- fts = []
- dt = numpy.zeros(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_cdt(data, distances=dt)
- dts.append(dt)
- ft = ndimage.distance_transform_cdt(
- data, return_distances=False, return_indices=True)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_cdt(
- data, return_distances=False, return_indices=True, indices=ft)
- fts.append(ft)
- dt, ft = ndimage.distance_transform_cdt(
- data, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.int32)
- ft = ndimage.distance_transform_cdt(
- data, distances=dt, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- dt = ndimage.distance_transform_cdt(
- data, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.int32)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_cdt(data, distances=dt,
- return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- for dt in dts:
- assert_array_almost_equal(tdt, dt)
- for ft in fts:
- assert_array_almost_equal(tft, ft)
- def test_distance_transform_cdt04(self):
- # test input validation per discussion on PR #13302
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]])
- indices_out = numpy.zeros((data.ndim,) + data.shape, dtype=numpy.int32)
- with assert_raises(RuntimeError):
- ndimage.distance_transform_bf(
- data,
- return_distances=True,
- return_indices=False,
- indices=indices_out
- )
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_edt01(self, dtype):
- # euclidean distance transform (edt)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out, ft = ndimage.distance_transform_edt(data, return_indices=True)
- bf = ndimage.distance_transform_bf(data, 'euclidean')
- assert_array_almost_equal(bf, out)
- dt = ft - numpy.indices(ft.shape[1:], dtype=ft.dtype)
- dt = dt.astype(numpy.float64)
- numpy.multiply(dt, dt, dt)
- dt = numpy.add.reduce(dt, axis=0)
- numpy.sqrt(dt, dt)
- assert_array_almost_equal(bf, dt)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_edt02(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- tdt, tft = ndimage.distance_transform_edt(data, return_indices=True)
- dts = []
- fts = []
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ndimage.distance_transform_edt(data, distances=dt)
- dts.append(dt)
- ft = ndimage.distance_transform_edt(
- data, return_distances=0, return_indices=True)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_edt(
- data, return_distances=False, return_indices=True, indices=ft)
- fts.append(ft)
- dt, ft = ndimage.distance_transform_edt(
- data, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = ndimage.distance_transform_edt(
- data, distances=dt, return_indices=True)
- dts.append(dt)
- fts.append(ft)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- dt = ndimage.distance_transform_edt(
- data, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- dt = numpy.zeros(data.shape, dtype=numpy.float64)
- ft = numpy.indices(data.shape, dtype=numpy.int32)
- ndimage.distance_transform_edt(
- data, distances=dt, return_indices=True, indices=ft)
- dts.append(dt)
- fts.append(ft)
- for dt in dts:
- assert_array_almost_equal(tdt, dt)
- for ft in fts:
- assert_array_almost_equal(tft, ft)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_edt03(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 2])
- out = ndimage.distance_transform_edt(data, sampling=[2, 2])
- assert_array_almost_equal(ref, out)
- @pytest.mark.parametrize('dtype', types)
- def test_distance_transform_edt4(self, dtype):
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- ref = ndimage.distance_transform_bf(data, 'euclidean', sampling=[2, 1])
- out = ndimage.distance_transform_edt(data, sampling=[2, 1])
- assert_array_almost_equal(ref, out)
- def test_distance_transform_edt5(self):
- # Ticket #954 regression test
- out = ndimage.distance_transform_edt(False)
- assert_array_almost_equal(out, [0.])
