123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690 |
- import pytest
- import numpy as np
- from numpy import arange, add, array, eye, copy, sqrt
- from numpy.testing import (assert_equal, assert_array_equal,
- assert_array_almost_equal, assert_allclose)
- from pytest import raises as assert_raises
- from scipy.fft import fft
- from scipy.special import comb
- from scipy.linalg import (toeplitz, hankel, circulant, hadamard, leslie, dft,
- companion, tri, triu, tril, kron, block_diag,
- helmert, hilbert, invhilbert, pascal, invpascal,
- fiedler, fiedler_companion, eigvals,
- convolution_matrix)
- from numpy.linalg import cond
- def get_mat(n):
- data = arange(n)
- data = add.outer(data, data)
- return data
- class TestTri:
- def test_basic(self):
- assert_equal(tri(4), array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [1, 1, 1, 0],
- [1, 1, 1, 1]]))
- assert_equal(tri(4, dtype='f'), array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [1, 1, 1, 0],
- [1, 1, 1, 1]], 'f'))
- def test_diag(self):
- assert_equal(tri(4, k=1), array([[1, 1, 0, 0],
- [1, 1, 1, 0],
- [1, 1, 1, 1],
- [1, 1, 1, 1]]))
- assert_equal(tri(4, k=-1), array([[0, 0, 0, 0],
- [1, 0, 0, 0],
- [1, 1, 0, 0],
- [1, 1, 1, 0]]))
- def test_2d(self):
- assert_equal(tri(4, 3), array([[1, 0, 0],
- [1, 1, 0],
- [1, 1, 1],
- [1, 1, 1]]))
- assert_equal(tri(3, 4), array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [1, 1, 1, 0]]))
- def test_diag2d(self):
- assert_equal(tri(3, 4, k=2), array([[1, 1, 1, 0],
- [1, 1, 1, 1],
- [1, 1, 1, 1]]))
- assert_equal(tri(4, 3, k=-2), array([[0, 0, 0],
- [0, 0, 0],
- [1, 0, 0],
- [1, 1, 0]]))
- class TestTril:
- def test_basic(self):
- a = (100*get_mat(5)).astype('l')
- b = a.copy()
- for k in range(5):
- for l in range(k+1, 5):
- b[k, l] = 0
- assert_equal(tril(a), b)
- def test_diag(self):
- a = (100*get_mat(5)).astype('f')
- b = a.copy()
- for k in range(5):
- for l in range(k+3, 5):
- b[k, l] = 0
- assert_equal(tril(a, k=2), b)
- b = a.copy()
- for k in range(5):
- for l in range(max((k-1, 0)), 5):
- b[k, l] = 0
- assert_equal(tril(a, k=-2), b)
- class TestTriu:
- def test_basic(self):
- a = (100*get_mat(5)).astype('l')
- b = a.copy()
- for k in range(5):
- for l in range(k+1, 5):
- b[l, k] = 0
- assert_equal(triu(a), b)
- def test_diag(self):
- a = (100*get_mat(5)).astype('f')
- b = a.copy()
- for k in range(5):
- for l in range(max((k-1, 0)), 5):
- b[l, k] = 0
- assert_equal(triu(a, k=2), b)
- b = a.copy()
- for k in range(5):
- for l in range(k+3, 5):
- b[l, k] = 0
- assert_equal(triu(a, k=-2), b)
- class TestToeplitz:
- def test_basic(self):
- y = toeplitz([1, 2, 3])
- assert_array_equal(y, [[1, 2, 3], [2, 1, 2], [3, 2, 1]])
- y = toeplitz([1, 2, 3], [1, 4, 5])
- assert_array_equal(y, [[1, 4, 5], [2, 1, 4], [3, 2, 1]])
- def test_complex_01(self):
- data = (1.0 + arange(3.0)) * (1.0 + 1.0j)
- x = copy(data)
- t = toeplitz(x)
- # Calling toeplitz should not change x.
- assert_array_equal(x, data)
- # According to the docstring, x should be the first column of t.
- col0 = t[:, 0]
- assert_array_equal(col0, data)
- assert_array_equal(t[0, 1:], data[1:].conj())
- def test_scalar_00(self):
- """Scalar arguments still produce a 2D array."""
