12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342 |
- # Copyright (C) 2003-2005 Peter J. Verveer
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- #
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- #
- # 2. Redistributions in binary form must reproduce the above
- # copyright notice, this list of conditions and the following
- # disclaimer in the documentation and/or other materials provided
- # with the distribution.
- #
- # 3. The name of the author may not be used to endorse or promote
- # products derived from this software without specific prior
- # written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
- # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
- # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- import warnings
- import operator
- import numpy
- from . import _ni_support
- from . import _nd_image
- from . import _filters
- __all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion',
- 'binary_dilation', 'binary_opening', 'binary_closing',
- 'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes',
- 'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing',
- 'morphological_gradient', 'morphological_laplace', 'white_tophat',
- 'black_tophat', 'distance_transform_bf', 'distance_transform_cdt',
- 'distance_transform_edt']
- def _center_is_true(structure, origin):
- structure = numpy.array(structure)
- coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape,
- origin)])
- return bool(structure[coor])
- def iterate_structure(structure, iterations, origin=None):
- """
- Iterate a structure by dilating it with itself.
- Parameters
- ----------
- structure : array_like
- Structuring element (an array of bools, for example), to be dilated with
- itself.
- iterations : int
- number of dilations performed on the structure with itself
- origin : optional
- If origin is None, only the iterated structure is returned. If
- not, a tuple of the iterated structure and the modified origin is
- returned.
- Returns
- -------
- iterate_structure : ndarray of bools
- A new structuring element obtained by dilating `structure`
- (`iterations` - 1) times with itself.
- See also
- --------
- generate_binary_structure
- Examples
- --------
- >>> from scipy import ndimage
- >>> struct = ndimage.generate_binary_structure(2, 1)
- >>> struct.astype(int)
- array([[0, 1, 0],
- [1, 1, 1],
- [0, 1, 0]])
- >>> ndimage.iterate_structure(struct, 2).astype(int)
- array([[0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0]])
- >>> ndimage.iterate_structure(struct, 3).astype(int)
- array([[0, 0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1, 1],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 1, 0, 0, 0]])
- """
- structure = numpy.asarray(structure)
- if iterations < 2:
- return structure.copy()
- ni = iterations - 1
- shape = [ii + ni * (ii - 1) for ii in structure.shape]
- pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))]
- slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None)
- for ii in range(len(shape)))
- out = numpy.zeros(shape, bool)
- out[slc] = structure != 0
- out = binary_dilation(out, structure, iterations=ni)
- if origin is None:
- return out
- else:
- origin = _ni_support._normalize_sequence(origin, structure.ndim)
- origin = [iterations * o for o in origin]
- return out, origin
- def generate_binary_structure(rank, connectivity):
- """
- Generate a binary structure for binary morphological operations.
- Parameters
- ----------
- rank : int
- Number of dimensions of the array to which the structuring element
- will be applied, as returned by `np.ndim`.
- connectivity : int
- `connectivity` determines which elements of the output array belong
- to the structure, i.e., are considered as neighbors of the central
- element. Elements up to a squared distance of `connectivity` from
- the center are considered neighbors. `connectivity` may range from 1
- (no diagonal elements are neighbors) to `rank` (all elements are
- neighbors).
- Returns
- -------
- output : ndarray of bools
- Structuring element which may be used for binary morphological
- operations, with `rank` dimensions and all dimensions equal to 3.
- See also
- --------
- iterate_structure, binary_dilation, binary_erosion
- Notes
- -----
- `generate_binary_structure` can only create structuring elements with
- dimensions equal to 3, i.e., minimal dimensions. For larger structuring
- elements, that are useful e.g., for eroding large objects, one may either
- use `iterate_structure`, or create directly custom arrays with
- numpy functions such as `numpy.ones`.
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> struct = ndimage.generate_binary_structure(2, 1)
- >>> struct
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> a = np.zeros((5,5))
- >>> a[2, 2] = 1
- >>> a
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
- >>> b
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
- array([[ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 1., 1., 1., 1., 1.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.]])
- >>> struct = ndimage.generate_binary_structure(2, 2)
- >>> struct
- array([[ True, True, True],
- [ True, True, True],
- [ True, True, True]], dtype=bool)
- >>> struct = ndimage.generate_binary_structure(3, 1)
- >>> struct # no diagonal elements
- array([[[False, False, False],
- [False, True, False],
- [False, False, False]],
- [[False, True, False],
- [ True, True, True],
- [False, True, False]],
- [[False, False, False],
- [False, True, False],
- [False, False, False]]], dtype=bool)
- """
- if connectivity < 1:
- connectivity = 1
- if rank < 1:
- return numpy.array(True, dtype=bool)
- output = numpy.fabs(numpy.indices([3] * rank) - 1)
- output = numpy.add.reduce(output, 0)
- return output <= connectivity
- def _binary_erosion(input, structure, iterations, mask, output,
- border_value, origin, invert, brute_force):
- try:
- iterations = operator.index(iterations)
- except TypeError as e:
- raise TypeError('iterations parameter should be an integer') from e
- input = numpy.asarray(input)
- if numpy.iscomplexobj(input):
- raise TypeError('Complex type not supported')
- if structure is None:
- structure = generate_binary_structure(input.ndim, 1)
- else:
- structure = numpy.asarray(structure, dtype=bool)
- if structure.ndim != input.ndim:
- raise RuntimeError('structure and input must have same dimensionality')
- if not structure.flags.contiguous:
- structure = structure.copy()
- if numpy.prod(structure.shape, axis=0) < 1:
- raise RuntimeError('structure must not be empty')
- if mask is not None:
- mask = numpy.asarray(mask)
- if mask.shape != input.shape:
- raise RuntimeError('mask and input must have equal sizes')
- origin = _ni_support._normalize_sequence(origin, input.ndim)
- cit = _center_is_true(structure, origin)
- if isinstance(output, numpy.ndarray):
- if numpy.iscomplexobj(output):
- raise TypeError('Complex output type not supported')
- else:
- output = bool
- output = _ni_support._get_output(output, input)
- temp_needed = numpy.may_share_memory(input, output)
- if temp_needed:
- # input and output arrays cannot share memory
- temp = output
- output = _ni_support._get_output(output.dtype, input)
- if iterations == 1:
- _nd_image.binary_erosion(input, structure, mask, output,
- border_value, origin, invert, cit, 0)
- elif cit and not brute_force:
- changed, coordinate_list = _nd_image.binary_erosion(
- input, structure, mask, output,
- border_value, origin, invert, cit, 1)
- structure = structure[tuple([slice(None, None, -1)] *
- structure.ndim)]
- for ii in range(len(origin)):
- origin[ii] = -origin[ii]
- if not structure.shape[ii] & 1:
- origin[ii] -= 1
- if mask is not None:
- mask = numpy.asarray(mask, dtype=numpy.int8)
- if not structure.flags.contiguous:
- structure = structure.copy()
- _nd_image.binary_erosion2(output, structure, mask, iterations - 1,
- origin, invert, coordinate_list)
- else:
- tmp_in = numpy.empty_like(input, dtype=bool)
- tmp_out = output
- if iterations >= 1 and not iterations & 1:
- tmp_in, tmp_out = tmp_out, tmp_in
- changed = _nd_image.binary_erosion(
- input, structure, mask, tmp_out,
- border_value, origin, invert, cit, 0)
- ii = 1
- while ii < iterations or (iterations < 1 and changed):
- tmp_in, tmp_out = tmp_out, tmp_in
- changed = _nd_image.binary_erosion(
- tmp_in, structure, mask, tmp_out,
- border_value, origin, invert, cit, 0)
- ii += 1
- if temp_needed:
- temp[...] = output
- output = temp
- return output
- def binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
- border_value=0, origin=0, brute_force=False):
- """
- Multidimensional binary erosion with a given structuring element.