- def test_distance_transform_edt6(self):
- # test input validation per discussion on PR #13302
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0]])
- distances_out = numpy.zeros(data.shape, dtype=numpy.float64)
- with assert_raises(RuntimeError):
- ndimage.distance_transform_bf(
- data,
- return_indices=True,
- return_distances=False,
- distances=distances_out
- )
- def test_generate_structure01(self):
- struct = ndimage.generate_binary_structure(0, 1)
- assert_array_almost_equal(struct, 1)
- def test_generate_structure02(self):
- struct = ndimage.generate_binary_structure(1, 1)
- assert_array_almost_equal(struct, [1, 1, 1])
- def test_generate_structure03(self):
- struct = ndimage.generate_binary_structure(2, 1)
- assert_array_almost_equal(struct, [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]])
- def test_generate_structure04(self):
- struct = ndimage.generate_binary_structure(2, 2)
- assert_array_almost_equal(struct, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- def test_iterate_structure01(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- out = ndimage.iterate_structure(struct, 2)
- assert_array_almost_equal(out, [[0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0]])
- def test_iterate_structure02(self):
- struct = [[0, 1],
- [1, 1],
- [0, 1]]
- out = ndimage.iterate_structure(struct, 2)
- assert_array_almost_equal(out, [[0, 0, 1],
- [0, 1, 1],
- [1, 1, 1],
- [0, 1, 1],
- [0, 0, 1]])
- def test_iterate_structure03(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- out = ndimage.iterate_structure(struct, 2, 1)
- expected = [[0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0]]
- assert_array_almost_equal(out[0], expected)
- assert_equal(out[1], [2, 2])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion01(self, dtype):
- data = numpy.ones([], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, 1)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion02(self, dtype):
- data = numpy.ones([], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, 1)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion03(self, dtype):
- data = numpy.ones([1], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion04(self, dtype):
- data = numpy.ones([1], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion05(self, dtype):
- data = numpy.ones([3], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0, 1, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion06(self, dtype):
- data = numpy.ones([3], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion07(self, dtype):
- data = numpy.ones([5], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0, 1, 1, 1, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion08(self, dtype):
- data = numpy.ones([5], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1, 1, 1, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion09(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [0, 0, 0, 0, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion10(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [1, 0, 0, 0, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion11(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- struct = [1, 0, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, [1, 0, 1, 0, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion12(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- struct = [1, 0, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1)
- assert_array_almost_equal(out, [0, 1, 0, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion13(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- struct = [1, 0, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1, origin=1)
- assert_array_almost_equal(out, [1, 1, 0, 1, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion14(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- struct = [1, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, [1, 1, 0, 0, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion15(self, dtype):
- data = numpy.ones([5], dtype)
- data[2] = 0
- struct = [1, 1]
- out = ndimage.binary_erosion(data, struct, border_value=1, origin=-1)
- assert_array_almost_equal(out, [1, 0, 0, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion16(self, dtype):
- data = numpy.ones([1, 1], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [[1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion17(self, dtype):
- data = numpy.ones([1, 1], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [[0]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion18(self, dtype):
- data = numpy.ones([1, 3], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [[0, 0, 0]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion19(self, dtype):
- data = numpy.ones([1, 3], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [[1, 1, 1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion20(self, dtype):
- data = numpy.ones([3, 3], dtype)
- out = ndimage.binary_erosion(data)
- assert_array_almost_equal(out, [[0, 0, 0],
- [0, 1, 0],
- [0, 0, 0]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion21(self, dtype):
- data = numpy.ones([3, 3], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion22(self, dtype):
