123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847 |
- """Matrix equation solver routines"""
- # Author: Jeffrey Armstrong <jeff@approximatrix.com>
- # February 24, 2012
- # Modified: Chad Fulton <ChadFulton@gmail.com>
- # June 19, 2014
- # Modified: Ilhan Polat <ilhanpolat@gmail.com>
- # September 13, 2016
- import warnings
- import numpy as np
- from numpy.linalg import inv, LinAlgError, norm, cond, svd
- from ._basic import solve, solve_triangular, matrix_balance
- from .lapack import get_lapack_funcs
- from ._decomp_schur import schur
- from ._decomp_lu import lu
- from ._decomp_qr import qr
- from ._decomp_qz import ordqz
- from ._decomp import _asarray_validated
- from ._special_matrices import kron, block_diag
- __all__ = ['solve_sylvester',
- 'solve_continuous_lyapunov', 'solve_discrete_lyapunov',
- 'solve_lyapunov',
- 'solve_continuous_are', 'solve_discrete_are']
- def solve_sylvester(a, b, q):
- """
- Computes a solution (X) to the Sylvester equation :math:`AX + XB = Q`.
- Parameters
- ----------
- a : (M, M) array_like
- Leading matrix of the Sylvester equation
- b : (N, N) array_like
- Trailing matrix of the Sylvester equation
- q : (M, N) array_like
- Right-hand side
- Returns
- -------
- x : (M, N) ndarray
- The solution to the Sylvester equation.
- Raises
- ------
- LinAlgError
- If solution was not found
- Notes
- -----
- Computes a solution to the Sylvester matrix equation via the Bartels-
- Stewart algorithm. The A and B matrices first undergo Schur
- decompositions. The resulting matrices are used to construct an
- alternative Sylvester equation (``RY + YS^T = F``) where the R and S
- matrices are in quasi-triangular form (or, when R, S or F are complex,
- triangular form). The simplified equation is then solved using
- ``*TRSYL`` from LAPACK directly.
- .. versionadded:: 0.11.0
- Examples
- --------
- Given `a`, `b`, and `q` solve for `x`:
- >>> import numpy as np
- >>> from scipy import linalg
- >>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
- >>> b = np.array([[1]])
- >>> q = np.array([[1],[2],[3]])
- >>> x = linalg.solve_sylvester(a, b, q)
- >>> x
- array([[ 0.0625],
- [-0.5625],
- [ 0.6875]])
- >>> np.allclose(a.dot(x) + x.dot(b), q)
- True
- """
- # Compute the Schur decomposition form of a
- r, u = schur(a, output='real')
- # Compute the Schur decomposition of b
- s, v = schur(b.conj().transpose(), output='real')
- # Construct f = u'*q*v
- f = np.dot(np.dot(u.conj().transpose(), q), v)
- # Call the Sylvester equation solver
- trsyl, = get_lapack_funcs(('trsyl',), (r, s, f))
- if trsyl is None:
- raise RuntimeError('LAPACK implementation does not contain a proper '
- 'Sylvester equation solver (TRSYL)')
- y, scale, info = trsyl(r, s, f, tranb='C')
- y = scale*y
- if info < 0:
- raise LinAlgError("Illegal value encountered in "
- "the %d term" % (-info,))
- return np.dot(np.dot(u, y), v.conj().transpose())
- def solve_continuous_lyapunov(a, q):
- """
- Solves the continuous Lyapunov equation :math:`AX + XA^H = Q`.
- Uses the Bartels-Stewart algorithm to find :math:`X`.
- Parameters
- ----------
- a : array_like
- A square matrix
- q : array_like
- Right-hand side square matrix
- Returns
- -------
- x : ndarray
- Solution to the continuous Lyapunov equation
- See Also
- --------
- solve_discrete_lyapunov : computes the solution to the discrete-time
- Lyapunov equation
- solve_sylvester : computes the solution to the Sylvester equation
- Notes
- -----
- The continuous Lyapunov equation is a special form of the Sylvester
- equation, hence this solver relies on LAPACK routine ?TRSYL.