- t = toeplitz(10)
- assert_array_equal(t, [[10]])
- t = toeplitz(10, 20)
- assert_array_equal(t, [[10]])
- def test_scalar_01(self):
- c = array([1, 2, 3])
- t = toeplitz(c, 1)
- assert_array_equal(t, [[1], [2], [3]])
- def test_scalar_02(self):
- c = array([1, 2, 3])
- t = toeplitz(c, array(1))
- assert_array_equal(t, [[1], [2], [3]])
- def test_scalar_03(self):
- c = array([1, 2, 3])
- t = toeplitz(c, array([1]))
- assert_array_equal(t, [[1], [2], [3]])
- def test_scalar_04(self):
- r = array([10, 2, 3])
- t = toeplitz(1, r)
- assert_array_equal(t, [[1, 2, 3]])
- class TestHankel:
- def test_basic(self):
- y = hankel([1, 2, 3])
- assert_array_equal(y, [[1, 2, 3], [2, 3, 0], [3, 0, 0]])
- y = hankel([1, 2, 3], [3, 4, 5])
- assert_array_equal(y, [[1, 2, 3], [2, 3, 4], [3, 4, 5]])
- class TestCirculant:
- def test_basic(self):
- y = circulant([1, 2, 3])
- assert_array_equal(y, [[1, 3, 2], [2, 1, 3], [3, 2, 1]])
- class TestHadamard:
- def test_basic(self):
- y = hadamard(1)
- assert_array_equal(y, [[1]])
- y = hadamard(2, dtype=float)
- assert_array_equal(y, [[1.0, 1.0], [1.0, -1.0]])
- y = hadamard(4)
- assert_array_equal(y, [[1, 1, 1, 1],
- [1, -1, 1, -1],
- [1, 1, -1, -1],
- [1, -1, -1, 1]])
- assert_raises(ValueError, hadamard, 0)
- assert_raises(ValueError, hadamard, 5)
- class TestLeslie:
- def test_bad_shapes(self):
- assert_raises(ValueError, leslie, [[1, 1], [2, 2]], [3, 4, 5])
- assert_raises(ValueError, leslie, [3, 4, 5], [[1, 1], [2, 2]])
- assert_raises(ValueError, leslie, [1, 2], [1, 2])
- assert_raises(ValueError, leslie, [1], [])
- def test_basic(self):
- a = leslie([1, 2, 3], [0.25, 0.5])
- expected = array([[1.0, 2.0, 3.0],
- [0.25, 0.0, 0.0],
- [0.0, 0.5, 0.0]])
- assert_array_equal(a, expected)
- class TestCompanion:
- def test_bad_shapes(self):
- assert_raises(ValueError, companion, [[1, 1], [2, 2]])
- assert_raises(ValueError, companion, [0, 4, 5])
- assert_raises(ValueError, companion, [1])
- assert_raises(ValueError, companion, [])
- def test_basic(self):
- c = companion([1, 2, 3])
- expected = array([
- [-2.0, -3.0],
- [1.0, 0.0]])
- assert_array_equal(c, expected)
- c = companion([2.0, 5.0, -10.0])
- expected = array([
- [-2.5, 5.0],
- [1.0, 0.0]])
- assert_array_equal(c, expected)
- class TestBlockDiag:
- def test_basic(self):
- x = block_diag(eye(2), [[1, 2], [3, 4], [5, 6]], [[1, 2, 3]])
- assert_array_equal(x, [[1, 0, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0, 0],
- [0, 0, 1, 2, 0, 0, 0],
- [0, 0, 3, 4, 0, 0, 0],
- [0, 0, 5, 6, 0, 0, 0],
- [0, 0, 0, 0, 1, 2, 3]])
- def test_dtype(self):
- x = block_diag([[1.5]])
- assert_equal(x.dtype, float)
- x = block_diag([[True]])
- assert_equal(x.dtype, bool)
- def test_mixed_dtypes(self):
- actual = block_diag([[1]], [[1j]])
- desired = np.array([[1, 0], [0, 1j]])
- assert_array_equal(actual, desired)
- def test_scalar_and_1d_args(self):
- a = block_diag(1)
- assert_equal(a.shape, (1, 1))
- assert_array_equal(a, [[1]])
- a = block_diag([2, 3], 4)
- assert_array_equal(a, [[2, 3, 0], [0, 0, 4]])
- def test_bad_arg(self):
- assert_raises(ValueError, block_diag, [[[1]]])
- def test_no_args(self):
- a = block_diag()
- assert_equal(a.ndim, 2)
- assert_equal(a.nbytes, 0)
- def test_empty_matrix_arg(self):
- # regression test for gh-4596: check the shape of the result
- # for empty matrix inputs. Empty matrices are no longer ignored
- # (gh-4908) it is viewed as a shape (1, 0) matrix.