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_erosion(data, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion23(self, dtype):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion24(self, dtype):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion25(self, dtype):
- struct = [[0, 1, 0],
- [1, 0, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 0, 1, 1],
- [0, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_erosion(data, struct, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_erosion26(self, dtype):
- struct = [[0, 1, 0],
- [1, 0, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1],
- [0, 0, 0, 0, 1, 0, 0, 1],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 0, 1, 1],
- [0, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_erosion(data, struct, border_value=1,
- origin=(-1, -1))
- assert_array_almost_equal(out, expected)
- def test_binary_erosion27(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct, border_value=1,
- iterations=2)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion28(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=2, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion29(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, iterations=3)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion30(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=3, output=out)
- assert_array_almost_equal(out, expected)
- # test with output memory overlap
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=3, output=data)
- assert_array_almost_equal(data, expected)
- def test_binary_erosion31(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 1, 0, 1],
- [0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 1]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=1, output=out, origin=(-1, -1))
- assert_array_almost_equal(out, expected)
- def test_binary_erosion32(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, iterations=2)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion33(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 0, 0, 0, 1],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- mask = [[1, 1, 1, 1, 1, 0, 0],
- [1, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 1, 0, 0, 1],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, mask=mask, iterations=-1)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion34(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- mask = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_erosion(data, struct,
- border_value=1, mask=mask)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion35(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- mask = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- tmp = [[0, 0, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 1, 0, 1],
- [0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 1]]
- expected = numpy.logical_and(tmp, mask)
- tmp = numpy.logical_and(data, numpy.logical_not(mask))
- expected = numpy.logical_or(expected, tmp)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=1, output=out,
- origin=(-1, -1), mask=mask)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion36(self):
- struct = [[0, 1, 0],
- [1, 0, 1],
- [0, 1, 0]]
- mask = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- tmp = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1],
- [0, 0, 0, 0, 1, 0, 0, 1],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 1, 1],
- [0, 0, 1, 1, 1, 0, 1, 1],
- [0, 0, 1, 0, 1, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- expected = numpy.logical_and(tmp, mask)
- tmp = numpy.logical_and(data, numpy.logical_not(mask))
- expected = numpy.logical_or(expected, tmp)
- out = ndimage.binary_erosion(data, struct, mask=mask,
- border_value=1, origin=(-1, -1))
- assert_array_almost_equal(out, expected)
- def test_binary_erosion37(self):
- a = numpy.array([[1, 0, 1],
- [0, 1, 0],
- [1, 0, 1]], dtype=bool)
- b = numpy.zeros_like(a)
- out = ndimage.binary_erosion(a, structure=a, output=b, iterations=0,
- border_value=True, brute_force=True)
- assert_(out is b)
- assert_array_equal(
- ndimage.binary_erosion(a, structure=a, iterations=0,
- border_value=True),
- b)
- def test_binary_erosion38(self):
- data = numpy.array([[1, 0, 1],
- [0, 1, 0],
- [1, 0, 1]], dtype=bool)
- iterations = 2.0
- with assert_raises(TypeError):
- _ = ndimage.binary_erosion(data, iterations=iterations)
- def test_binary_erosion39(self):
- iterations = numpy.int32(3)
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=iterations, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_erosion40(self):
- iterations = numpy.int64(3)
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_erosion(data, struct, border_value=1,
- iterations=iterations, output=out)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation01(self, dtype):
- data = numpy.ones([], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, 1)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation02(self, dtype):
- data = numpy.zeros([], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, 0)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation03(self, dtype):