- .. versionadded:: 0.11.0
- Examples
- --------
- Given `a` and `q` solve for `x`:
- >>> import numpy as np
- >>> from scipy import linalg
- >>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
- >>> b = np.array([2, 4, -1])
- >>> q = np.eye(3)
- >>> x = linalg.solve_continuous_lyapunov(a, q)
- >>> x
- array([[ -0.75 , 0.875 , -3.75 ],
- [ 0.875 , -1.375 , 5.3125],
- [ -3.75 , 5.3125, -27.0625]])
- >>> np.allclose(a.dot(x) + x.dot(a.T), q)
- True
- """
- a = np.atleast_2d(_asarray_validated(a, check_finite=True))
- q = np.atleast_2d(_asarray_validated(q, check_finite=True))
- r_or_c = float
- for ind, _ in enumerate((a, q)):
- if np.iscomplexobj(_):
- r_or_c = complex
- if not np.equal(*_.shape):
- raise ValueError("Matrix {} should be square.".format("aq"[ind]))
- # Shape consistency check
- if a.shape != q.shape:
- raise ValueError("Matrix a and q should have the same shape.")
- # Compute the Schur decomposition form of a
- r, u = schur(a, output='real')
- # Construct f = u'*q*u
- f = u.conj().T.dot(q.dot(u))
- # Call the Sylvester equation solver
- trsyl = get_lapack_funcs('trsyl', (r, f))
- dtype_string = 'T' if r_or_c == float else 'C'
- y, scale, info = trsyl(r, r, f, tranb=dtype_string)
- if info < 0:
- raise ValueError('?TRSYL exited with the internal error '
- '"illegal value in argument number {}.". See '
- 'LAPACK documentation for the ?TRSYL error codes.'
- ''.format(-info))
- elif info == 1:
- warnings.warn('Input "a" has an eigenvalue pair whose sum is '
- 'very close to or exactly zero. The solution is '
- 'obtained via perturbing the coefficients.',
- RuntimeWarning)
- y *= scale
- return u.dot(y).dot(u.conj().T)
- # For backwards compatibility, keep the old name
- solve_lyapunov = solve_continuous_lyapunov
- def _solve_discrete_lyapunov_direct(a, q):
- """
- Solves the discrete Lyapunov equation directly.
- This function is called by the `solve_discrete_lyapunov` function with
- `method=direct`. It is not supposed to be called directly.
- """
- lhs = kron(a, a.conj())
- lhs = np.eye(lhs.shape[0]) - lhs
- x = solve(lhs, q.flatten())
- return np.reshape(x, q.shape)
- def _solve_discrete_lyapunov_bilinear(a, q):
- """
- Solves the discrete Lyapunov equation using a bilinear transformation.
- This function is called by the `solve_discrete_lyapunov` function with
- `method=bilinear`. It is not supposed to be called directly.
- """
- eye = np.eye(a.shape[0])
- aH = a.conj().transpose()
- aHI_inv = inv(aH + eye)
- b = np.dot(aH - eye, aHI_inv)
- c = 2*np.dot(np.dot(inv(a + eye), q), aHI_inv)
- return solve_lyapunov(b.conj().transpose(), -c)
- def solve_discrete_lyapunov(a, q, method=None):
- """
- Solves the discrete Lyapunov equation :math:`AXA^H - X + Q = 0`.
- Parameters
- ----------
- a, q : (M, M) array_like
- Square matrices corresponding to A and Q in the equation
- above respectively. Must have the same shape.
- method : {'direct', 'bilinear'}, optional
- Type of solver.
- If not given, chosen to be ``direct`` if ``M`` is less than 10 and
- ``bilinear`` otherwise.
- Returns
- -------
- x : ndarray
- Solution to the discrete Lyapunov equation
- See Also
- --------
- solve_continuous_lyapunov : computes the solution to the continuous-time
- Lyapunov equation
- Notes
- -----
- This section describes the available solvers that can be selected by the
- 'method' parameter. The default method is *direct* if ``M`` is less than 10
- and ``bilinear`` otherwise.