- a = block_diag([[1, 0], [0, 1]],
- [],
- [[2, 3], [4, 5], [6, 7]])
- assert_array_equal(a, [[1, 0, 0, 0],
- [0, 1, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 2, 3],
- [0, 0, 4, 5],
- [0, 0, 6, 7]])
- def test_zerosized_matrix_arg(self):
- # test for gh-4908: check the shape of the result for
- # zero-sized matrix inputs, i.e. matrices with shape (0,n) or (n,0).
- # note that [[]] takes shape (1,0)
- a = block_diag([[1, 0], [0, 1]],
- [[]],
- [[2, 3], [4, 5], [6, 7]],
- np.zeros([0, 2], dtype='int32'))
- assert_array_equal(a, [[1, 0, 0, 0, 0, 0],
- [0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0],
- [0, 0, 2, 3, 0, 0],
- [0, 0, 4, 5, 0, 0],
- [0, 0, 6, 7, 0, 0]])
- class TestKron:
- def test_basic(self):
- a = kron(array([[1, 2], [3, 4]]), array([[1, 1, 1]]))
- assert_array_equal(a, array([[1, 1, 1, 2, 2, 2],
- [3, 3, 3, 4, 4, 4]]))
- m1 = array([[1, 2], [3, 4]])
- m2 = array([[10], [11]])
- a = kron(m1, m2)
- expected = array([[10, 20],
- [11, 22],
- [30, 40],
- [33, 44]])
- assert_array_equal(a, expected)
- class TestHelmert:
- def test_orthogonality(self):
- for n in range(1, 7):
- H = helmert(n, full=True)
- Id = np.eye(n)
- assert_allclose(H.dot(H.T), Id, atol=1e-12)
- assert_allclose(H.T.dot(H), Id, atol=1e-12)
- def test_subspace(self):
- for n in range(2, 7):
- H_full = helmert(n, full=True)
- H_partial = helmert(n)
- for U in H_full[1:, :].T, H_partial.T:
- C = np.eye(n) - np.full((n, n), 1 / n)
- assert_allclose(U.dot(U.T), C)
- assert_allclose(U.T.dot(U), np.eye(n-1), atol=1e-12)
- class TestHilbert:
- def test_basic(self):
- h3 = array([[1.0, 1/2., 1/3.],
- [1/2., 1/3., 1/4.],
- [1/3., 1/4., 1/5.]])
- assert_array_almost_equal(hilbert(3), h3)
- assert_array_equal(hilbert(1), [[1.0]])
- h0 = hilbert(0)
- assert_equal(h0.shape, (0, 0))
- class TestInvHilbert:
- def test_basic(self):
- invh1 = array([[1]])
- assert_array_equal(invhilbert(1, exact=True), invh1)
- assert_array_equal(invhilbert(1), invh1)
- invh2 = array([[4, -6],
- [-6, 12]])
- assert_array_equal(invhilbert(2, exact=True), invh2)
- assert_array_almost_equal(invhilbert(2), invh2)
- invh3 = array([[9, -36, 30],
- [-36, 192, -180],
- [30, -180, 180]])
- assert_array_equal(invhilbert(3, exact=True), invh3)
- assert_array_almost_equal(invhilbert(3), invh3)
- invh4 = array([[16, -120, 240, -140],
- [-120, 1200, -2700, 1680],
- [240, -2700, 6480, -4200],
- [-140, 1680, -4200, 2800]])
- assert_array_equal(invhilbert(4, exact=True), invh4)
- assert_array_almost_equal(invhilbert(4), invh4)
- invh5 = array([[25, -300, 1050, -1400, 630],
- [-300, 4800, -18900, 26880, -12600],
- [1050, -18900, 79380, -117600, 56700],
- [-1400, 26880, -117600, 179200, -88200],
- [630, -12600, 56700, -88200, 44100]])
- assert_array_equal(invhilbert(5, exact=True), invh5)
- assert_array_almost_equal(invhilbert(5), invh5)
- invh17 = array([
- [289, -41616, 1976760, -46124400, 629598060, -5540462928,
- 33374693352, -143034400080, 446982500250, -1033026222800,
- 1774926873720, -2258997839280, 2099709530100, -1384423866000,
- 613101997800, -163493866080, 19835652870],
- [-41616, 7990272, -426980160, 10627061760, -151103534400,
- 1367702848512, -8410422724704, 36616806420480, -115857864064800,
- 270465047424000, -468580694662080, 600545887119360,
- -561522320049600, 372133135180800, -165537539406000,
- 44316454993920, -5395297580640],
- [1976760, -426980160, 24337869120, -630981792000, 9228108708000,
- -85267724461920, 532660105897920, -2348052711713280,
- 7504429831470000, -17664748409880000, 30818191841236800,
- -39732544853164800, 37341234283298400, -24857330514030000,
- 11100752642520000, -2982128117299200, 364182586693200],
- [-46124400, 10627061760, -630981792000, 16826181120000,