- data = numpy.ones([1], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation04(self, dtype):
- data = numpy.zeros([1], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation05(self, dtype):
- data = numpy.ones([3], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation06(self, dtype):
- data = numpy.zeros([3], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [0, 0, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation07(self, dtype):
- data = numpy.zeros([3], dtype)
- data[1] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation08(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- data[3] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1, 1, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation09(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [1, 1, 1, 0, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation10(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- out = ndimage.binary_dilation(data, origin=-1)
- assert_array_almost_equal(out, [0, 1, 1, 1, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation11(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- out = ndimage.binary_dilation(data, origin=1)
- assert_array_almost_equal(out, [1, 1, 0, 0, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation12(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, [1, 0, 1, 0, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation13(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct, border_value=1)
- assert_array_almost_equal(out, [1, 0, 1, 0, 1])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation14(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct, origin=-1)
- assert_array_almost_equal(out, [0, 1, 0, 1, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation15(self, dtype):
- data = numpy.zeros([5], dtype)
- data[1] = 1
- struct = [1, 0, 1]
- out = ndimage.binary_dilation(data, struct,
- origin=-1, border_value=1)
- assert_array_almost_equal(out, [1, 1, 0, 1, 0])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation16(self, dtype):
- data = numpy.ones([1, 1], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation17(self, dtype):
- data = numpy.zeros([1, 1], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[0]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation18(self, dtype):
- data = numpy.ones([1, 3], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[1, 1, 1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation19(self, dtype):
- data = numpy.ones([3, 3], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation20(self, dtype):
- data = numpy.zeros([3, 3], dtype)
- data[1, 1] = 1
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation21(self, dtype):
- struct = ndimage.generate_binary_structure(2, 2)
- data = numpy.zeros([3, 3], dtype)
- data[1, 1] = 1
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, [[1, 1, 1],
- [1, 1, 1],
- [1, 1, 1]])
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation22(self, dtype):
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation23(self, dtype):
- expected = [[1, 1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 0, 0, 0, 0, 1],
- [1, 1, 0, 0, 0, 1, 0, 1],
- [1, 0, 0, 1, 1, 1, 1, 1],
- [1, 0, 1, 1, 1, 1, 0, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [1, 0, 1, 0, 0, 1, 0, 1],
- [1, 1, 1, 1, 1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation24(self, dtype):
- expected = [[1, 1, 0, 0, 0, 0, 0, 0],
- [1, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 0, 0],
- [0, 1, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, origin=(1, 1))
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation25(self, dtype):
- expected = [[1, 1, 0, 0, 0, 0, 1, 1],
- [1, 0, 0, 0, 1, 0, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [0, 1, 0, 0, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, origin=(1, 1), border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation26(self, dtype):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation27(self, dtype):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, struct)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation28(self, dtype):
- expected = [[1, 1, 1, 1],
- [1, 0, 0, 1],
- [1, 0, 0, 1],
- [1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation29(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_dilation(data, struct, iterations=2)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation30(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_dilation(data, struct, iterations=2, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation31(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_dilation(data, struct, iterations=3)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation32(self):
- struct = [[0, 1],
- [1, 1]]
- expected = [[0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0]], bool)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_dilation(data, struct, iterations=3, output=out)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation33(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_dilation(data, struct, iterations=-1,
- mask=mask, border_value=0)
- assert_array_almost_equal(out, expected)