- Binary erosion is a mathematical morphology operation used for image
- processing.
- Parameters
- ----------
- input : array_like
- Binary image to be eroded. Non-zero (True) elements form
- the subset to be eroded.
- structure : array_like, optional
- Structuring element used for the erosion. Non-zero elements are
- considered True. If no structuring element is provided, an element
- is generated with a square connectivity equal to one.
- iterations : int, optional
- The erosion is repeated `iterations` times (one, by default).
- If iterations is less than 1, the erosion is repeated until the
- result does not change anymore.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated (eroded) in
- the current iteration; if True all pixels are considered as candidates
- for erosion, regardless of what happened in the previous iteration.
- False by default.
- Returns
- -------
- binary_erosion : ndarray of bools
- Erosion of the input by the structuring element.
- See also
- --------
- grey_erosion, binary_dilation, binary_closing, binary_opening,
- generate_binary_structure
- Notes
- -----
- Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
- structuring element for shrinking the shapes in an image. The binary
- erosion of an image by a structuring element is the locus of the points
- where a superimposition of the structuring element centered on the point
- is entirely contained in the set of non-zero elements of the image.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1:6, 2:5] = 1
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_erosion(a).astype(a.dtype)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> #Erosion removes objects smaller than the structure
- >>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- return _binary_erosion(input, structure, iterations, mask,
- output, border_value, origin, 0, brute_force)
- def binary_dilation(input, structure=None, iterations=1, mask=None,
- output=None, border_value=0, origin=0,
- brute_force=False):
- """
- Multidimensional binary dilation with the given structuring element.
- Parameters
- ----------
- input : array_like
- Binary array_like to be dilated. Non-zero (True) elements form
- the subset to be dilated.
- structure : array_like, optional
- Structuring element used for the dilation. Non-zero elements are
- considered True. If no structuring element is provided an element
- is generated with a square connectivity equal to one.
- iterations : int, optional
- The dilation is repeated `iterations` times (one, by default).
- If iterations is less than 1, the dilation is repeated until the
- result does not change anymore. Only an integer of iterations is
- accepted.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated (dilated)
- in the current iteration; if True all pixels are considered as
- candidates for dilation, regardless of what happened in the previous
- iteration. False by default.
- Returns
- -------
- binary_dilation : ndarray of bools
- Dilation of the input by the structuring element.
- See also
- --------
- grey_dilation, binary_erosion, binary_closing, binary_opening,
- generate_binary_structure
- Notes
- -----
- Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
- structuring element for expanding the shapes in an image. The binary
- dilation of an image by a structuring element is the locus of the points
- covered by the structuring element, when its center lies within the
- non-zero points of the image.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((5, 5))
- >>> a[2, 2] = 1
- >>> a
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(a)
- array([[False, False, False, False, False],
- [False, False, True, False, False],
- [False, True, True, True, False],
- [False, False, True, False, False],
- [False, False, False, False, False]], dtype=bool)
- >>> ndimage.binary_dilation(a).astype(a.dtype)
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> # 3x3 structuring element with connectivity 1, used by default
- >>> struct1 = ndimage.generate_binary_structure(2, 1)
- >>> struct1
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> # 3x3 structuring element with connectivity 2
- >>> struct2 = ndimage.generate_binary_structure(2, 2)
- >>> struct2
- array([[ True, True, True],
- [ True, True, True],
- [ True, True, True]], dtype=bool)
- >>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
- array([[ 0., 0., 0., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 0., 0., 0.]])
- >>> ndimage.binary_dilation(a, structure=struct1,\\
- ... iterations=2).astype(a.dtype)
- array([[ 0., 0., 1., 0., 0.],
- [ 0., 1., 1., 1., 0.],
- [ 1., 1., 1., 1., 1.],
- [ 0., 1., 1., 1., 0.],
- [ 0., 0., 1., 0., 0.]])
- """
- input = numpy.asarray(input)
- if structure is None:
- structure = generate_binary_structure(input.ndim, 1)
- origin = _ni_support._normalize_sequence(origin, input.ndim)
- structure = numpy.asarray(structure)
- structure = structure[tuple([slice(None, None, -1)] *
- structure.ndim)]
- for ii in range(len(origin)):
- origin[ii] = -origin[ii]
- if not structure.shape[ii] & 1:
- origin[ii] -= 1
- return _binary_erosion(input, structure, iterations, mask,
- output, border_value, origin, 1, brute_force)
- def binary_opening(input, structure=None, iterations=1, output=None,
- origin=0, mask=None, border_value=0, brute_force=False):
- """
- Multidimensional binary opening with the given structuring element.
- The *opening* of an input image by a structuring element is the
- *dilation* of the *erosion* of the image by the structuring element.
- Parameters
- ----------
- input : array_like
- Binary array_like to be opened. Non-zero (True) elements form
- the subset to be opened.
- structure : array_like, optional
- Structuring element used for the opening. Non-zero elements are
- considered True. If no structuring element is provided an element
- is generated with a square connectivity equal to one (i.e., only
- nearest neighbors are connected to the center, diagonally-connected
- elements are not considered neighbors).
- iterations : int, optional
- The erosion step of the opening, then the dilation step are each
- repeated `iterations` times (one, by default). If `iterations` is
- less than 1, each operation is repeated until the result does
- not change anymore. Only an integer of iterations is accepted.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- .. versionadded:: 1.1.0
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- .. versionadded:: 1.1.0
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated in the
- current iteration; if true all pixels are considered as candidates for
- update, regardless of what happened in the previous iteration.
- False by default.
- .. versionadded:: 1.1.0
- Returns
- -------
- binary_opening : ndarray of bools
- Opening of the input by the structuring element.
- See also
- --------
- grey_opening, binary_closing, binary_erosion, binary_dilation,
- generate_binary_structure
- Notes
- -----
- *Opening* [1]_ is a mathematical morphology operation [2]_ that
- consists in the succession of an erosion and a dilation of the
- input with the same structuring element. Opening, therefore, removes
- objects smaller than the structuring element.