- -251209625940000, 2358021022156800, -14914482965141760,
- 66409571644416000, -214015221119700000, 507295338950400000,
- -890303319857952000, 1153715376477081600, -1089119333262870000,
- 727848632044800000, -326170262829600000, 87894302404608000,
- -10763618673376800],
- [629598060, -151103534400, 9228108708000,
- -251209625940000, 3810012660090000, -36210360321495360,
- 231343968720664800, -1038687206500944000, 3370739732635275000,
- -8037460526495400000, 14178080368737885600, -18454939322943942000,
- 17489975175339030000, -11728977435138600000, 5272370630081100000,
- -1424711708039692800, 174908803442373000],
- [-5540462928, 1367702848512, -85267724461920, 2358021022156800,
- -36210360321495360, 347619459086355456, -2239409617216035264,
- 10124803292907663360, -33052510749726468000,
- 79217210949138662400, -140362995650505067440,
- 183420385176741672960, -174433352415381259200,
- 117339159519533952000, -52892422160973595200,
- 14328529177999196160, -1763080738699119840],
- [33374693352, -8410422724704, 532660105897920,
- -14914482965141760, 231343968720664800, -2239409617216035264,
- 14527452132196331328, -66072377044391477760,
- 216799987176909536400, -521925895055522958000,
- 928414062734059661760, -1217424500995626443520,
- 1161358898976091015200, -783401860847777371200,
- 354015418167362952000, -96120549902411274240,
- 11851820521255194480],
- [-143034400080, 36616806420480, -2348052711713280,
- 66409571644416000, -1038687206500944000, 10124803292907663360,
- -66072377044391477760, 302045152202932469760,
- -995510145200094810000, 2405996923185123840000,
- -4294704507885446054400, 5649058909023744614400,
- -5403874060541811254400, 3654352703663101440000,
- -1655137020003255360000, 450325202737117593600,
- -55630994283442749600],
- [446982500250, -115857864064800, 7504429831470000,
- -214015221119700000, 3370739732635275000, -33052510749726468000,
- 216799987176909536400, -995510145200094810000,
- 3293967392206196062500, -7988661659013106500000,
- 14303908928401362270000, -18866974090684772052000,
- 18093328327706957325000, -12263364009096700500000,
- 5565847995255512250000, -1517208935002984080000,
- 187754605706619279900],
- [-1033026222800, 270465047424000, -17664748409880000,
- 507295338950400000, -8037460526495400000, 79217210949138662400,
- -521925895055522958000, 2405996923185123840000,
- -7988661659013106500000, 19434404971634224000000,
- -34894474126569249192000, 46141453390504792320000,
- -44349976506971935800000, 30121928988527376000000,
- -13697025107665828500000, 3740200989399948902400,
- -463591619028689580000],
- [1774926873720, -468580694662080,
- 30818191841236800, -890303319857952000, 14178080368737885600,
- -140362995650505067440, 928414062734059661760,
- -4294704507885446054400, 14303908928401362270000,
- -34894474126569249192000, 62810053427824648545600,
- -83243376594051600326400, 80177044485212743068000,
- -54558343880470209780000, 24851882355348879230400,
- -6797096028813368678400, 843736746632215035600],
- [-2258997839280, 600545887119360, -39732544853164800,
- 1153715376477081600, -18454939322943942000, 183420385176741672960,
- -1217424500995626443520, 5649058909023744614400,
- -18866974090684772052000, 46141453390504792320000,
- -83243376594051600326400, 110552468520163390156800,
- -106681852579497947388000, 72720410752415168870400,
- -33177973900974346080000, 9087761081682520473600,
- -1129631016152221783200],
- [2099709530100, -561522320049600, 37341234283298400,
- -1089119333262870000, 17489975175339030000,
- -174433352415381259200, 1161358898976091015200,
- -5403874060541811254400, 18093328327706957325000,
- -44349976506971935800000, 80177044485212743068000,
- -106681852579497947388000, 103125790826848015808400,