- Method *direct* uses a direct analytical solution to the discrete Lyapunov
- equation. The algorithm is given in, for example, [1]_. However, it requires
- the linear solution of a system with dimension :math:`M^2` so that
- performance degrades rapidly for even moderately sized matrices.
- Method *bilinear* uses a bilinear transformation to convert the discrete
- Lyapunov equation to a continuous Lyapunov equation :math:`(BX+XB'=-C)`
- where :math:`B=(A-I)(A+I)^{-1}` and
- :math:`C=2(A' + I)^{-1} Q (A + I)^{-1}`. The continuous equation can be
- efficiently solved since it is a special case of a Sylvester equation.
- The transformation algorithm is from Popov (1964) as described in [2]_.
- .. versionadded:: 0.11.0
- References
- ----------
- .. [1] Hamilton, James D. Time Series Analysis, Princeton: Princeton
- University Press, 1994. 265. Print.
- http://doc1.lbfl.li/aca/FLMF037168.pdf
- .. [2] Gajic, Z., and M.T.J. Qureshi. 2008.
- Lyapunov Matrix Equation in System Stability and Control.
- Dover Books on Engineering Series. Dover Publications.
- Examples
- --------
- Given `a` and `q` solve for `x`:
- >>> import numpy as np
- >>> from scipy import linalg
- >>> a = np.array([[0.2, 0.5],[0.7, -0.9]])
- >>> q = np.eye(2)
- >>> x = linalg.solve_discrete_lyapunov(a, q)
- >>> x
- array([[ 0.70872893, 1.43518822],
- [ 1.43518822, -2.4266315 ]])
- >>> np.allclose(a.dot(x).dot(a.T)-x, -q)
- True
- """
- a = np.asarray(a)
- q = np.asarray(q)
- if method is None:
- # Select automatically based on size of matrices
- if a.shape[0] >= 10:
- method = 'bilinear'
- else:
- method = 'direct'
- meth = method.lower()
- if meth == 'direct':
- x = _solve_discrete_lyapunov_direct(a, q)
- elif meth == 'bilinear':
- x = _solve_discrete_lyapunov_bilinear(a, q)
- else:
- raise ValueError('Unknown solver %s' % method)
- return x
- def solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True):
- r"""
- Solves the continuous-time algebraic Riccati equation (CARE).
- The CARE is defined as
- .. math::
- X A + A^H X - X B R^{-1} B^H X + Q = 0
- The limitations for a solution to exist are :
- * All eigenvalues of :math:`A` on the right half plane, should be
- controllable.
- * The associated hamiltonian pencil (See Notes), should have
- eigenvalues sufficiently away from the imaginary axis.
- Moreover, if ``e`` or ``s`` is not precisely ``None``, then the
- generalized version of CARE
- .. math::
- E^HXA + A^HXE - (E^HXB + S) R^{-1} (B^HXE + S^H) + Q = 0
- is solved. When omitted, ``e`` is assumed to be the identity and ``s``
- is assumed to be the zero matrix with sizes compatible with ``a`` and
- ``b``, respectively.
- Parameters
- ----------
- a : (M, M) array_like
- Square matrix
- b : (M, N) array_like
- Input
- q : (M, M) array_like
- Input
- r : (N, N) array_like
- Nonsingular square matrix
- e : (M, M) array_like, optional
- Nonsingular square matrix
- s : (M, N) array_like, optional
- Input
- balanced : bool, optional
- The boolean that indicates whether a balancing step is performed
- on the data. The default is set to True.
- Returns
- -------
- x : (M, M) ndarray
- Solution to the continuous-time algebraic Riccati equation.
- Raises
- ------
- LinAlgError
- For cases where the stable subspace of the pencil could not be
- isolated. See Notes section and the references for details.
- See Also
- --------
- solve_discrete_are : Solves the discrete-time algebraic Riccati equation
- Notes
- -----
- The equation is solved by forming the extended hamiltonian matrix pencil,
- as described in [1]_, :math:`H - \lambda J` given by the block matrices ::
- [ A 0 B ] [ E 0 0 ]
- [-Q -A^H -S ] - \lambda * [ 0 E^H 0 ]
- [ S^H B^H R ] [ 0 0 0 ]
- and using a QZ decomposition method.
