123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- import numpy
- from numpy import fft
- from numpy.testing import (assert_almost_equal, assert_array_almost_equal,
- assert_equal)
- import pytest
- from scipy import ndimage
- class TestNdimageFourier:
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.float32, 6), (numpy.float64, 14)])
- def test_fourier_gaussian_real01(self, shape, dtype, dec):
- a = numpy.zeros(shape, dtype)
- a[0, 0] = 1.0
- a = fft.rfft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_gaussian(a, [5.0, 2.5], shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a), 1, decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.complex64, 6), (numpy.complex128, 14)])
- def test_fourier_gaussian_complex01(self, shape, dtype, dec):
- a = numpy.zeros(shape, dtype)
- a[0, 0] = 1.0
- a = fft.fft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_gaussian(a, [5.0, 2.5], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.float32, 6), (numpy.float64, 14)])
- def test_fourier_uniform_real01(self, shape, dtype, dec):
- a = numpy.zeros(shape, dtype)
- a[0, 0] = 1.0
- a = fft.rfft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_uniform(a, [5.0, 2.5], shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.complex64, 6), (numpy.complex128, 14)])
- def test_fourier_uniform_complex01(self, shape, dtype, dec):
- a = numpy.zeros(shape, dtype)
- a[0, 0] = 1.0
- a = fft.fft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_uniform(a, [5.0, 2.5], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.float32, 4), (numpy.float64, 11)])
- def test_fourier_shift_real01(self, shape, dtype, dec):
- expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
- expected.shape = shape
- a = fft.rfft(expected, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_shift(a, [1, 1], shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_array_almost_equal(a[1:, 1:], expected[:-1, :-1],
- decimal=dec)
- assert_array_almost_equal(a.imag, numpy.zeros(shape),
- decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.complex64, 6), (numpy.complex128, 11)])
- def test_fourier_shift_complex01(self, shape, dtype, dec):
- expected = numpy.arange(shape[0] * shape[1], dtype=dtype)
- expected.shape = shape
- a = fft.fft(expected, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_shift(a, [1, 1], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_array_almost_equal(a.real[1:, 1:], expected[:-1, :-1],
- decimal=dec)
- assert_array_almost_equal(a.imag, numpy.zeros(shape),
- decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15), (1, 10)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.float32, 5), (numpy.float64, 14)])
- def test_fourier_ellipsoid_real01(self, shape, dtype, dec):
- a = numpy.zeros(shape, dtype)
- a[0, 0] = 1.0
- a = fft.rfft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_ellipsoid(a, [5.0, 2.5],
- shape[0], 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.irfft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a), 1.0, decimal=dec)
- @pytest.mark.parametrize('shape', [(32, 16), (31, 15)])
- @pytest.mark.parametrize('dtype, dec',
- [(numpy.complex64, 5), (numpy.complex128, 14)])
- def test_fourier_ellipsoid_complex01(self, shape, dtype, dec):
- a = numpy.zeros(shape, dtype)
- a[0, 0] = 1.0
- a = fft.fft(a, shape[0], 0)
- a = fft.fft(a, shape[1], 1)
- a = ndimage.fourier_ellipsoid(a, [5.0, 2.5], -1, 0)
- a = fft.ifft(a, shape[1], 1)
- a = fft.ifft(a, shape[0], 0)
- assert_almost_equal(ndimage.sum(a.real), 1.0, decimal=dec)
- def test_fourier_ellipsoid_unimplemented_ndim(self):
- # arrays with ndim > 3 raise NotImplementedError
- x = numpy.ones((4, 6, 8, 10), dtype=numpy.complex128)
- with pytest.raises(NotImplementedError):
- a = ndimage.fourier_ellipsoid(x, 3)
- def test_fourier_ellipsoid_1d_complex(self):
- # expected result of 1d ellipsoid is the same as for fourier_uniform
- for shape in [(32, ), (31, )]:
- for type_, dec in zip([numpy.complex64, numpy.complex128],
- [5, 14]):
- x = numpy.ones(shape, dtype=type_)
- a = ndimage.fourier_ellipsoid(x, 5, -1, 0)
- b = ndimage.fourier_uniform(x, 5, -1, 0)
- assert_array_almost_equal(a, b, decimal=dec)
- @pytest.mark.parametrize('shape', [(0, ), (0, 10), (10, 0)])
- @pytest.mark.parametrize('dtype',
- [numpy.float32, numpy.float64,
- numpy.complex64, numpy.complex128])
- @pytest.mark.parametrize('test_func',
- [ndimage.fourier_ellipsoid,
- ndimage.fourier_gaussian,
- ndimage.fourier_uniform])
- def test_fourier_zero_length_dims(self, shape, dtype, test_func):
- a = numpy.ones(shape, dtype)
- b = test_func(a, 3)
- assert_equal(a, b)
|