- -70409051543137015800000, 32171029219823375700000,
- -8824053728865840192000, 1098252376814660067000],
- [-1384423866000, 372133135180800,
- -24857330514030000, 727848632044800000, -11728977435138600000,
- 117339159519533952000, -783401860847777371200,
- 3654352703663101440000, -12263364009096700500000,
- 30121928988527376000000, -54558343880470209780000,
- 72720410752415168870400, -70409051543137015800000,
- 48142941226076592000000, -22027500987368499000000,
- 6049545098753157120000, -753830033789944188000],
- [613101997800, -165537539406000,
- 11100752642520000, -326170262829600000, 5272370630081100000,
- -52892422160973595200, 354015418167362952000,
- -1655137020003255360000, 5565847995255512250000,
- -13697025107665828500000, 24851882355348879230400,
- -33177973900974346080000, 32171029219823375700000,
- -22027500987368499000000, 10091416708498869000000,
- -2774765838662800128000, 346146444087219270000],
- [-163493866080, 44316454993920, -2982128117299200,
- 87894302404608000, -1424711708039692800,
- 14328529177999196160, -96120549902411274240,
- 450325202737117593600, -1517208935002984080000,
- 3740200989399948902400, -6797096028813368678400,
- 9087761081682520473600, -8824053728865840192000,
- 6049545098753157120000, -2774765838662800128000,
- 763806510427609497600, -95382575704033754400],
- [19835652870, -5395297580640, 364182586693200, -10763618673376800,
- 174908803442373000, -1763080738699119840, 11851820521255194480,
- -55630994283442749600, 187754605706619279900,
- -463591619028689580000, 843736746632215035600,
- -1129631016152221783200, 1098252376814660067000,
- -753830033789944188000, 346146444087219270000,
- -95382575704033754400, 11922821963004219300]
- ])
- assert_array_equal(invhilbert(17, exact=True), invh17)
- assert_allclose(invhilbert(17), invh17.astype(float), rtol=1e-12)
- def test_inverse(self):
- for n in range(1, 10):
- a = hilbert(n)
- b = invhilbert(n)
- # The Hilbert matrix is increasingly badly conditioned,
- # so take that into account in the test
- c = cond(a)
- assert_allclose(a.dot(b), eye(n), atol=1e-15*c, rtol=1e-15*c)
- class TestPascal:
- cases = [
- (1, array([[1]]), array([[1]])),
- (2, array([[1, 1],
- [1, 2]]),
- array([[1, 0],
- [1, 1]])),
- (3, array([[1, 1, 1],
- [1, 2, 3],
- [1, 3, 6]]),
- array([[1, 0, 0],
- [1, 1, 0],
- [1, 2, 1]])),
- (4, array([[1, 1, 1, 1],
- [1, 2, 3, 4],
- [1, 3, 6, 10],
- [1, 4, 10, 20]]),
- array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [1, 2, 1, 0],
- [1, 3, 3, 1]])),
- ]
- def check_case(self, n, sym, low):
- assert_array_equal(pascal(n), sym)
- assert_array_equal(pascal(n, kind='lower'), low)
- assert_array_equal(pascal(n, kind='upper'), low.T)
- assert_array_almost_equal(pascal(n, exact=False), sym)
- assert_array_almost_equal(pascal(n, exact=False, kind='lower'), low)
- assert_array_almost_equal(pascal(n, exact=False, kind='upper'), low.T)
- def test_cases(self):
- for n, sym, low in self.cases:
- self.check_case(n, sym, low)
- def test_big(self):
- p = pascal(50)
- assert p[-1, -1] == comb(98, 49, exact=True)
- def test_threshold(self):
- # Regression test. An early version of `pascal` returned an
- # array of type np.uint64 for n=35, but that data type is too small
- # to hold p[-1, -1]. The second assert_equal below would fail
- # because p[-1, -1] overflowed.
- p = pascal(34)
- assert_equal(2*p.item(-1, -2), p.item(-1, -1), err_msg="n = 34")
- p = pascal(35)
- assert_equal(2.*p.item(-1, -2), 1.*p.item(-1, -1), err_msg="n = 35")
- def test_invpascal():
- def check_invpascal(n, kind, exact):
- ip = invpascal(n, kind=kind, exact=exact)
- p = pascal(n, kind=kind, exact=exact)
- # Matrix-multiply ip and p, and check that we get the identity matrix.