- Together with *closing* (`binary_closing`), opening can be used for
- noise removal.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((5,5), dtype=int)
- >>> a[1:4, 1:4] = 1; a[4, 4] = 1
- >>> a
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 1]])
- >>> # Opening removes small objects
- >>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Opening can also smooth corners
- >>> ndimage.binary_opening(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]])
- >>> # Opening is the dilation of the erosion of the input
- >>> ndimage.binary_erosion(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0]])
- >>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]])
- """
- input = numpy.asarray(input)
- if structure is None:
- rank = input.ndim
- structure = generate_binary_structure(rank, 1)
- tmp = binary_erosion(input, structure, iterations, mask, None,
- border_value, origin, brute_force)
- return binary_dilation(tmp, structure, iterations, mask, output,
- border_value, origin, brute_force)
- def binary_closing(input, structure=None, iterations=1, output=None,
- origin=0, mask=None, border_value=0, brute_force=False):
- """
- Multidimensional binary closing with the given structuring element.
- The *closing* of an input image by a structuring element is the
- *erosion* of the *dilation* of the image by the structuring element.
- Parameters
- ----------
- input : array_like
- Binary array_like to be closed. Non-zero (True) elements form
- the subset to be closed.
- structure : array_like, optional
- Structuring element used for the closing. Non-zero elements are
- considered True. If no structuring element is provided an element
- is generated with a square connectivity equal to one (i.e., only
- nearest neighbors are connected to the center, diagonally-connected
- elements are not considered neighbors).
- iterations : int, optional
- The dilation step of the closing, then the erosion step are each
- repeated `iterations` times (one, by default). If iterations is
- less than 1, each operations is repeated until the result does
- not change anymore. Only an integer of iterations is accepted.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- mask : array_like, optional
- If a mask is given, only those elements with a True value at
- the corresponding mask element are modified at each iteration.
- .. versionadded:: 1.1.0
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- .. versionadded:: 1.1.0
- brute_force : boolean, optional
- Memory condition: if False, only the pixels whose value was changed in
- the last iteration are tracked as candidates to be updated in the
- current iteration; if true al pixels are considered as candidates for
- update, regardless of what happened in the previous iteration.
- False by default.
- .. versionadded:: 1.1.0
- Returns
- -------
- binary_closing : ndarray of bools
- Closing of the input by the structuring element.
- See also
- --------
- grey_closing, binary_opening, binary_dilation, binary_erosion,
- generate_binary_structure
- Notes
- -----
- *Closing* [1]_ is a mathematical morphology operation [2]_ that
- consists in the succession of a dilation and an erosion of the
- input with the same structuring element. Closing therefore fills
- holes smaller than the structuring element.
- Together with *opening* (`binary_opening`), closing can be used for
- noise removal.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((5,5), dtype=int)
- >>> a[1:-1, 1:-1] = 1; a[2,2] = 0
- >>> a
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 0, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Closing removes small holes
- >>> ndimage.binary_closing(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Closing is the erosion of the dilation of the input
- >>> ndimage.binary_dilation(a).astype(int)
- array([[0, 1, 1, 1, 0],
- [1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1],
- [1, 1, 1, 1, 1],
- [0, 1, 1, 1, 0]])
- >>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1:6, 2:5] = 1; a[1:3,3] = 0
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> # In addition to removing holes, closing can also
- >>> # coarsen boundaries with fine hollows.
- >>> ndimage.binary_closing(a).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- input = numpy.asarray(input)
- if structure is None:
- rank = input.ndim
- structure = generate_binary_structure(rank, 1)
- tmp = binary_dilation(input, structure, iterations, mask, None,
- border_value, origin, brute_force)
- return binary_erosion(tmp, structure, iterations, mask, output,
- border_value, origin, brute_force)
- def binary_hit_or_miss(input, structure1=None, structure2=None,
- output=None, origin1=0, origin2=None):
- """
- Multidimensional binary hit-or-miss transform.
- The hit-or-miss transform finds the locations of a given pattern
- inside the input image.
- Parameters
- ----------
- input : array_like (cast to booleans)
- Binary image where a pattern is to be detected.
- structure1 : array_like (cast to booleans), optional
- Part of the structuring element to be fitted to the foreground
- (non-zero elements) of `input`. If no value is provided, a
- structure of square connectivity 1 is chosen.
- structure2 : array_like (cast to booleans), optional
- Second part of the structuring element that has to miss completely
- the foreground. If no value is provided, the complementary of
- `structure1` is taken.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin1 : int or tuple of ints, optional
- Placement of the first part of the structuring element `structure1`,
- by default 0 for a centered structure.
- origin2 : int or tuple of ints, optional
- Placement of the second part of the structuring element `structure2`,
- by default 0 for a centered structure. If a value is provided for
- `origin1` and not for `origin2`, then `origin2` is set to `origin1`.
- Returns
- -------
- binary_hit_or_miss : ndarray
- Hit-or-miss transform of `input` with the given structuring
- element (`structure1`, `structure2`).
- See also
- --------
- binary_erosion
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 0, 0, 0],
- [0, 0, 1, 1, 0, 0, 0],
- [0, 0, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
- >>> structure1
- array([[1, 0, 0],
- [0, 1, 1],
- [0, 1, 1]])
- >>> # Find the matches of structure1 in the array a
- >>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> # Change the origin of the filter
- >>> # origin1=1 is equivalent to origin1=(1,1) here
- >>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\
- ... origin1=1).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- input = numpy.asarray(input)
- if structure1 is None:
- structure1 = generate_binary_structure(input.ndim, 1)
- if structure2 is None:
- structure2 = numpy.logical_not(structure1)
- origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
- if origin2 is None:
- origin2 = origin1
- else:
- origin2 = _ni_support._normalize_sequence(origin2, input.ndim)
- tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
- 0, False)
- inplace = isinstance(output, numpy.ndarray)
- result = _binary_erosion(input, structure2, 1, None, output, 0,
- origin2, 1, False)
- if inplace:
- numpy.logical_not(output, output)
- numpy.logical_and(tmp1, output, output)
- else:
- numpy.logical_not(result, result)
- return numpy.logical_and(tmp1, result)
- def binary_propagation(input, structure=None, mask=None,
- output=None, border_value=0, origin=0):
- """
- Multidimensional binary propagation with the given structuring element.
- Parameters
- ----------
- input : array_like
- Binary image to be propagated inside `mask`.
- structure : array_like, optional
- Structuring element used in the successive dilations. The output
- may depend on the structuring element, especially if `mask` has
- several connex components. If no structuring element is
- provided, an element is generated with a squared connectivity equal
- to one.
- mask : array_like, optional
- Binary mask defining the region into which `input` is allowed to
- propagate.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- border_value : int (cast to 0 or 1), optional
- Value at the border in the output array.
- origin : int or tuple of ints, optional
- Placement of the filter, by default 0.
- Returns
- -------
- binary_propagation : ndarray
- Binary propagation of `input` inside `mask`.
- Notes
- -----
- This function is functionally equivalent to calling binary_dilation
- with the number of iterations less than one: iterative dilation until
- the result does not change anymore.
