123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- """Test functions for linalg._solve_toeplitz module
- """
- import numpy as np
- from scipy.linalg._solve_toeplitz import levinson
- from scipy.linalg import solve, toeplitz, solve_toeplitz
- from numpy.testing import assert_equal, assert_allclose
- import pytest
- from pytest import raises as assert_raises
- def test_solve_equivalence():
- # For toeplitz matrices, solve_toeplitz() should be equivalent to solve().
- random = np.random.RandomState(1234)
- for n in (1, 2, 3, 10):
- c = random.randn(n)
- if random.rand() < 0.5:
- c = c + 1j * random.randn(n)
- r = random.randn(n)
- if random.rand() < 0.5:
- r = r + 1j * random.randn(n)
- y = random.randn(n)
- if random.rand() < 0.5:
- y = y + 1j * random.randn(n)
- # Check equivalence when both the column and row are provided.
- actual = solve_toeplitz((c,r), y)
- desired = solve(toeplitz(c, r=r), y)
- assert_allclose(actual, desired)
- # Check equivalence when the column is provided but not the row.
- actual = solve_toeplitz(c, b=y)
- desired = solve(toeplitz(c), y)
- assert_allclose(actual, desired)
- def test_multiple_rhs():
- random = np.random.RandomState(1234)
- c = random.randn(4)
- r = random.randn(4)
- for offset in [0, 1j]:
- for yshape in ((4,), (4, 3), (4, 3, 2)):
- y = random.randn(*yshape) + offset
- actual = solve_toeplitz((c,r), b=y)
- desired = solve(toeplitz(c, r=r), y)
- assert_equal(actual.shape, yshape)
- assert_equal(desired.shape, yshape)
- assert_allclose(actual, desired)
- def test_native_list_arguments():
- c = [1,2,4,7]
- r = [1,3,9,12]
- y = [5,1,4,2]
- actual = solve_toeplitz((c,r), y)
- desired = solve(toeplitz(c, r=r), y)
- assert_allclose(actual, desired)
- def test_zero_diag_error():
- # The Levinson-Durbin implementation fails when the diagonal is zero.
- random = np.random.RandomState(1234)
- n = 4
- c = random.randn(n)
- r = random.randn(n)
- y = random.randn(n)
- c[0] = 0
- assert_raises(np.linalg.LinAlgError,
- solve_toeplitz, (c, r), b=y)
- def test_wikipedia_counterexample():
- # The Levinson-Durbin implementation also fails in other cases.
- # This example is from the talk page of the wikipedia article.
- random = np.random.RandomState(1234)
- c = [2, 2, 1]
- y = random.randn(3)
- assert_raises(np.linalg.LinAlgError, solve_toeplitz, c, b=y)
- def test_reflection_coeffs():
- # check that the partial solutions are given by the reflection
- # coefficients
- random = np.random.RandomState(1234)
- y_d = random.randn(10)
- y_z = random.randn(10) + 1j
- reflection_coeffs_d = [1]
- reflection_coeffs_z = [1]
- for i in range(2, 10):
- reflection_coeffs_d.append(solve_toeplitz(y_d[:(i-1)], b=y_d[1:i])[-1])
- reflection_coeffs_z.append(solve_toeplitz(y_z[:(i-1)], b=y_z[1:i])[-1])
- y_d_concat = np.concatenate((y_d[-2:0:-1], y_d[:-1]))
- y_z_concat = np.concatenate((y_z[-2:0:-1].conj(), y_z[:-1]))
- _, ref_d = levinson(y_d_concat, b=y_d[1:])
- _, ref_z = levinson(y_z_concat, b=y_z[1:])
- assert_allclose(reflection_coeffs_d, ref_d[:-1])
- assert_allclose(reflection_coeffs_z, ref_z[:-1])
- @pytest.mark.xfail(reason='Instability of Levinson iteration')
- def test_unstable():
- # this is a "Gaussian Toeplitz matrix", as mentioned in Example 2 of
- # I. Gohbert, T. Kailath and V. Olshevsky "Fast Gaussian Elimination with
- # Partial Pivoting for Matrices with Displacement Structure"
- # Mathematics of Computation, 64, 212 (1995), pp 1557-1576
- # which can be unstable for levinson recursion.
- # other fast toeplitz solvers such as GKO or Burg should be better.
- random = np.random.RandomState(1234)
- n = 100
- c = 0.9 ** (np.arange(n)**2)
- y = random.randn(n)
- solution1 = solve_toeplitz(c, b=y)
- solution2 = solve(toeplitz(c), y)
- assert_allclose(solution1, solution2)
|