123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- """SVD decomposition functions."""
- import numpy
- from numpy import zeros, r_, diag, dot, arccos, arcsin, where, clip
- # Local imports.
- from ._misc import LinAlgError, _datacopied
- from .lapack import get_lapack_funcs, _compute_lwork
- from ._decomp import _asarray_validated
- __all__ = ['svd', 'svdvals', 'diagsvd', 'orth', 'subspace_angles', 'null_space']
- def svd(a, full_matrices=True, compute_uv=True, overwrite_a=False,
- check_finite=True, lapack_driver='gesdd'):
- """
- Singular Value Decomposition.
- Factorizes the matrix `a` into two unitary matrices ``U`` and ``Vh``, and
- a 1-D array ``s`` of singular values (real, non-negative) such that
- ``a == U @ S @ Vh``, where ``S`` is a suitably shaped matrix of zeros with
- main diagonal ``s``.
- Parameters
- ----------
- a : (M, N) array_like
- Matrix to decompose.
- full_matrices : bool, optional
- If True (default), `U` and `Vh` are of shape ``(M, M)``, ``(N, N)``.
- If False, the shapes are ``(M, K)`` and ``(K, N)``, where
- ``K = min(M, N)``.
- compute_uv : bool, optional
- Whether to compute also ``U`` and ``Vh`` in addition to ``s``.
- Default is True.
- overwrite_a : bool, optional
- Whether to overwrite `a`; may improve performance.
- Default is False.
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- lapack_driver : {'gesdd', 'gesvd'}, optional
- Whether to use the more efficient divide-and-conquer approach
- (``'gesdd'``) or general rectangular approach (``'gesvd'``)
- to compute the SVD. MATLAB and Octave use the ``'gesvd'`` approach.
- Default is ``'gesdd'``.
- .. versionadded:: 0.18
- Returns
- -------
- U : ndarray
- Unitary matrix having left singular vectors as columns.
- Of shape ``(M, M)`` or ``(M, K)``, depending on `full_matrices`.
- s : ndarray
- The singular values, sorted in non-increasing order.
- Of shape (K,), with ``K = min(M, N)``.
- Vh : ndarray
- Unitary matrix having right singular vectors as rows.
- Of shape ``(N, N)`` or ``(K, N)`` depending on `full_matrices`.
- For ``compute_uv=False``, only ``s`` is returned.
- Raises
- ------
- LinAlgError
- If SVD computation does not converge.
- See Also
- --------
- svdvals : Compute singular values of a matrix.
- diagsvd : Construct the Sigma matrix, given the vector s.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy import linalg
- >>> rng = np.random.default_rng()
- >>> m, n = 9, 6
- >>> a = rng.standard_normal((m, n)) + 1.j*rng.standard_normal((m, n))
- >>> U, s, Vh = linalg.svd(a)
- >>> U.shape, s.shape, Vh.shape
- ((9, 9), (6,), (6, 6))
- Reconstruct the original matrix from the decomposition:
- >>> sigma = np.zeros((m, n))
- >>> for i in range(min(m, n)):
- ... sigma[i, i] = s[i]
- >>> a1 = np.dot(U, np.dot(sigma, Vh))
- >>> np.allclose(a, a1)
- True
- Alternatively, use ``full_matrices=False`` (notice that the shape of
- ``U`` is then ``(m, n)`` instead of ``(m, m)``):
- >>> U, s, Vh = linalg.svd(a, full_matrices=False)
- >>> U.shape, s.shape, Vh.shape
- ((9, 6), (6,), (6, 6))
- >>> S = np.diag(s)
- >>> np.allclose(a, np.dot(U, np.dot(S, Vh)))
- True
- >>> s2 = linalg.svd(a, compute_uv=False)
- >>> np.allclose(s, s2)
- True
- """
- a1 = _asarray_validated(a, check_finite=check_finite)
- if len(a1.shape) != 2:
- raise ValueError('expected matrix')
- m, n = a1.shape
- overwrite_a = overwrite_a or (_datacopied(a1, a))