- The succession of an erosion and propagation inside the original image
- can be used instead of an *opening* for deleting small objects while
- keeping the contours of larger objects untouched.
- References
- ----------
- .. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
- .. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of
- image processing", 1998
- ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> input = np.zeros((8, 8), dtype=int)
- >>> input[2, 2] = 1
- >>> mask = np.zeros((8, 8), dtype=int)
- >>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
- >>> input
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- >>> mask
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 1],
- [0, 0, 0, 0, 0, 0, 1, 1]])
- >>> ndimage.binary_propagation(input, mask=mask).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_propagation(input, mask=mask,\\
- ... structure=np.ones((3,3))).astype(int)
- array([[0, 0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 1, 1, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0]])
- >>> # Comparison between opening and erosion+propagation
- >>> a = np.zeros((6,6), dtype=int)
- >>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
- >>> a
- array([[1, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 1]])
- >>> ndimage.binary_opening(a).astype(int)
- array([[0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0]])
- >>> b = ndimage.binary_erosion(a)
- >>> b.astype(int)
- array([[0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0]])
- >>> ndimage.binary_propagation(b, mask=a).astype(int)
- array([[0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0]])
- """
- return binary_dilation(input, structure, -1, mask, output,
- border_value, origin)
- def binary_fill_holes(input, structure=None, output=None, origin=0):
- """
- Fill the holes in binary objects.
- Parameters
- ----------
- input : array_like
- N-D binary array with holes to be filled
- structure : array_like, optional
- Structuring element used in the computation; large-size elements
- make computations faster but may miss holes separated from the
- background by thin regions. The default element (with a square
- connectivity equal to one) yields the intuitive result where all
- holes in the input have been filled.
- output : ndarray, optional
- Array of the same shape as input, into which the output is placed.
- By default, a new array is created.
- origin : int, tuple of ints, optional
- Position of the structuring element.
- Returns
- -------
- out : ndarray
- Transformation of the initial image `input` where holes have been
- filled.
- See also
- --------
- binary_dilation, binary_propagation, label
- Notes
- -----
- The algorithm used in this function consists in invading the complementary
- of the shapes in `input` from the outer boundary of the image,
- using binary dilations. Holes are not connected to the boundary and are
- therefore not invaded. The result is the complementary subset of the
- invaded region.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((5, 5), dtype=int)
- >>> a[1:4, 1:4] = 1
- >>> a[2,2] = 0
- >>> a
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 0, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> ndimage.binary_fill_holes(a).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- >>> # Too big structuring element
- >>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
- array([[0, 0, 0, 0, 0],
- [0, 1, 1, 1, 0],
- [0, 1, 0, 1, 0],
- [0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0]])
- """
- mask = numpy.logical_not(input)
- tmp = numpy.zeros(mask.shape, bool)
- inplace = isinstance(output, numpy.ndarray)
- if inplace:
- binary_dilation(tmp, structure, -1, mask, output, 1, origin)
- numpy.logical_not(output, output)
- else:
- output = binary_dilation(tmp, structure, -1, mask, None, 1,
- origin)
- numpy.logical_not(output, output)
- return output
- def grey_erosion(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Calculate a greyscale erosion, using either a structuring element,
- or a footprint corresponding to a flat structuring element.
- Grayscale erosion is a mathematical morphology operation. For the
- simple case of a full and flat structuring element, it can be viewed
- as a minimum filter over a sliding window.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale erosion is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- erosion. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale erosion. Non-zero values give the set of
- neighbors of the center over which the minimum is chosen.
- structure : array of ints, optional
- Structuring element used for the grayscale erosion. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the erosion may be provided.
- mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- output : ndarray
- Grayscale erosion of `input`.
- See also
- --------
- binary_erosion, grey_dilation, grey_opening, grey_closing
- generate_binary_structure, minimum_filter
- Notes
- -----
- The grayscale erosion of an image input by a structuring element s defined
- over a domain E is given by:
- (input+s)(x) = min {input(y) - s(x-y), for y in E}
- In particular, for structuring elements defined as
- s(y) = 0 for y in E, the grayscale erosion computes the minimum of the
- input image inside a sliding window defined by E.
- Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[1:6, 1:6] = 3
- >>> a[4,4] = 2; a[2,3] = 1
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 3, 3, 3, 3, 3, 0],
- [0, 3, 3, 1, 3, 3, 0],
- [0, 3, 3, 3, 3, 3, 0],
- [0, 3, 3, 3, 2, 3, 0],
- [0, 3, 3, 3, 3, 3, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_erosion(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 3, 2, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> footprint = ndimage.generate_binary_structure(2, 1)
- >>> footprint
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> # Diagonally-connected elements are not considered neighbors
- >>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 3, 1, 2, 0, 0],
- [0, 0, 3, 2, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- if size is None and footprint is None and structure is None:
- raise ValueError("size, footprint, or structure must be specified")
- return _filters._min_or_max_filter(input, size, footprint, structure,
- output, mode, cval, origin, 1)
- def grey_dilation(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Calculate a greyscale dilation, using either a structuring element,
- or a footprint corresponding to a flat structuring element.
- Grayscale dilation is a mathematical morphology operation. For the
- simple case of a full and flat structuring element, it can be viewed
- as a maximum filter over a sliding window.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale dilation is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- dilation. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale dilation. Non-zero values give the set of
- neighbors of the center over which the maximum is chosen.
- structure : array of ints, optional
- Structuring element used for the grayscale dilation. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the dilation may be provided.
- mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- grey_dilation : ndarray
- Grayscale dilation of `input`.
- See also
- --------
- binary_dilation, grey_erosion, grey_closing, grey_opening
- generate_binary_structure, maximum_filter
- Notes
- -----
- The grayscale dilation of an image input by a structuring element s defined
- over a domain E is given by:
- (input+s)(x) = max {input(y) + s(x-y), for y in E}
- In particular, for structuring elements defined as
- s(y) = 0 for y in E, the grayscale dilation computes the maximum of the
- input image inside a sliding window defined by E.
- Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
- .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[2:5, 2:5] = 1
- >>> a[4,4] = 2; a[2,3] = 3
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 3, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_dilation(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> s = ndimage.generate_binary_structure(2,1)
- >>> s
- array([[False, True, False],
- [ True, True, True],
- [False, True, False]], dtype=bool)
- >>> ndimage.grey_dilation(a, footprint=s)
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 3, 1, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 1, 3, 2, 1, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 1, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
- array([[1, 1, 1, 1, 1, 1, 1],
- [1, 2, 4, 4, 4, 2, 1],
- [1, 2, 4, 4, 4, 2, 1],
- [1, 2, 4, 4, 4, 3, 1],
- [1, 2, 2, 3, 3, 3, 1],
- [1, 2, 2, 3, 3, 3, 1],
- [1, 1, 1, 1, 1, 1, 1]])
- """
- if size is None and footprint is None and structure is None:
- raise ValueError("size, footprint, or structure must be specified")
- if structure is not None:
- structure = numpy.asarray(structure)
- structure = structure[tuple([slice(None, None, -1)] *
- structure.ndim)]
- if footprint is not None:
- footprint = numpy.asarray(footprint)
- footprint = footprint[tuple([slice(None, None, -1)] *
- footprint.ndim)]
- input = numpy.asarray(input)
- origin = _ni_support._normalize_sequence(origin, input.ndim)
- for ii in range(len(origin)):
- origin[ii] = -origin[ii]
- if footprint is not None:
- sz = footprint.shape[ii]
- elif structure is not None:
- sz = structure.shape[ii]
- elif numpy.isscalar(size):
- sz = size
- else:
- sz = size[ii]
- if not sz & 1:
- origin[ii] -= 1
- return _filters._min_or_max_filter(input, size, footprint, structure,
- output, mode, cval, origin, 0)
- def grey_opening(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multidimensional grayscale opening.