- In this algorithm, the fail conditions are linked to the symmetry
- of the product :math:`U_2 U_1^{-1}` and condition number of
- :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
- eigenvectors spanning the stable subspace with 2-m rows and partitioned
- into two m-row matrices. See [1]_ and [2]_ for more details.
- In order to improve the QZ decomposition accuracy, the pencil goes
- through a balancing step where the sum of absolute values of
- :math:`H` and :math:`J` entries (after removing the diagonal entries of
- the sum) is balanced following the recipe given in [3]_.
- .. versionadded:: 0.11.0
- References
- ----------
- .. [1] P. van Dooren , "A Generalized Eigenvalue Approach For Solving
- Riccati Equations.", SIAM Journal on Scientific and Statistical
- Computing, Vol.2(2), :doi:`10.1137/0902010`
- .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
- Equations.", Massachusetts Institute of Technology. Laboratory for
- Information and Decision Systems. LIDS-R ; 859. Available online :
- http://hdl.handle.net/1721.1/1301
- .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
- SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993`
- Examples
- --------
- Given `a`, `b`, `q`, and `r` solve for `x`:
- >>> import numpy as np
- >>> from scipy import linalg
- >>> a = np.array([[4, 3], [-4.5, -3.5]])
- >>> b = np.array([[1], [-1]])
- >>> q = np.array([[9, 6], [6, 4.]])
- >>> r = 1
- >>> x = linalg.solve_continuous_are(a, b, q, r)
- >>> x
- array([[ 21.72792206, 14.48528137],
- [ 14.48528137, 9.65685425]])
- >>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
- True
- """
- # Validate input arguments
- a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args(
- a, b, q, r, e, s, 'care')
- H = np.empty((2*m+n, 2*m+n), dtype=r_or_c)
- H[:m, :m] = a
- H[:m, m:2*m] = 0.
- H[:m, 2*m:] = b
- H[m:2*m, :m] = -q
- H[m:2*m, m:2*m] = -a.conj().T
- H[m:2*m, 2*m:] = 0. if s is None else -s
- H[2*m:, :m] = 0. if s is None else s.conj().T
- H[2*m:, m:2*m] = b.conj().T
- H[2*m:, 2*m:] = r
- if gen_are and e is not None:
- J = block_diag(e, e.conj().T, np.zeros_like(r, dtype=r_or_c))
- else:
- J = block_diag(np.eye(2*m), np.zeros_like(r, dtype=r_or_c))
- if balanced:
- # xGEBAL does not remove the diagonals before scaling. Also
- # to avoid destroying the Symplectic structure, we follow Ref.3
- M = np.abs(H) + np.abs(J)
- M[np.diag_indices_from(M)] = 0.
- _, (sca, _) = matrix_balance(M, separate=1, permute=0)
- # do we need to bother?
- if not np.allclose(sca, np.ones_like(sca)):
- # Now impose diag(D,inv(D)) from Benner where D is
- # square root of s_i/s_(n+i) for i=0,....
- sca = np.log2(sca)
- # NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !!
- s = np.round((sca[m:2*m] - sca[:m])/2)
- sca = 2 ** np.r_[s, -s, sca[2*m:]]
- # Elementwise multiplication via broadcasting.
- elwisescale = sca[:, None] * np.reciprocal(sca)
- H *= elwisescale
- J *= elwisescale
- # Deflate the pencil to 2m x 2m ala Ref.1, eq.(55)
- q, r = qr(H[:, -n:])
- H = q[:, n:].conj().T.dot(H[:, :2*m])
- J = q[:2*m, n:].conj().T.dot(J[:2*m, :2*m])
- # Decide on which output type is needed for QZ
- out_str = 'real' if r_or_c == float else 'complex'
- _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True,
- overwrite_b=True, check_finite=False,
- output=out_str)
- # Get the relevant parts of the stable subspace basis
- if e is not None:
- u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m])))
- u00 = u[:m, :m]
- u10 = u[m:, :m]
- # Solve via back-substituion after checking the condition of u00
- up, ul, uu = lu(u00)
- if 1/cond(uu) < np.spacing(1.):
- raise LinAlgError('Failed to find a finite solution.')