- if not isinstance(lapack_driver, str):
- raise TypeError('lapack_driver must be a string')
- if lapack_driver not in ('gesdd', 'gesvd'):
- raise ValueError('lapack_driver must be "gesdd" or "gesvd", not "%s"'
- % (lapack_driver,))
- funcs = (lapack_driver, lapack_driver + '_lwork')
- gesXd, gesXd_lwork = get_lapack_funcs(funcs, (a1,), ilp64='preferred')
- # compute optimal lwork
- lwork = _compute_lwork(gesXd_lwork, a1.shape[0], a1.shape[1],
- compute_uv=compute_uv, full_matrices=full_matrices)
- # perform decomposition
- u, s, v, info = gesXd(a1, compute_uv=compute_uv, lwork=lwork,
- full_matrices=full_matrices, overwrite_a=overwrite_a)
- if info > 0:
- raise LinAlgError("SVD did not converge")
- if info < 0:
- raise ValueError('illegal value in %dth argument of internal gesdd'
- % -info)
- if compute_uv:
- return u, s, v
- else:
- return s
- def svdvals(a, overwrite_a=False, check_finite=True):
- """
- Compute singular values of a matrix.
- Parameters
- ----------
- a : (M, N) array_like
- Matrix to decompose.
- overwrite_a : bool, optional
- Whether to overwrite `a`; may improve performance.
- Default is False.
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- s : (min(M, N),) ndarray
- The singular values, sorted in decreasing order.
- Raises
- ------
- LinAlgError
- If SVD computation does not converge.
- See Also
- --------
- svd : Compute the full singular value decomposition of a matrix.
- diagsvd : Construct the Sigma matrix, given the vector s.
- Notes
- -----
- ``svdvals(a)`` only differs from ``svd(a, compute_uv=False)`` by its
- handling of the edge case of empty ``a``, where it returns an
- empty sequence:
- >>> import numpy as np
- >>> a = np.empty((0, 2))
- >>> from scipy.linalg import svdvals
- >>> svdvals(a)
- array([], dtype=float64)
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import svdvals
- >>> m = np.array([[1.0, 0.0],
- ... [2.0, 3.0],
- ... [1.0, 1.0],
- ... [0.0, 2.0],
- ... [1.0, 0.0]])
- >>> svdvals(m)
- array([ 4.28091555, 1.63516424])
- We can verify the maximum singular value of `m` by computing the maximum
- length of `m.dot(u)` over all the unit vectors `u` in the (x,y) plane.
- We approximate "all" the unit vectors with a large sample. Because
- of linearity, we only need the unit vectors with angles in [0, pi].
- >>> t = np.linspace(0, np.pi, 2000)
- >>> u = np.array([np.cos(t), np.sin(t)])
- >>> np.linalg.norm(m.dot(u), axis=0).max()
- 4.2809152422538475
- `p` is a projection matrix with rank 1. With exact arithmetic,
- its singular values would be [1, 0, 0, 0].
- >>> v = np.array([0.1, 0.3, 0.9, 0.3])
- >>> p = np.outer(v, v)
- >>> svdvals(p)
- array([ 1.00000000e+00, 2.02021698e-17, 1.56692500e-17,
- 8.15115104e-34])
- The singular values of an orthogonal matrix are all 1. Here, we
- create a random orthogonal matrix by using the `rvs()` method of
- `scipy.stats.ortho_group`.
- >>> from scipy.stats import ortho_group
- >>> orth = ortho_group.rvs(4)
- >>> svdvals(orth)
- array([ 1., 1., 1., 1.])
- """
- a = _asarray_validated(a, check_finite=check_finite)
- if a.size:
- return svd(a, compute_uv=0, overwrite_a=overwrite_a,
- check_finite=False)
- elif len(a.shape) != 2:
- raise ValueError('expected matrix')
- else:
- return numpy.empty(0)
- def diagsvd(s, M, N):
- """
- Construct the sigma matrix in SVD from singular values and size M, N.