- A grayscale opening consists in the succession of a grayscale erosion,
- and a grayscale dilation.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale opening is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- opening. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale opening.
- structure : array of ints, optional
- Structuring element used for the grayscale opening. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the opening may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- grey_opening : ndarray
- Result of the grayscale opening of `input` with `structure`.
- See also
- --------
- binary_opening, grey_dilation, grey_erosion, grey_closing
- generate_binary_structure
- Notes
- -----
- The action of a grayscale opening with a flat structuring element amounts
- to smoothen high local maxima, whereas binary opening erases small objects.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.arange(36).reshape((6,6))
- >>> a[3, 3] = 50
- >>> a
- array([[ 0, 1, 2, 3, 4, 5],
- [ 6, 7, 8, 9, 10, 11],
- [12, 13, 14, 15, 16, 17],
- [18, 19, 20, 50, 22, 23],
- [24, 25, 26, 27, 28, 29],
- [30, 31, 32, 33, 34, 35]])
- >>> ndimage.grey_opening(a, size=(3,3))
- array([[ 0, 1, 2, 3, 4, 4],
- [ 6, 7, 8, 9, 10, 10],
- [12, 13, 14, 15, 16, 16],
- [18, 19, 20, 22, 22, 22],
- [24, 25, 26, 27, 28, 28],
- [24, 25, 26, 27, 28, 28]])
- >>> # Note that the local maximum a[3,3] has disappeared
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_erosion(input, size, footprint, structure, None, mode,
- cval, origin)
- return grey_dilation(tmp, size, footprint, structure, output, mode,
- cval, origin)
- def grey_closing(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multidimensional grayscale closing.
- A grayscale closing consists in the succession of a grayscale dilation,
- and a grayscale erosion.
- Parameters
- ----------
- input : array_like
- Array over which the grayscale closing is to be computed.
- size : tuple of ints
- Shape of a flat and full structuring element used for the grayscale
- closing. Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the grayscale closing.
- structure : array of ints, optional
- Structuring element used for the grayscale closing. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the closing may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- grey_closing : ndarray
- Result of the grayscale closing of `input` with `structure`.
- See also
- --------
- binary_closing, grey_dilation, grey_erosion, grey_opening,
- generate_binary_structure
- Notes
- -----
- The action of a grayscale closing with a flat structuring element amounts
- to smoothen deep local minima, whereas binary closing fills small holes.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.arange(36).reshape((6,6))
- >>> a[3,3] = 0
- >>> a
- array([[ 0, 1, 2, 3, 4, 5],
- [ 6, 7, 8, 9, 10, 11],
- [12, 13, 14, 15, 16, 17],
- [18, 19, 20, 0, 22, 23],
- [24, 25, 26, 27, 28, 29],
- [30, 31, 32, 33, 34, 35]])
- >>> ndimage.grey_closing(a, size=(3,3))
- array([[ 7, 7, 8, 9, 10, 11],
- [ 7, 7, 8, 9, 10, 11],
- [13, 13, 14, 15, 16, 17],
- [19, 19, 20, 20, 22, 23],
- [25, 25, 26, 27, 28, 29],
- [31, 31, 32, 33, 34, 35]])
- >>> # Note that the local minimum a[3,3] has disappeared
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- return grey_erosion(tmp, size, footprint, structure, output, mode,
- cval, origin)
- def morphological_gradient(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multidimensional morphological gradient.
- The morphological gradient is calculated as the difference between a
- dilation and an erosion of the input with a given structuring element.
- Parameters
- ----------
- input : array_like
- Array over which to compute the morphlogical gradient.
- size : tuple of ints
- Shape of a flat and full structuring element used for the mathematical
- morphology operations. Optional if `footprint` or `structure` is
- provided. A larger `size` yields a more blurred gradient.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the morphology operations. Larger footprints
- give a more blurred morphological gradient.
- structure : array of ints, optional
- Structuring element used for the morphology operations.
- `structure` may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the morphological gradient
- may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- morphological_gradient : ndarray
- Morphological gradient of `input`.
- See also
- --------
- grey_dilation, grey_erosion, gaussian_gradient_magnitude
- Notes
- -----
- For a flat structuring element, the morphological gradient
- computed at a given point corresponds to the maximal difference
- between elements of the input among the elements covered by the
- structuring element centered on the point.
- References
- ----------
- .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[2:5, 2:5] = 1
- >>> ndimage.morphological_gradient(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> # The morphological gradient is computed as the difference
- >>> # between a dilation and an erosion
- >>> ndimage.grey_dilation(a, size=(3,3)) -\\
- ... ndimage.grey_erosion(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 0, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 1, 1, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> a = np.zeros((7,7), dtype=int)
- >>> a[2:5, 2:5] = 1
- >>> a[4,4] = 2; a[2,3] = 3
- >>> a
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 1, 3, 1, 0, 0],
- [0, 0, 1, 1, 1, 0, 0],
- [0, 0, 1, 1, 2, 0, 0],
- [0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- >>> ndimage.morphological_gradient(a, size=(3,3))
- array([[0, 0, 0, 0, 0, 0, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 3, 3, 1, 0],
- [0, 1, 3, 2, 3, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 1, 1, 2, 2, 2, 0],
- [0, 0, 0, 0, 0, 0, 0]])
- """
- tmp = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- if isinstance(output, numpy.ndarray):
- grey_erosion(input, size, footprint, structure, output, mode,
- cval, origin)
- return numpy.subtract(tmp, output, output)
- else:
- return (tmp - grey_erosion(input, size, footprint, structure,
- None, mode, cval, origin))
- def morphological_laplace(input, size=None, footprint=None,
- structure=None, output=None,
- mode="reflect", cval=0.0, origin=0):
- """
- Multidimensional morphological laplace.
- Parameters
- ----------
- input : array_like
- Input.
- size : int or sequence of ints, optional
- See `structure`.
- footprint : bool or ndarray, optional
- See `structure`.
- structure : structure, optional
- Either `size`, `footprint`, or the `structure` must be provided.
- output : ndarray, optional
- An output array can optionally be provided.
- mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
- The mode parameter determines how the array borders are handled.
- For 'constant' mode, values beyond borders are set to be `cval`.