- def test_binary_dilation34(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.zeros(mask.shape, bool)
- out = ndimage.binary_dilation(data, struct, iterations=-1,
- mask=mask, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_dilation35(self, dtype):
- tmp = [[1, 1, 0, 0, 0, 0, 1, 1],
- [1, 0, 0, 0, 1, 0, 1, 1],
- [0, 0, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [0, 1, 0, 0, 1, 0, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1, 1, 1, 1]]
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- mask = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- expected = numpy.logical_and(tmp, mask)
- tmp = numpy.logical_and(data, numpy.logical_not(mask))
- expected = numpy.logical_or(expected, tmp)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_dilation(data, mask=mask,
- origin=(1, 1), border_value=1)
- assert_array_almost_equal(out, expected)
- def test_binary_propagation01(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0, 0],
- [0, 1, 1, 0, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_propagation(data, struct,
- mask=mask, border_value=0)
- assert_array_almost_equal(out, expected)
- def test_binary_propagation02(self):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- mask = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.zeros(mask.shape, bool)
- out = ndimage.binary_propagation(data, struct,
- mask=mask, border_value=1)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_opening01(self, dtype):
- expected = [[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 0, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_opening(data)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_opening02(self, dtype):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_opening(data, struct)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_closing01(self, dtype):
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 1, 0, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 0, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_closing(data)
- assert_array_almost_equal(out, expected)
- @pytest.mark.parametrize('dtype', types)
- def test_binary_closing02(self, dtype):
- struct = ndimage.generate_binary_structure(2, 2)
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [1, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_closing(data, struct)
- assert_array_almost_equal(out, expected)
- def test_binary_fill_holes01(self):
- expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_fill_holes(data)
- assert_array_almost_equal(out, expected)
- def test_binary_fill_holes02(self):
- expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 1, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_fill_holes(data)
- assert_array_almost_equal(out, expected)
- def test_binary_fill_holes03(self):
- expected = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 1, 1, 1],
- [0, 1, 1, 1, 0, 1, 1, 1],
- [0, 1, 1, 1, 0, 1, 1, 1],
- [0, 0, 1, 0, 0, 1, 1, 1],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- data = numpy.array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 1, 0, 1, 1, 1],
- [0, 1, 0, 1, 0, 1, 0, 1],
- [0, 1, 0, 1, 0, 1, 0, 1],
- [0, 0, 1, 0, 0, 1, 1, 1],
- [0, 0, 0, 0, 0, 0, 0, 0]], bool)
- out = ndimage.binary_fill_holes(data)
- assert_array_almost_equal(out, expected)
- def test_grey_erosion01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- output = ndimage.grey_erosion(array, footprint=footprint)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]], output)
- def test_grey_erosion01_overlap(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- ndimage.grey_erosion(array, footprint=footprint, output=array)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]], array)
- def test_grey_erosion02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- output = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[2, 2, 1, 1, 1],
- [2, 3, 1, 3, 1],
- [5, 5, 3, 3, 1]], output)
- def test_grey_erosion03(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[1, 1, 1], [1, 1, 1]]
- output = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[1, 1, 0, 0, 0],
- [1, 2, 0, 2, 0],
- [4, 4, 2, 2, 0]], output)
- def test_grey_dilation01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[0, 1, 1], [1, 0, 1]]
- output = ndimage.grey_dilation(array, footprint=footprint)
- assert_array_almost_equal([[7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7],
- [8, 8, 8, 7, 7]], output)
- def test_grey_dilation02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[0, 1, 1], [1, 0, 1]]
- structure = [[0, 0, 0], [0, 0, 0]]
- output = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[7, 7, 9, 9, 5],
- [7, 9, 8, 9, 7],
- [8, 8, 8, 7, 7]], output)
- def test_grey_dilation03(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[0, 1, 1], [1, 0, 1]]
- structure = [[1, 1, 1], [1, 1, 1]]
- output = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal([[8, 8, 10, 10, 6],
- [8, 10, 9, 10, 8],
- [9, 9, 9, 8, 8]], output)
- def test_grey_opening01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- tmp = ndimage.grey_erosion(array, footprint=footprint)
- expected = ndimage.grey_dilation(tmp, footprint=footprint)
