123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294 |
- """Schur decomposition functions."""
- import numpy
- from numpy import asarray_chkfinite, single, asarray, array
- from numpy.linalg import norm
- # Local imports.
- from ._misc import LinAlgError, _datacopied
- from .lapack import get_lapack_funcs
- from ._decomp import eigvals
- __all__ = ['schur', 'rsf2csf']
- _double_precision = ['i', 'l', 'd']
- def schur(a, output='real', lwork=None, overwrite_a=False, sort=None,
- check_finite=True):
- """
- Compute Schur decomposition of a matrix.
- The Schur decomposition is::
- A = Z T Z^H
- where Z is unitary and T is either upper-triangular, or for real
- Schur decomposition (output='real'), quasi-upper triangular. In
- the quasi-triangular form, 2x2 blocks describing complex-valued
- eigenvalue pairs may extrude from the diagonal.
- Parameters
- ----------
- a : (M, M) array_like
- Matrix to decompose
- output : {'real', 'complex'}, optional
- Construct the real or complex Schur decomposition (for real matrices).
- lwork : int, optional
- Work array size. If None or -1, it is automatically computed.
- overwrite_a : bool, optional
- Whether to overwrite data in a (may improve performance).
- sort : {None, callable, 'lhp', 'rhp', 'iuc', 'ouc'}, optional
- Specifies whether the upper eigenvalues should be sorted. A callable
- may be passed that, given a eigenvalue, returns a boolean denoting
- whether the eigenvalue should be sorted to the top-left (True).
- Alternatively, string parameters may be used::
- 'lhp' Left-hand plane (x.real < 0.0)
- 'rhp' Right-hand plane (x.real > 0.0)
- 'iuc' Inside the unit circle (x*x.conjugate() <= 1.0)
- 'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
- Defaults to None (no sorting).
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- T : (M, M) ndarray
- Schur form of A. It is real-valued for the real Schur decomposition.
- Z : (M, M) ndarray
- An unitary Schur transformation matrix for A.
- It is real-valued for the real Schur decomposition.
- sdim : int
- If and only if sorting was requested, a third return value will
- contain the number of eigenvalues satisfying the sort condition.
- Raises
- ------
- LinAlgError
- Error raised under three conditions:
- 1. The algorithm failed due to a failure of the QR algorithm to
- compute all eigenvalues.
- 2. If eigenvalue sorting was requested, the eigenvalues could not be
- reordered due to a failure to separate eigenvalues, usually because
- of poor conditioning.
- 3. If eigenvalue sorting was requested, roundoff errors caused the
- leading eigenvalues to no longer satisfy the sorting condition.
- See Also
- --------
- rsf2csf : Convert real Schur form to complex Schur form
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import schur, eigvals
- >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
- >>> T, Z = schur(A)
- >>> T
- array([[ 2.65896708, 1.42440458, -1.92933439],
- [ 0. , -0.32948354, -0.49063704],
- [ 0. , 1.31178921, -0.32948354]])
- >>> Z
- array([[0.72711591, -0.60156188, 0.33079564],
- [0.52839428, 0.79801892, 0.28976765],
- [0.43829436, 0.03590414, -0.89811411]])
- >>> T2, Z2 = schur(A, output='complex')
- >>> T2
- array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j],
- [ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j],
- [ 0. , 0. , -0.32948354-0.80225456j]])
- >>> eigvals(T2)
- array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])
- An arbitrary custom eig-sorting condition, having positive imaginary part,
- which is satisfied by only one eigenvalue
- >>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0)
- >>> sdim
- 1
- """
- if output not in ['real', 'complex', 'r', 'c']:
- raise ValueError("argument must be 'real', or 'complex'")
- if check_finite:
- a1 = asarray_chkfinite(a)
- else:
- a1 = asarray(a)
- if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]):
- raise ValueError('expected square matrix')
- typ = a1.dtype.char
- if output in ['complex', 'c'] and typ not in ['F', 'D']:
- if typ in _double_precision:
- a1 = a1.astype('D')
- typ = 'D'
- else:
- a1 = a1.astype('F')
- typ = 'F'
- overwrite_a = overwrite_a or (_datacopied(a1, a))
- gees, = get_lapack_funcs(('gees',), (a1,))
- if lwork is None or lwork == -1:
- # get optimal work array
- result = gees(lambda x: None, a1, lwork=-1)
- lwork = result[-2][0].real.astype(numpy.int_)
- if sort is None:
- sort_t = 0
- sfunction = lambda x: None
- else:
- sort_t = 1
- if callable(sort):
- sfunction = sort
- elif sort == 'lhp':
- sfunction = lambda x: (x.real < 0.0)
- elif sort == 'rhp':
- sfunction = lambda x: (x.real >= 0.0)
- elif sort == 'iuc':
- sfunction = lambda x: (abs(x) <= 1.0)
- elif sort == 'ouc':
- sfunction = lambda x: (abs(x) > 1.0)
- else:
- raise ValueError("'sort' parameter must either be 'None', or a "
- "callable, or one of ('lhp','rhp','iuc','ouc')")
- result = gees(sfunction, a1, lwork=lwork, overwrite_a=overwrite_a,
- sort_t=sort_t)
- info = result[-1]
- if info < 0:
- raise ValueError('illegal value in {}-th argument of internal gees'
- ''.format(-info))
- elif info == a1.shape[0] + 1:
- raise LinAlgError('Eigenvalues could not be separated for reordering.')