- # We can't use the simple expression e = ip.dot(p), because when
- # n < 35 and exact is True, p.dtype is np.uint64 and ip.dtype is
- # np.int64. The product of those dtypes is np.float64, which loses
- # precision when n is greater than 18. Instead we'll cast both to
- # object arrays, and then multiply.
- e = ip.astype(object).dot(p.astype(object))
- assert_array_equal(e, eye(n), err_msg="n=%d kind=%r exact=%r" %
- (n, kind, exact))
- kinds = ['symmetric', 'lower', 'upper']
- ns = [1, 2, 5, 18]
- for n in ns:
- for kind in kinds:
- for exact in [True, False]:
- check_invpascal(n, kind, exact)
- ns = [19, 34, 35, 50]
- for n in ns:
- for kind in kinds:
- check_invpascal(n, kind, True)
- def test_dft():
- m = dft(2)
- expected = array([[1.0, 1.0], [1.0, -1.0]])
- assert_array_almost_equal(m, expected)
- m = dft(2, scale='n')
- assert_array_almost_equal(m, expected/2.0)
- m = dft(2, scale='sqrtn')
- assert_array_almost_equal(m, expected/sqrt(2.0))
- x = array([0, 1, 2, 3, 4, 5, 0, 1])
- m = dft(8)
- mx = m.dot(x)
- fx = fft(x)
- assert_array_almost_equal(mx, fx)
- def test_fiedler():
- f = fiedler([])
- assert_equal(f.size, 0)
- f = fiedler([123.])
- assert_array_equal(f, np.array([[0.]]))
- f = fiedler(np.arange(1, 7))
- des = np.array([[0, 1, 2, 3, 4, 5],
- [1, 0, 1, 2, 3, 4],
- [2, 1, 0, 1, 2, 3],
- [3, 2, 1, 0, 1, 2],
- [4, 3, 2, 1, 0, 1],
- [5, 4, 3, 2, 1, 0]])
- assert_array_equal(f, des)
- def test_fiedler_companion():
- fc = fiedler_companion([])
- assert_equal(fc.size, 0)
- fc = fiedler_companion([1.])
- assert_equal(fc.size, 0)
- fc = fiedler_companion([1., 2.])
- assert_array_equal(fc, np.array([[-2.]]))
- fc = fiedler_companion([1e-12, 2., 3.])
- assert_array_almost_equal(fc, companion([1e-12, 2., 3.]))
- with assert_raises(ValueError):
- fiedler_companion([0, 1, 2])
- fc = fiedler_companion([1., -16., 86., -176., 105.])
- assert_array_almost_equal(eigvals(fc),
- np.array([7., 5., 3., 1.]))
- class TestConvolutionMatrix:
- """
- Test convolution_matrix vs. numpy.convolve for various parameters.
- """
- def create_vector(self, n, cpx):
- """Make a complex or real test vector of length n."""
- x = np.linspace(-2.5, 2.2, n)
- if cpx:
- x = x + 1j*np.linspace(-1.5, 3.1, n)
- return x
- def test_bad_n(self):
- # n must be a positive integer
- with pytest.raises(ValueError, match='n must be a positive integer'):
- convolution_matrix([1, 2, 3], 0)
- def test_bad_first_arg(self):
- # first arg must be a 1d array, otherwise ValueError
- with pytest.raises(ValueError, match='one-dimensional'):
- convolution_matrix(1, 4)
- def test_empty_first_arg(self):
- # first arg must have at least one value
- with pytest.raises(ValueError, match=r'len\(a\)'):
- convolution_matrix([], 4)
- def test_bad_mode(self):
- # mode must be in ('full', 'valid', 'same')
- with pytest.raises(ValueError, match='mode.*must be one of'):
- convolution_matrix((1, 1), 4, mode='invalid argument')
- @pytest.mark.parametrize('cpx', [False, True])
- @pytest.mark.parametrize('na', [1, 2, 9])
- @pytest.mark.parametrize('nv', [1, 2, 9])
- @pytest.mark.parametrize('mode', [None, 'full', 'valid', 'same'])
- def test_against_numpy_convolve(self, cpx, na, nv, mode):
- a = self.create_vector(na, cpx)
- v = self.create_vector(nv, cpx)
- if mode is None:
- y1 = np.convolve(v, a)
- A = convolution_matrix(a, nv)
- else:
- y1 = np.convolve(v, a, mode)
- A = convolution_matrix(a, nv, mode)
- y2 = A @ v
- assert_array_almost_equal(y1, y2)
|