- Parameters
- ----------
- s : (M,) or (N,) array_like
- Singular values
- M : int
- Size of the matrix whose singular values are `s`.
- N : int
- Size of the matrix whose singular values are `s`.
- Returns
- -------
- S : (M, N) ndarray
- The S-matrix in the singular value decomposition
- See Also
- --------
- svd : Singular value decomposition of a matrix
- svdvals : Compute singular values of a matrix.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import diagsvd
- >>> vals = np.array([1, 2, 3]) # The array representing the computed svd
- >>> diagsvd(vals, 3, 4)
- array([[1, 0, 0, 0],
- [0, 2, 0, 0],
- [0, 0, 3, 0]])
- >>> diagsvd(vals, 4, 3)
- array([[1, 0, 0],
- [0, 2, 0],
- [0, 0, 3],
- [0, 0, 0]])
- """
- part = diag(s)
- typ = part.dtype.char
- MorN = len(s)
- if MorN == M:
- return r_['-1', part, zeros((M, N-M), typ)]
- elif MorN == N:
- return r_[part, zeros((M-N, N), typ)]
- else:
- raise ValueError("Length of s must be M or N.")
- # Orthonormal decomposition
- def orth(A, rcond=None):
- """
- Construct an orthonormal basis for the range of A using SVD
- Parameters
- ----------
- A : (M, N) array_like
- Input array
- rcond : float, optional
- Relative condition number. Singular values ``s`` smaller than
- ``rcond * max(s)`` are considered zero.
- Default: floating point eps * max(M,N).
- Returns
- -------
- Q : (M, K) ndarray
- Orthonormal basis for the range of A.
- K = effective rank of A, as determined by rcond
- See Also
- --------
- svd : Singular value decomposition of a matrix
- null_space : Matrix null space
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import orth
- >>> A = np.array([[2, 0, 0], [0, 5, 0]]) # rank 2 array
- >>> orth(A)
- array([[0., 1.],
- [1., 0.]])
- >>> orth(A.T)
- array([[0., 1.],
- [1., 0.],
- [0., 0.]])
- """
- u, s, vh = svd(A, full_matrices=False)
- M, N = u.shape[0], vh.shape[1]
- if rcond is None:
- rcond = numpy.finfo(s.dtype).eps * max(M, N)
- tol = numpy.amax(s) * rcond
- num = numpy.sum(s > tol, dtype=int)
- Q = u[:, :num]
- return Q
- def null_space(A, rcond=None):
- """
- Construct an orthonormal basis for the null space of A using SVD
- Parameters
- ----------
- A : (M, N) array_like
- Input array
- rcond : float, optional
- Relative condition number. Singular values ``s`` smaller than
- ``rcond * max(s)`` are considered zero.
- Default: floating point eps * max(M,N).
- Returns
- -------
- Z : (N, K) ndarray
- Orthonormal basis for the null space of A.
- K = dimension of effective null space, as determined by rcond
- See Also
- --------
- svd : Singular value decomposition of a matrix
- orth : Matrix range
- Examples
- --------
- 1-D null space:
- >>> import numpy as np
- >>> from scipy.linalg import null_space
- >>> A = np.array([[1, 1], [1, 1]])
- >>> ns = null_space(A)
- >>> ns * np.sign(ns[0,0]) # Remove the sign ambiguity of the vector
- array([[ 0.70710678],
- [-0.70710678]])
- 2-D null space:
- >>> from numpy.random import default_rng
- >>> rng = default_rng()
- >>> B = rng.random((3, 5))
- >>> Z = null_space(B)
- >>> Z.shape
- (5, 2)
- >>> np.allclose(B.dot(Z), 0)
- True
- The basis vectors are orthonormal (up to rounding error):
- >>> Z.T.dot(Z)
- array([[ 1.00000000e+00, 6.92087741e-17],
- [ 6.92087741e-17, 1.00000000e+00]])
- """
- u, s, vh = svd(A, full_matrices=True)
- M, N = u.shape[0], vh.shape[1]
- if rcond is None:
- rcond = numpy.finfo(s.dtype).eps * max(M, N)
- tol = numpy.amax(s) * rcond
- num = numpy.sum(s > tol, dtype=int)
- Q = vh[num:,:].T.conj()
- return Q
- def subspace_angles(A, B):
- r"""
- Compute the subspace angles between two matrices.