- Default is 'reflect'.
- cval : scalar, optional
- Value to fill past edges of input if mode is 'constant'.
- Default is 0.0
- origin : origin, optional
- The origin parameter controls the placement of the filter.
- Returns
- -------
- morphological_laplace : ndarray
- Output
- """
- tmp1 = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- if isinstance(output, numpy.ndarray):
- grey_erosion(input, size, footprint, structure, output, mode,
- cval, origin)
- numpy.add(tmp1, output, output)
- numpy.subtract(output, input, output)
- return numpy.subtract(output, input, output)
- else:
- tmp2 = grey_erosion(input, size, footprint, structure, None, mode,
- cval, origin)
- numpy.add(tmp1, tmp2, tmp2)
- numpy.subtract(tmp2, input, tmp2)
- numpy.subtract(tmp2, input, tmp2)
- return tmp2
- def white_tophat(input, size=None, footprint=None, structure=None,
- output=None, mode="reflect", cval=0.0, origin=0):
- """
- Multidimensional white tophat filter.
- Parameters
- ----------
- input : array_like
- Input.
- size : tuple of ints
- Shape of a flat and full structuring element used for the filter.
- Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of elements of a flat structuring element
- used for the white tophat filter.
- structure : array of ints, optional
- Structuring element used for the filter. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the filter may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'.
- Default is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default is 0.
- Returns
- -------
- output : ndarray
- Result of the filter of `input` with `structure`.
- Examples
- --------
- Subtract gray background from a bright peak.
- >>> from scipy.ndimage import generate_binary_structure, white_tophat
- >>> import numpy as np
- >>> square = generate_binary_structure(rank=2, connectivity=3)
- >>> bright_on_gray = np.array([[2, 3, 3, 3, 2],
- ... [3, 4, 5, 4, 3],
- ... [3, 5, 9, 5, 3],
- ... [3, 4, 5, 4, 3],
- ... [2, 3, 3, 3, 2]])
- >>> white_tophat(input=bright_on_gray, structure=square)
- array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 1, 5, 1, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]])
- See also
- --------
- black_tophat
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_erosion(input, size, footprint, structure, None, mode,
- cval, origin)
- tmp = grey_dilation(tmp, size, footprint, structure, output, mode,
- cval, origin)
- if tmp is None:
- tmp = output
- if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
- numpy.bitwise_xor(input, tmp, out=tmp)
- else:
- numpy.subtract(input, tmp, out=tmp)
- return tmp
- def black_tophat(input, size=None, footprint=None,
- structure=None, output=None, mode="reflect",
- cval=0.0, origin=0):
- """
- Multidimensional black tophat filter.
- Parameters
- ----------
- input : array_like
- Input.
- size : tuple of ints, optional
- Shape of a flat and full structuring element used for the filter.
- Optional if `footprint` or `structure` is provided.
- footprint : array of ints, optional
- Positions of non-infinite elements of a flat structuring element
- used for the black tophat filter.
- structure : array of ints, optional
- Structuring element used for the filter. `structure`
- may be a non-flat structuring element.
- output : array, optional
- An array used for storing the output of the filter may be provided.
- mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
- The `mode` parameter determines how the array borders are
- handled, where `cval` is the value when mode is equal to
- 'constant'. Default is 'reflect'
- cval : scalar, optional
- Value to fill past edges of input if `mode` is 'constant'. Default
- is 0.0.
- origin : scalar, optional
- The `origin` parameter controls the placement of the filter.
- Default 0
- Returns
- -------
- black_tophat : ndarray
- Result of the filter of `input` with `structure`.
- Examples
- --------
- Change dark peak to bright peak and subtract background.
- >>> from scipy.ndimage import generate_binary_structure, black_tophat
- >>> import numpy as np
- >>> square = generate_binary_structure(rank=2, connectivity=3)
- >>> dark_on_gray = np.array([[7, 6, 6, 6, 7],
- ... [6, 5, 4, 5, 6],
- ... [6, 4, 0, 4, 6],
- ... [6, 5, 4, 5, 6],
- ... [7, 6, 6, 6, 7]])
- >>> black_tophat(input=dark_on_gray, structure=square)
- array([[0, 0, 0, 0, 0],
- [0, 0, 1, 0, 0],
- [0, 1, 5, 1, 0],
- [0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0]])
- See also
- --------
- white_tophat, grey_opening, grey_closing
- """
- if (size is not None) and (footprint is not None):
- warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
- tmp = grey_dilation(input, size, footprint, structure, None, mode,
- cval, origin)
- tmp = grey_erosion(tmp, size, footprint, structure, output, mode,
- cval, origin)
- if tmp is None:
- tmp = output
- if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
- numpy.bitwise_xor(tmp, input, out=tmp)
- else:
- numpy.subtract(tmp, input, out=tmp)
- return tmp
- def distance_transform_bf(input, metric="euclidean", sampling=None,
- return_distances=True, return_indices=False,
- distances=None, indices=None):
- """
- Distance transform function by a brute force algorithm.
- This function calculates the distance transform of the `input`, by
- replacing each foreground (non-zero) element, with its
- shortest distance to the background (any zero-valued element).
- In addition to the distance transform, the feature transform can
- be calculated. In this case the index of the closest background
- element to each foreground element is returned in a separate array.
- Parameters
- ----------
- input : array_like
- Input
- metric : {'euclidean', 'taxicab', 'chessboard'}, optional
- 'cityblock' and 'manhattan' are also valid, and map to 'taxicab'.
- The default is 'euclidean'.
- sampling : float, or sequence of float, optional
- This parameter is only used when `metric` is 'euclidean'.
- Spacing of elements along each dimension. If a sequence, must be of
- length equal to the input rank; if a single number, this is used for
- all axes. If not specified, a grid spacing of unity is implied.
- return_distances : bool, optional
- Whether to calculate the distance transform.
- Default is True.
- return_indices : bool, optional
- Whether to calculate the feature transform.
- Default is False.
- distances : ndarray, optional
- An output array to store the calculated distance transform, instead of
- returning it.
- `return_distances` must be True.
- It must be the same shape as `input`, and of type float64 if `metric`
- is 'euclidean', uint32 otherwise.
- indices : int32 ndarray, optional
- An output array to store the calculated feature transform, instead of
- returning it.
- `return_indicies` must be True.
- Its shape must be `(input.ndim,) + input.shape`.
- Returns
- -------
- distances : ndarray, optional
- The calculated distance transform. Returned only when
- `return_distances` is True and `distances` is not supplied.
- It will have the same shape as the input array.
- indices : int32 ndarray, optional
- The calculated feature transform. It has an input-shaped array for each
- dimension of the input. See distance_transform_edt documentation for an
- example.
- Returned only when `return_indices` is True and `indices` is not
- supplied.
- Notes
- -----
- This function employs a slow brute force algorithm, see also the
- function distance_transform_cdt for more efficient taxicab and
- chessboard algorithms.