- elif info == a1.shape[0] + 2:
- raise LinAlgError('Leading eigenvalues do not satisfy sort condition.')
- elif info > 0:
- raise LinAlgError("Schur form not found. Possibly ill-conditioned.")
- if sort_t == 0:
- return result[0], result[-3]
- else:
- return result[0], result[-3], result[1]
- eps = numpy.finfo(float).eps
- feps = numpy.finfo(single).eps
- _array_kind = {'b': 0, 'h': 0, 'B': 0, 'i': 0, 'l': 0,
- 'f': 0, 'd': 0, 'F': 1, 'D': 1}
- _array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
- _array_type = [['f', 'd'], ['F', 'D']]
- def _commonType(*arrays):
- kind = 0
- precision = 0
- for a in arrays:
- t = a.dtype.char
- kind = max(kind, _array_kind[t])
- precision = max(precision, _array_precision[t])
- return _array_type[kind][precision]
- def _castCopy(type, *arrays):
- cast_arrays = ()
- for a in arrays:
- if a.dtype.char == type:
- cast_arrays = cast_arrays + (a.copy(),)
- else:
- cast_arrays = cast_arrays + (a.astype(type),)
- if len(cast_arrays) == 1:
- return cast_arrays[0]
- else:
- return cast_arrays
- def rsf2csf(T, Z, check_finite=True):
- """
- Convert real Schur form to complex Schur form.
- Convert a quasi-diagonal real-valued Schur form to the upper-triangular
- complex-valued Schur form.
- Parameters
- ----------
- T : (M, M) array_like
- Real Schur form of the original array
- Z : (M, M) array_like
- Schur transformation matrix
- check_finite : bool, optional
- Whether to check that the input arrays contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- T : (M, M) ndarray
- Complex Schur form of the original array
- Z : (M, M) ndarray
- Schur transformation matrix corresponding to the complex form
- See Also
- --------
- schur : Schur decomposition of an array
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import schur, rsf2csf
- >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]])
- >>> T, Z = schur(A)
- >>> T
- array([[ 2.65896708, 1.42440458, -1.92933439],
- [ 0. , -0.32948354, -0.49063704],
- [ 0. , 1.31178921, -0.32948354]])
- >>> Z
- array([[0.72711591, -0.60156188, 0.33079564],
- [0.52839428, 0.79801892, 0.28976765],
- [0.43829436, 0.03590414, -0.89811411]])
- >>> T2 , Z2 = rsf2csf(T, Z)
- >>> T2
- array([[2.65896708+0.j, -1.64592781+0.743164187j, -1.21516887+1.00660462j],
- [0.+0.j , -0.32948354+8.02254558e-01j, -0.82115218-2.77555756e-17j],
- [0.+0.j , 0.+0.j, -0.32948354-0.802254558j]])
- >>> Z2
- array([[0.72711591+0.j, 0.28220393-0.31385693j, 0.51319638-0.17258824j],
- [0.52839428+0.j, 0.24720268+0.41635578j, -0.68079517-0.15118243j],
- [0.43829436+0.j, -0.76618703+0.01873251j, -0.03063006+0.46857912j]])
- """
- if check_finite:
- Z, T = map(asarray_chkfinite, (Z, T))
- else:
- Z, T = map(asarray, (Z, T))
- for ind, X in enumerate([Z, T]):
- if X.ndim != 2 or X.shape[0] != X.shape[1]:
- raise ValueError("Input '{}' must be square.".format('ZT'[ind]))
- if T.shape[0] != Z.shape[0]:
- raise ValueError("Input array shapes must match: Z: {} vs. T: {}"
- "".format(Z.shape, T.shape))
- N = T.shape[0]
- t = _commonType(Z, T, array([3.0], 'F'))
- Z, T = _castCopy(t, Z, T)
- for m in range(N-1, 0, -1):
- if abs(T[m, m-1]) > eps*(abs(T[m-1, m-1]) + abs(T[m, m])):
- mu = eigvals(T[m-1:m+1, m-1:m+1]) - T[m, m]
- r = norm([mu[0], T[m, m-1]])
- c = mu[0] / r
- s = T[m, m-1] / r
- G = array([[c.conj(), s], [-s, c]], dtype=t)
- T[m-1:m+1, m-1:] = G.dot(T[m-1:m+1, m-1:])
- T[:m+1, m-1:m+1] = T[:m+1, m-1:m+1].dot(G.conj().T)
- Z[:, m-1:m+1] = Z[:, m-1:m+1].dot(G.conj().T)
- T[m, m-1] = 0.0
- return T, Z
|