- output = ndimage.grey_opening(array, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_grey_opening02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = ndimage.grey_dilation(tmp, footprint=footprint,
- structure=structure)
- output = ndimage.grey_opening(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_grey_closing01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- tmp = ndimage.grey_dilation(array, footprint=footprint)
- expected = ndimage.grey_erosion(tmp, footprint=footprint)
- output = ndimage.grey_closing(array, footprint=footprint)
- assert_array_almost_equal(expected, output)
- def test_grey_closing02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- expected = ndimage.grey_erosion(tmp, footprint=footprint,
- structure=structure)
- output = ndimage.grey_closing(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_morphological_gradient01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 - tmp2
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.morphological_gradient(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_morphological_gradient02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 - tmp2
- output = ndimage.morphological_gradient(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_morphological_laplace01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 + tmp2 - 2 * array
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.morphological_laplace(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_morphological_laplace02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp1 = ndimage.grey_dilation(array, footprint=footprint,
- structure=structure)
- tmp2 = ndimage.grey_erosion(array, footprint=footprint,
- structure=structure)
- expected = tmp1 + tmp2 - 2 * array
- output = ndimage.morphological_laplace(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_white_tophat01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_opening(array, footprint=footprint,
- structure=structure)
- expected = array - tmp
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.white_tophat(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_white_tophat02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_opening(array, footprint=footprint,
- structure=structure)
- expected = array - tmp
- output = ndimage.white_tophat(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_white_tophat03(self):
- array = numpy.array([[1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- expected = numpy.array([[0, 1, 1, 0, 0, 0, 0],
- [1, 0, 0, 1, 1, 1, 0],
- [1, 0, 0, 1, 1, 1, 0],
- [0, 1, 1, 0, 0, 0, 1],
- [0, 1, 1, 0, 1, 0, 1],
- [0, 1, 1, 0, 0, 0, 1],
- [0, 0, 0, 1, 1, 1, 1]], dtype=numpy.bool_)
- output = ndimage.white_tophat(array, structure=structure)
- assert_array_equal(expected, output)
- def test_white_tophat04(self):
- array = numpy.eye(5, dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- # Check that type mismatch is properly handled
- output = numpy.empty_like(array, dtype=numpy.float64)
- ndimage.white_tophat(array, structure=structure, output=output)
- def test_black_tophat01(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_closing(array, footprint=footprint,
- structure=structure)
- expected = tmp - array
- output = numpy.zeros(array.shape, array.dtype)
- ndimage.black_tophat(array, footprint=footprint,
- structure=structure, output=output)
- assert_array_almost_equal(expected, output)
- def test_black_tophat02(self):
- array = numpy.array([[3, 2, 5, 1, 4],
- [7, 6, 9, 3, 5],
- [5, 8, 3, 7, 1]])
- footprint = [[1, 0, 1], [1, 1, 0]]
- structure = [[0, 0, 0], [0, 0, 0]]
- tmp = ndimage.grey_closing(array, footprint=footprint,
- structure=structure)
- expected = tmp - array
- output = ndimage.black_tophat(array, footprint=footprint,
- structure=structure)
- assert_array_almost_equal(expected, output)
- def test_black_tophat03(self):
- array = numpy.array([[1, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 1]], dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- expected = numpy.array([[0, 1, 1, 1, 1, 1, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 0, 0, 0, 1, 0, 1],
- [1, 0, 0, 0, 0, 0, 1],
- [1, 1, 1, 1, 1, 1, 0]], dtype=numpy.bool_)
- output = ndimage.black_tophat(array, structure=structure)
- assert_array_equal(expected, output)
- def test_black_tophat04(self):
- array = numpy.eye(5, dtype=numpy.bool_)
- structure = numpy.ones((3, 3), dtype=numpy.bool_)
- # Check that type mismatch is properly handled
- output = numpy.empty_like(array, dtype=numpy.float64)
- ndimage.black_tophat(array, structure=structure, output=output)
- @pytest.mark.parametrize('dtype', types)
- def test_hit_or_miss01(self, dtype):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0]]
- data = numpy.array([[0, 1, 0, 0, 0],
- [1, 1, 1, 0, 0],
- [0, 1, 0, 1, 1],
- [0, 0, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 1],
- [0, 1, 1, 1, 1],
- [0, 0, 0, 0, 0]], dtype)
- out = numpy.zeros(data.shape, bool)
- ndimage.binary_hit_or_miss(data, struct, output=out)
- assert_array_almost_equal(expected, out)
- @pytest.mark.parametrize('dtype', types)
- def test_hit_or_miss02(self, dtype):
- struct = [[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]]