- """
- ft_inplace = isinstance(indices, numpy.ndarray)
- dt_inplace = isinstance(distances, numpy.ndarray)
- _distance_tranform_arg_check(
- dt_inplace, ft_inplace, return_distances, return_indices
- )
- tmp1 = numpy.asarray(input) != 0
- struct = generate_binary_structure(tmp1.ndim, tmp1.ndim)
- tmp2 = binary_dilation(tmp1, struct)
- tmp2 = numpy.logical_xor(tmp1, tmp2)
- tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8)
- metric = metric.lower()
- if metric == 'euclidean':
- metric = 1
- elif metric in ['taxicab', 'cityblock', 'manhattan']:
- metric = 2
- elif metric == 'chessboard':
- metric = 3
- else:
- raise RuntimeError('distance metric not supported')
- if sampling is not None:
- sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim)
- sampling = numpy.asarray(sampling, dtype=numpy.float64)
- if not sampling.flags.contiguous:
- sampling = sampling.copy()
- if return_indices:
- ft = numpy.zeros(tmp1.shape, dtype=numpy.int32)
- else:
- ft = None
- if return_distances:
- if distances is None:
- if metric == 1:
- dt = numpy.zeros(tmp1.shape, dtype=numpy.float64)
- else:
- dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32)
- else:
- if distances.shape != tmp1.shape:
- raise RuntimeError('distances array has wrong shape')
- if metric == 1:
- if distances.dtype.type != numpy.float64:
- raise RuntimeError('distances array must be float64')
- else:
- if distances.dtype.type != numpy.uint32:
- raise RuntimeError('distances array must be uint32')
- dt = distances
- else:
- dt = None
- _nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft)
- if return_indices:
- if isinstance(indices, numpy.ndarray):
- if indices.dtype.type != numpy.int32:
- raise RuntimeError('indices array must be int32')
- if indices.shape != (tmp1.ndim,) + tmp1.shape:
- raise RuntimeError('indices array has wrong shape')
- tmp2 = indices
- else:
- tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32)
- ft = numpy.ravel(ft)
- for ii in range(tmp2.shape[0]):
- rtmp = numpy.ravel(tmp2[ii, ...])[ft]
- rtmp.shape = tmp1.shape
- tmp2[ii, ...] = rtmp
- ft = tmp2
- # construct and return the result
- result = []
- if return_distances and not dt_inplace:
- result.append(dt)
- if return_indices and not ft_inplace:
- result.append(ft)
- if len(result) == 2:
- return tuple(result)
- elif len(result) == 1:
- return result[0]
- else:
- return None
- def distance_transform_cdt(input, metric='chessboard', return_distances=True,
- return_indices=False, distances=None, indices=None):
- """
- Distance transform for chamfer type of transforms.
- In addition to the distance transform, the feature transform can
- be calculated. In this case the index of the closest background
- element to each foreground element is returned in a separate array.
- Parameters
- ----------
- input : array_like
- Input
- metric : {'chessboard', 'taxicab'} or array_like, optional
- The `metric` determines the type of chamfering that is done. If the
- `metric` is equal to 'taxicab' a structure is generated using
- generate_binary_structure with a squared distance equal to 1. If
- the `metric` is equal to 'chessboard', a `metric` is generated
- using generate_binary_structure with a squared distance equal to
- the dimensionality of the array. These choices correspond to the
- common interpretations of the 'taxicab' and the 'chessboard'
- distance metrics in two dimensions.
- A custom metric may be provided, in the form of a matrix where
- each dimension has a length of three.
- 'cityblock' and 'manhattan' are also valid, and map to 'taxicab'.
- The default is 'chessboard'.
- return_distances : bool, optional
- Whether to calculate the distance transform.
- Default is True.
- return_indices : bool, optional
- Whether to calculate the feature transform.
- Default is False.
- distances : int32 ndarray, optional
- An output array to store the calculated distance transform, instead of
- returning it.
- `return_distances` must be True.
- It must be the same shape as `input`.
- indices : int32 ndarray, optional
- An output array to store the calculated feature transform, instead of
- returning it.
- `return_indicies` must be True.
- Its shape must be `(input.ndim,) + input.shape`.
- Returns
- -------
- distances : int32 ndarray, optional
- The calculated distance transform. Returned only when
- `return_distances` is True, and `distances` is not supplied.
- It will have the same shape as the input array.
- indices : int32 ndarray, optional
- The calculated feature transform. It has an input-shaped array for each
- dimension of the input. See distance_transform_edt documentation for an
- example.
- Returned only when `return_indices` is True, and `indices` is not
- supplied.
- """
- ft_inplace = isinstance(indices, numpy.ndarray)
- dt_inplace = isinstance(distances, numpy.ndarray)
- _distance_tranform_arg_check(
- dt_inplace, ft_inplace, return_distances, return_indices
- )
- input = numpy.asarray(input)
- if metric in ['taxicab', 'cityblock', 'manhattan']:
- rank = input.ndim
- metric = generate_binary_structure(rank, 1)
- elif metric == 'chessboard':
- rank = input.ndim
- metric = generate_binary_structure(rank, rank)
- else:
- try:
- metric = numpy.asarray(metric)
- except Exception as e:
- raise RuntimeError('invalid metric provided') from e
- for s in metric.shape:
- if s != 3:
- raise RuntimeError('metric sizes must be equal to 3')
- if not metric.flags.contiguous:
- metric = metric.copy()
- if dt_inplace:
- if distances.dtype.type != numpy.int32:
- raise RuntimeError('distances must be of int32 type')
- if distances.shape != input.shape:
- raise RuntimeError('distances has wrong shape')
- dt = distances
- dt[...] = numpy.where(input, -1, 0).astype(numpy.int32)
- else:
- dt = numpy.where(input, -1, 0).astype(numpy.int32)
- rank = dt.ndim
- if return_indices:
- sz = numpy.prod(dt.shape, axis=0)
- ft = numpy.arange(sz, dtype=numpy.int32)
- ft.shape = dt.shape
- else:
- ft = None
- _nd_image.distance_transform_op(metric, dt, ft)
- dt = dt[tuple([slice(None, None, -1)] * rank)]
- if return_indices:
- ft = ft[tuple([slice(None, None, -1)] * rank)]
- _nd_image.distance_transform_op(metric, dt, ft)
- dt = dt[tuple([slice(None, None, -1)] * rank)]
- if return_indices:
- ft = ft[tuple([slice(None, None, -1)] * rank)]
- ft = numpy.ravel(ft)
- if ft_inplace:
- if indices.dtype.type != numpy.int32:
- raise RuntimeError('indices array must be int32')
- if indices.shape != (dt.ndim,) + dt.shape:
- raise RuntimeError('indices array has wrong shape')
- tmp = indices
- else:
- tmp = numpy.indices(dt.shape, dtype=numpy.int32)
- for ii in range(tmp.shape[0]):
- rtmp = numpy.ravel(tmp[ii, ...])[ft]
- rtmp.shape = dt.shape
- tmp[ii, ...] = rtmp
- ft = tmp
- # construct and return the result
- result = []
- if return_distances and not dt_inplace:
- result.append(dt)
- if return_indices and not ft_inplace:
- result.append(ft)
- if len(result) == 2:
- return tuple(result)
- elif len(result) == 1:
- return result[0]
- else:
- return None
- def distance_transform_edt(input, sampling=None, return_distances=True,
- return_indices=False, distances=None, indices=None):
- """
- Exact Euclidean distance transform.