- # Exploit the triangular structure
- x = solve_triangular(ul.conj().T,
- solve_triangular(uu.conj().T,
- u10.conj().T,
- lower=True),
- unit_diagonal=True,
- ).conj().T.dot(up.conj().T)
- if balanced:
- x *= sca[:m, None] * sca[:m]
- # Check the deviation from symmetry for lack of success
- # See proof of Thm.5 item 3 in [2]
- u_sym = u00.conj().T.dot(u10)
- n_u_sym = norm(u_sym, 1)
- u_sym = u_sym - u_sym.conj().T
- sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym])
- if norm(u_sym, 1) > sym_threshold:
- raise LinAlgError('The associated Hamiltonian pencil has eigenvalues '
- 'too close to the imaginary axis')
- return (x + x.conj().T)/2
- def solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True):
- r"""
- Solves the discrete-time algebraic Riccati equation (DARE).
- The DARE is defined as
- .. math::
- A^HXA - X - (A^HXB) (R + B^HXB)^{-1} (B^HXA) + Q = 0
- The limitations for a solution to exist are :
- * All eigenvalues of :math:`A` outside the unit disc, should be
- controllable.
- * The associated symplectic pencil (See Notes), should have
- eigenvalues sufficiently away from the unit circle.
- Moreover, if ``e`` and ``s`` are not both precisely ``None``, then the
- generalized version of DARE
- .. math::
- A^HXA - E^HXE - (A^HXB+S) (R+B^HXB)^{-1} (B^HXA+S^H) + Q = 0
- is solved. When omitted, ``e`` is assumed to be the identity and ``s``
- is assumed to be the zero matrix.
- Parameters
- ----------
- a : (M, M) array_like
- Square matrix
- b : (M, N) array_like
- Input
- q : (M, M) array_like
- Input
- r : (N, N) array_like
- Square matrix
- e : (M, M) array_like, optional
- Nonsingular square matrix
- s : (M, N) array_like, optional
- Input
- balanced : bool
- The boolean that indicates whether a balancing step is performed
- on the data. The default is set to True.
- Returns
- -------
- x : (M, M) ndarray
- Solution to the discrete algebraic Riccati equation.
- Raises
- ------
- LinAlgError
- For cases where the stable subspace of the pencil could not be
- isolated. See Notes section and the references for details.
- See Also
- --------
- solve_continuous_are : Solves the continuous algebraic Riccati equation
- Notes
- -----
- The equation is solved by forming the extended symplectic matrix pencil,
- as described in [1]_, :math:`H - \lambda J` given by the block matrices ::
- [ A 0 B ] [ E 0 B ]
- [ -Q E^H -S ] - \lambda * [ 0 A^H 0 ]
- [ S^H 0 R ] [ 0 -B^H 0 ]
- and using a QZ decomposition method.
- In this algorithm, the fail conditions are linked to the symmetry
- of the product :math:`U_2 U_1^{-1}` and condition number of
- :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
- eigenvectors spanning the stable subspace with 2-m rows and partitioned
- into two m-row matrices. See [1]_ and [2]_ for more details.
- In order to improve the QZ decomposition accuracy, the pencil goes
- through a balancing step where the sum of absolute values of
- :math:`H` and :math:`J` rows/cols (after removing the diagonal entries)
- is balanced following the recipe given in [3]_. If the data has small
- numerical noise, balancing may amplify their effects and some clean up
- is required.