- Parameters
- ----------
- A : (M, N) array_like
- The first input array.
- B : (M, K) array_like
- The second input array.
- Returns
- -------
- angles : ndarray, shape (min(N, K),)
- The subspace angles between the column spaces of `A` and `B` in
- descending order.
- See Also
- --------
- orth
- svd
- Notes
- -----
- This computes the subspace angles according to the formula
- provided in [1]_. For equivalence with MATLAB and Octave behavior,
- use ``angles[0]``.
- .. versionadded:: 1.0
- References
- ----------
- .. [1] Knyazev A, Argentati M (2002) Principal Angles between Subspaces
- in an A-Based Scalar Product: Algorithms and Perturbation
- Estimates. SIAM J. Sci. Comput. 23:2008-2040.
- Examples
- --------
- An Hadamard matrix, which has orthogonal columns, so we expect that
- the suspace angle to be :math:`\frac{\pi}{2}`:
- >>> import numpy as np
- >>> from scipy.linalg import hadamard, subspace_angles
- >>> rng = np.random.default_rng()
- >>> H = hadamard(4)
- >>> print(H)
- [[ 1 1 1 1]
- [ 1 -1 1 -1]
- [ 1 1 -1 -1]
- [ 1 -1 -1 1]]
- >>> np.rad2deg(subspace_angles(H[:, :2], H[:, 2:]))
- array([ 90., 90.])
- And the subspace angle of a matrix to itself should be zero:
- >>> subspace_angles(H[:, :2], H[:, :2]) <= 2 * np.finfo(float).eps
- array([ True, True], dtype=bool)
- The angles between non-orthogonal subspaces are in between these extremes:
- >>> x = rng.standard_normal((4, 3))
- >>> np.rad2deg(subspace_angles(x[:, :2], x[:, [2]]))
- array([ 55.832]) # random
- """
- # Steps here omit the U and V calculation steps from the paper
- # 1. Compute orthonormal bases of column-spaces
- A = _asarray_validated(A, check_finite=True)
- if len(A.shape) != 2:
- raise ValueError('expected 2D array, got shape %s' % (A.shape,))
- QA = orth(A)
- del A
- B = _asarray_validated(B, check_finite=True)
- if len(B.shape) != 2:
- raise ValueError('expected 2D array, got shape %s' % (B.shape,))
- if len(B) != len(QA):
- raise ValueError('A and B must have the same number of rows, got '
- '%s and %s' % (QA.shape[0], B.shape[0]))
- QB = orth(B)
- del B
- # 2. Compute SVD for cosine
- QA_H_QB = dot(QA.T.conj(), QB)
- sigma = svdvals(QA_H_QB)
- # 3. Compute matrix B
- if QA.shape[1] >= QB.shape[1]:
- B = QB - dot(QA, QA_H_QB)
- else:
- B = QA - dot(QB, QA_H_QB.T.conj())
- del QA, QB, QA_H_QB
- # 4. Compute SVD for sine
- mask = sigma ** 2 >= 0.5
- if mask.any():
- mu_arcsin = arcsin(clip(svdvals(B, overwrite_a=True), -1., 1.))
- else:
- mu_arcsin = 0.
- # 5. Compute the principal angles
- # with reverse ordering of sigma because smallest sigma belongs to largest
- # angle theta
- theta = where(mask, mu_arcsin, arccos(clip(sigma[::-1], -1., 1.)))
- return theta
|