- expected = [[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0],
- [1, 1, 1, 0, 0, 1, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_hit_or_miss(data, struct)
- assert_array_almost_equal(expected, out)
- @pytest.mark.parametrize('dtype', types)
- def test_hit_or_miss03(self, dtype):
- struct1 = [[0, 0, 0],
- [1, 1, 1],
- [0, 0, 0]]
- struct2 = [[1, 1, 1],
- [0, 0, 0],
- [1, 1, 1]]
- expected = [[0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]]
- data = numpy.array([[0, 1, 0, 0, 1, 1, 1, 0],
- [1, 1, 1, 0, 0, 0, 0, 0],
- [0, 1, 0, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 0, 1, 1, 0],
- [0, 0, 0, 0, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]], dtype)
- out = ndimage.binary_hit_or_miss(data, struct1, struct2)
- assert_array_almost_equal(expected, out)
- class TestDilateFix:
- def setup_method(self):
- # dilation related setup
- self.array = numpy.array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0],
- [0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0]], dtype=numpy.uint8)
- self.sq3x3 = numpy.ones((3, 3))
- dilated3x3 = ndimage.binary_dilation(self.array, structure=self.sq3x3)
- self.dilated3x3 = dilated3x3.view(numpy.uint8)
- def test_dilation_square_structure(self):
- result = ndimage.grey_dilation(self.array, structure=self.sq3x3)
- # +1 accounts for difference between grey and binary dilation
- assert_array_almost_equal(result, self.dilated3x3 + 1)
- def test_dilation_scalar_size(self):
- result = ndimage.grey_dilation(self.array, size=3)
- assert_array_almost_equal(result, self.dilated3x3)
- class TestBinaryOpeningClosing:
- def setup_method(self):
- a = numpy.zeros((5, 5), dtype=bool)
- a[1:4, 1:4] = True
- a[4, 4] = True
- self.array = a
- self.sq3x3 = numpy.ones((3, 3))
- self.opened_old = ndimage.binary_opening(self.array, self.sq3x3,
- 1, None, 0)
- self.closed_old = ndimage.binary_closing(self.array, self.sq3x3,
- 1, None, 0)
- def test_opening_new_arguments(self):
- opened_new = ndimage.binary_opening(self.array, self.sq3x3, 1, None,
- 0, None, 0, False)
- assert_array_equal(opened_new, self.opened_old)
- def test_closing_new_arguments(self):
- closed_new = ndimage.binary_closing(self.array, self.sq3x3, 1, None,
- 0, None, 0, False)
- assert_array_equal(closed_new, self.closed_old)
- def test_binary_erosion_noninteger_iterations():
- # regression test for gh-9905, gh-9909: ValueError for
- # non integer iterations
- data = numpy.ones([1])
- assert_raises(TypeError, ndimage.binary_erosion, data, iterations=0.5)
- assert_raises(TypeError, ndimage.binary_erosion, data, iterations=1.5)
- def test_binary_dilation_noninteger_iterations():
- # regression test for gh-9905, gh-9909: ValueError for
- # non integer iterations
- data = numpy.ones([1])
- assert_raises(TypeError, ndimage.binary_dilation, data, iterations=0.5)
- assert_raises(TypeError, ndimage.binary_dilation, data, iterations=1.5)
- def test_binary_opening_noninteger_iterations():
- # regression test for gh-9905, gh-9909: ValueError for
- # non integer iterations
- data = numpy.ones([1])
- assert_raises(TypeError, ndimage.binary_opening, data, iterations=0.5)
- assert_raises(TypeError, ndimage.binary_opening, data, iterations=1.5)
- def test_binary_closing_noninteger_iterations():
- # regression test for gh-9905, gh-9909: ValueError for
- # non integer iterations
- data = numpy.ones([1])
- assert_raises(TypeError, ndimage.binary_closing, data, iterations=0.5)
- assert_raises(TypeError, ndimage.binary_closing, data, iterations=1.5)
- def test_binary_closing_noninteger_brute_force_passes_when_true():
- # regression test for gh-9905, gh-9909: ValueError for
- # non integer iterations
- data = numpy.ones([1])
- assert ndimage.binary_erosion(
- data, iterations=2, brute_force=1.5
- ) == ndimage.binary_erosion(data, iterations=2, brute_force=bool(1.5))
- assert ndimage.binary_erosion(
- data, iterations=2, brute_force=0.0
- ) == ndimage.binary_erosion(data, iterations=2, brute_force=bool(0.0))
- @pytest.mark.parametrize(
- 'function',
- ['binary_erosion', 'binary_dilation', 'binary_opening', 'binary_closing'],
- )
- @pytest.mark.parametrize('iterations', [1, 5])
- @pytest.mark.parametrize('brute_force', [False, True])
- def test_binary_input_as_output(function, iterations, brute_force):
- rstate = numpy.random.RandomState(123)
- data = rstate.randint(low=0, high=2, size=100).astype(bool)
- ndi_func = getattr(ndimage, function)
- # input data is not modified
- data_orig = data.copy()
- expected = ndi_func(data, brute_force=brute_force, iterations=iterations)
- assert_array_equal(data, data_orig)
- # data should now contain the expected result
- ndi_func(data, brute_force=brute_force, iterations=iterations, output=data)
- assert_array_equal(expected, data)
- def test_binary_hit_or_miss_input_as_output():
- rstate = numpy.random.RandomState(123)
- data = rstate.randint(low=0, high=2, size=100).astype(bool)
- # input data is not modified
- data_orig = data.copy()
- expected = ndimage.binary_hit_or_miss(data)
- assert_array_equal(data, data_orig)
- # data should now contain the expected result
- ndimage.binary_hit_or_miss(data, output=data)
- assert_array_equal(expected, data)
|