- In addition to the distance transform, the feature transform can
- be calculated. In this case the index of the closest background
- element to each foreground element is returned in a separate array.
- Parameters
- ----------
- input : array_like
- Input data to transform. Can be any type but will be converted
- into binary: 1 wherever input equates to True, 0 elsewhere.
- sampling : float, or sequence of float, optional
- Spacing of elements along each dimension. If a sequence, must be of
- length equal to the input rank; if a single number, this is used for
- all axes. If not specified, a grid spacing of unity is implied.
- return_distances : bool, optional
- Whether to calculate the distance transform.
- Default is True.
- return_indices : bool, optional
- Whether to calculate the feature transform.
- Default is False.
- distances : float64 ndarray, optional
- An output array to store the calculated distance transform, instead of
- returning it.
- `return_distances` must be True.
- It must be the same shape as `input`.
- indices : int32 ndarray, optional
- An output array to store the calculated feature transform, instead of
- returning it.
- `return_indicies` must be True.
- Its shape must be `(input.ndim,) + input.shape`.
- Returns
- -------
- distances : float64 ndarray, optional
- The calculated distance transform. Returned only when
- `return_distances` is True and `distances` is not supplied.
- It will have the same shape as the input array.
- indices : int32 ndarray, optional
- The calculated feature transform. It has an input-shaped array for each
- dimension of the input. See example below.
- Returned only when `return_indices` is True and `indices` is not
- supplied.
- Notes
- -----
- The Euclidean distance transform gives values of the Euclidean
- distance::
- n
- y_i = sqrt(sum (x[i]-b[i])**2)
- i
- where b[i] is the background point (value 0) with the smallest
- Euclidean distance to input points x[i], and n is the
- number of dimensions.
- Examples
- --------
- >>> from scipy import ndimage
- >>> import numpy as np
- >>> a = np.array(([0,1,1,1,1],
- ... [0,0,1,1,1],
- ... [0,1,1,1,1],
- ... [0,1,1,1,0],
- ... [0,1,1,0,0]))
- >>> ndimage.distance_transform_edt(a)
- array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
- [ 0. , 0. , 1. , 2. , 2. ],
- [ 0. , 1. , 1.4142, 1.4142, 1. ],
- [ 0. , 1. , 1.4142, 1. , 0. ],
- [ 0. , 1. , 1. , 0. , 0. ]])
- With a sampling of 2 units along x, 1 along y:
- >>> ndimage.distance_transform_edt(a, sampling=[2,1])
- array([[ 0. , 1. , 2. , 2.8284, 3.6056],
- [ 0. , 0. , 1. , 2. , 3. ],
- [ 0. , 1. , 2. , 2.2361, 2. ],
- [ 0. , 1. , 2. , 1. , 0. ],
- [ 0. , 1. , 1. , 0. , 0. ]])
- Asking for indices as well:
- >>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
- >>> inds
- array([[[0, 0, 1, 1, 3],
- [1, 1, 1, 1, 3],
- [2, 2, 1, 3, 3],
- [3, 3, 4, 4, 3],
- [4, 4, 4, 4, 4]],
- [[0, 0, 1, 1, 4],
- [0, 1, 1, 1, 4],
- [0, 0, 1, 4, 4],
- [0, 0, 3, 3, 4],
- [0, 0, 3, 3, 4]]])
- With arrays provided for inplace outputs:
- >>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
- >>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
- array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
- [ 0. , 0. , 1. , 2. , 2. ],
- [ 0. , 1. , 1.4142, 1.4142, 1. ],
- [ 0. , 1. , 1.4142, 1. , 0. ],
- [ 0. , 1. , 1. , 0. , 0. ]])
- >>> indices
- array([[[0, 0, 1, 1, 3],
- [1, 1, 1, 1, 3],
- [2, 2, 1, 3, 3],
- [3, 3, 4, 4, 3],
- [4, 4, 4, 4, 4]],
- [[0, 0, 1, 1, 4],
- [0, 1, 1, 1, 4],
- [0, 0, 1, 4, 4],
- [0, 0, 3, 3, 4],
- [0, 0, 3, 3, 4]]])
- """
- ft_inplace = isinstance(indices, numpy.ndarray)
- dt_inplace = isinstance(distances, numpy.ndarray)
- _distance_tranform_arg_check(
- dt_inplace, ft_inplace, return_distances, return_indices
- )
- # calculate the feature transform
- input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8))
- if sampling is not None:
- sampling = _ni_support._normalize_sequence(sampling, input.ndim)
- sampling = numpy.asarray(sampling, dtype=numpy.float64)
- if not sampling.flags.contiguous:
- sampling = sampling.copy()
- if ft_inplace:
- ft = indices
- if ft.shape != (input.ndim,) + input.shape:
- raise RuntimeError('indices array has wrong shape')
- if ft.dtype.type != numpy.int32:
- raise RuntimeError('indices array must be int32')
- else:
- ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32)
- _nd_image.euclidean_feature_transform(input, sampling, ft)
- # if requested, calculate the distance transform
- if return_distances:
- dt = ft - numpy.indices(input.shape, dtype=ft.dtype)
- dt = dt.astype(numpy.float64)
- if sampling is not None:
- for ii in range(len(sampling)):
- dt[ii, ...] *= sampling[ii]
- numpy.multiply(dt, dt, dt)
- if dt_inplace:
- dt = numpy.add.reduce(dt, axis=0)
- if distances.shape != dt.shape:
- raise RuntimeError('distances array has wrong shape')
- if distances.dtype.type != numpy.float64:
- raise RuntimeError('distances array must be float64')
- numpy.sqrt(dt, distances)
- else:
- dt = numpy.add.reduce(dt, axis=0)
- dt = numpy.sqrt(dt)
- # construct and return the result
- result = []
- if return_distances and not dt_inplace:
- result.append(dt)
- if return_indices and not ft_inplace:
- result.append(ft)
- if len(result) == 2:
- return tuple(result)
- elif len(result) == 1:
- return result[0]
- else:
- return None
- def _distance_tranform_arg_check(distances_out, indices_out,
- return_distances, return_indices):
- """Raise a RuntimeError if the arguments are invalid"""
- error_msgs = []
- if (not return_distances) and (not return_indices):
- error_msgs.append(
- 'at least one of return_distances/return_indices must be True')
- if distances_out and not return_distances:
- error_msgs.append(
- 'return_distances must be True if distances is supplied'
- )
- if indices_out and not return_indices:
- error_msgs.append('return_indices must be True if indices is supplied')
- if error_msgs:
- raise RuntimeError(', '.join(error_msgs))
|