- .. versionadded:: 0.11.0
- References
- ----------
- .. [1] P. van Dooren , "A Generalized Eigenvalue Approach For Solving
- Riccati Equations.", SIAM Journal on Scientific and Statistical
- Computing, Vol.2(2), :doi:`10.1137/0902010`
- .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
- Equations.", Massachusetts Institute of Technology. Laboratory for
- Information and Decision Systems. LIDS-R ; 859. Available online :
- http://hdl.handle.net/1721.1/1301
- .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
- SIAM J. Sci. Comput., 2001, Vol.22(5), :doi:`10.1137/S1064827500367993`
- Examples
- --------
- Given `a`, `b`, `q`, and `r` solve for `x`:
- >>> import numpy as np
- >>> from scipy import linalg as la
- >>> a = np.array([[0, 1], [0, -1]])
- >>> b = np.array([[1, 0], [2, 1]])
- >>> q = np.array([[-4, -4], [-4, 7]])
- >>> r = np.array([[9, 3], [3, 1]])
- >>> x = la.solve_discrete_are(a, b, q, r)
- >>> x
- array([[-4., -4.],
- [-4., 7.]])
- >>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
- >>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
- True
- """
- # Validate input arguments
- a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args(
- a, b, q, r, e, s, 'dare')
- # Form the matrix pencil
- H = np.zeros((2*m+n, 2*m+n), dtype=r_or_c)
- H[:m, :m] = a
- H[:m, 2*m:] = b
- H[m:2*m, :m] = -q
- H[m:2*m, m:2*m] = np.eye(m) if e is None else e.conj().T
- H[m:2*m, 2*m:] = 0. if s is None else -s
- H[2*m:, :m] = 0. if s is None else s.conj().T
- H[2*m:, 2*m:] = r
- J = np.zeros_like(H, dtype=r_or_c)
- J[:m, :m] = np.eye(m) if e is None else e
- J[m:2*m, m:2*m] = a.conj().T
- J[2*m:, m:2*m] = -b.conj().T
- if balanced:
- # xGEBAL does not remove the diagonals before scaling. Also
- # to avoid destroying the Symplectic structure, we follow Ref.3
- M = np.abs(H) + np.abs(J)
- M[np.diag_indices_from(M)] = 0.
- _, (sca, _) = matrix_balance(M, separate=1, permute=0)
- # do we need to bother?
- if not np.allclose(sca, np.ones_like(sca)):
- # Now impose diag(D,inv(D)) from Benner where D is
- # square root of s_i/s_(n+i) for i=0,....
- sca = np.log2(sca)
- # NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !!
- s = np.round((sca[m:2*m] - sca[:m])/2)
- sca = 2 ** np.r_[s, -s, sca[2*m:]]
- # Elementwise multiplication via broadcasting.
- elwisescale = sca[:, None] * np.reciprocal(sca)
- H *= elwisescale
- J *= elwisescale
- # Deflate the pencil by the R column ala Ref.1
- q_of_qr, _ = qr(H[:, -n:])
- H = q_of_qr[:, n:].conj().T.dot(H[:, :2*m])
- J = q_of_qr[:, n:].conj().T.dot(J[:, :2*m])
- # Decide on which output type is needed for QZ
- out_str = 'real' if r_or_c == float else 'complex'
- _, _, _, _, _, u = ordqz(H, J, sort='iuc',
- overwrite_a=True,
- overwrite_b=True,
- check_finite=False,
- output=out_str)
- # Get the relevant parts of the stable subspace basis
- if e is not None:
- u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m])))
- u00 = u[:m, :m]
- u10 = u[m:, :m]
- # Solve via back-substituion after checking the condition of u00
- up, ul, uu = lu(u00)
- if 1/cond(uu) < np.spacing(1.):
- raise LinAlgError('Failed to find a finite solution.')
- # Exploit the triangular structure
- x = solve_triangular(ul.conj().T,
- solve_triangular(uu.conj().T,
- u10.conj().T,
- lower=True),
- unit_diagonal=True,
- ).conj().T.dot(up.conj().T)
- if balanced:
- x *= sca[:m, None] * sca[:m]
- # Check the deviation from symmetry for lack of success
- # See proof of Thm.5 item 3 in [2]
- u_sym = u00.conj().T.dot(u10)
- n_u_sym = norm(u_sym, 1)
- u_sym = u_sym - u_sym.conj().T
- sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym])
- if norm(u_sym, 1) > sym_threshold:
- raise LinAlgError('The associated symplectic pencil has eigenvalues'
- 'too close to the unit circle')
- return (x + x.conj().T)/2
- def _are_validate_args(a, b, q, r, e, s, eq_type='care'):
- """
- A helper function to validate the arguments supplied to the
- Riccati equation solvers. Any discrepancy found in the input
- matrices leads to a ``ValueError`` exception.
- Essentially, it performs:
- - a check whether the input is free of NaN and Infs
- - a pass for the data through ``numpy.atleast_2d()``
- - squareness check of the relevant arrays
- - shape consistency check of the arrays
- - singularity check of the relevant arrays
- - symmetricity check of the relevant matrices
- - a check whether the regular or the generalized version is asked.
- This function is used by ``solve_continuous_are`` and
- ``solve_discrete_are``.
- Parameters
- ----------
- a, b, q, r, e, s : array_like
- Input data
- eq_type : str
- Accepted arguments are 'care' and 'dare'.
- Returns
- -------
- a, b, q, r, e, s : ndarray
- Regularized input data
- m, n : int
- shape of the problem
- r_or_c : type
- Data type of the problem, returns float or complex
- gen_or_not : bool
- Type of the equation, True for generalized and False for regular ARE.
- """
- if not eq_type.lower() in ('dare', 'care'):
- raise ValueError("Equation type unknown. "
- "Only 'care' and 'dare' is understood")
- a = np.atleast_2d(_asarray_validated(a, check_finite=True))
- b = np.atleast_2d(_asarray_validated(b, check_finite=True))
- q = np.atleast_2d(_asarray_validated(q, check_finite=True))
- r = np.atleast_2d(_asarray_validated(r, check_finite=True))
- # Get the correct data types otherwise NumPy complains
- # about pushing complex numbers into real arrays.
- r_or_c = complex if np.iscomplexobj(b) else float
- for ind, mat in enumerate((a, q, r)):
- if np.iscomplexobj(mat):
- r_or_c = complex
- if not np.equal(*mat.shape):
- raise ValueError("Matrix {} should be square.".format("aqr"[ind]))
- # Shape consistency checks
- m, n = b.shape
- if m != a.shape[0]:
- raise ValueError("Matrix a and b should have the same number of rows.")
- if m != q.shape[0]:
- raise ValueError("Matrix a and q should have the same shape.")
- if n != r.shape[0]:
- raise ValueError("Matrix b and r should have the same number of cols.")
- # Check if the data matrices q, r are (sufficiently) hermitian
- for ind, mat in enumerate((q, r)):
- if norm(mat - mat.conj().T, 1) > np.spacing(norm(mat, 1))*100:
- raise ValueError("Matrix {} should be symmetric/hermitian."
- "".format("qr"[ind]))
- # Continuous time ARE should have a nonsingular r matrix.
- if eq_type == 'care':
- min_sv = svd(r, compute_uv=False)[-1]
- if min_sv == 0. or min_sv < np.spacing(1.)*norm(r, 1):
- raise ValueError('Matrix r is numerically singular.')
- # Check if the generalized case is required with omitted arguments
- # perform late shape checking etc.
- generalized_case = e is not None or s is not None
- if generalized_case:
- if e is not None:
- e = np.atleast_2d(_asarray_validated(e, check_finite=True))
- if not np.equal(*e.shape):
- raise ValueError("Matrix e should be square.")
- if m != e.shape[0]:
- raise ValueError("Matrix a and e should have the same shape.")
- # numpy.linalg.cond doesn't check for exact zeros and
- # emits a runtime warning. Hence the following manual check.
- min_sv = svd(e, compute_uv=False)[-1]
- if min_sv == 0. or min_sv < np.spacing(1.) * norm(e, 1):
- raise ValueError('Matrix e is numerically singular.')
- if np.iscomplexobj(e):
- r_or_c = complex
- if s is not None:
- s = np.atleast_2d(_asarray_validated(s, check_finite=True))
- if s.shape != b.shape:
- raise ValueError("Matrix b and s should have the same shape.")
- if np.iscomplexobj(s):
- r_or_c = complex
- return a, b, q, r, e, s, m, n, r_or_c, generalized_case
|