123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358 |
- """Cholesky decomposition functions."""
- from numpy import asarray_chkfinite, asarray, atleast_2d
- # Local imports
- from ._misc import LinAlgError, _datacopied
- from .lapack import get_lapack_funcs
- __all__ = ['cholesky', 'cho_factor', 'cho_solve', 'cholesky_banded',
- 'cho_solve_banded']
- def _cholesky(a, lower=False, overwrite_a=False, clean=True,
- check_finite=True):
- """Common code for cholesky() and cho_factor()."""
- a1 = asarray_chkfinite(a) if check_finite else asarray(a)
- a1 = atleast_2d(a1)
- # Dimension check
- if a1.ndim != 2:
- raise ValueError('Input array needs to be 2D but received '
- 'a {}d-array.'.format(a1.ndim))
- # Squareness check
- if a1.shape[0] != a1.shape[1]:
- raise ValueError('Input array is expected to be square but has '
- 'the shape: {}.'.format(a1.shape))
- # Quick return for square empty array
- if a1.size == 0:
- return a1.copy(), lower
- overwrite_a = overwrite_a or _datacopied(a1, a)
- potrf, = get_lapack_funcs(('potrf',), (a1,))
- c, info = potrf(a1, lower=lower, overwrite_a=overwrite_a, clean=clean)
- if info > 0:
- raise LinAlgError("%d-th leading minor of the array is not positive "
- "definite" % info)
- if info < 0:
- raise ValueError('LAPACK reported an illegal value in {}-th argument'
- 'on entry to "POTRF".'.format(-info))
- return c, lower
- def cholesky(a, lower=False, overwrite_a=False, check_finite=True):
- """
- Compute the Cholesky decomposition of a matrix.
- Returns the Cholesky decomposition, :math:`A = L L^*` or
- :math:`A = U^* U` of a Hermitian positive-definite matrix A.
- Parameters
- ----------
- a : (M, M) array_like
- Matrix to be decomposed
- lower : bool, optional
- Whether to compute the upper- or lower-triangular Cholesky
- factorization. Default is upper-triangular.
- overwrite_a : bool, optional
- Whether to overwrite data in `a` (may improve performance).
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- c : (M, M) ndarray
- Upper- or lower-triangular Cholesky factor of `a`.
- Raises
- ------
- LinAlgError : if decomposition fails.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import cholesky
- >>> a = np.array([[1,-2j],[2j,5]])
- >>> L = cholesky(a, lower=True)
- >>> L
- array([[ 1.+0.j, 0.+0.j],
- [ 0.+2.j, 1.+0.j]])
- >>> L @ L.T.conj()
- array([[ 1.+0.j, 0.-2.j],
- [ 0.+2.j, 5.+0.j]])
- """
- c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=True,
- check_finite=check_finite)
- return c
- def cho_factor(a, lower=False, overwrite_a=False, check_finite=True):
- """
- Compute the Cholesky decomposition of a matrix, to use in cho_solve
- Returns a matrix containing the Cholesky decomposition,
- ``A = L L*`` or ``A = U* U`` of a Hermitian positive-definite matrix `a`.
- The return value can be directly used as the first parameter to cho_solve.
- .. warning::
- The returned matrix also contains random data in the entries not
- used by the Cholesky decomposition. If you need to zero these
- entries, use the function `cholesky` instead.
- Parameters
- ----------
- a : (M, M) array_like
- Matrix to be decomposed
- lower : bool, optional
- Whether to compute the upper or lower triangular Cholesky factorization
- (Default: upper-triangular)
- overwrite_a : bool, optional
- Whether to overwrite data in a (may improve performance)
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- c : (M, M) ndarray
- Matrix whose upper or lower triangle contains the Cholesky factor
- of `a`. Other parts of the matrix contain random data.
- lower : bool
- Flag indicating whether the factor is in the lower or upper triangle
- Raises
- ------
- LinAlgError
- Raised if decomposition fails.
- See Also
- --------
- cho_solve : Solve a linear set equations using the Cholesky factorization
- of a matrix.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import cho_factor
- >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
- >>> c, low = cho_factor(A)
- >>> c
- array([[3. , 1. , 0.33333333, 1.66666667],
- [3. , 2.44948974, 1.90515869, -0.27216553],
- [1. , 5. , 2.29330749, 0.8559528 ],
- [5. , 1. , 2. , 1.55418563]])
- >>> np.allclose(np.triu(c).T @ np. triu(c) - A, np.zeros((4, 4)))
- True
- """
- c, lower = _cholesky(a, lower=lower, overwrite_a=overwrite_a, clean=False,
- check_finite=check_finite)
- return c, lower
- def cho_solve(c_and_lower, b, overwrite_b=False, check_finite=True):
- """Solve the linear equations A x = b, given the Cholesky factorization of A.
- Parameters
- ----------
- (c, lower) : tuple, (array, bool)
- Cholesky factorization of a, as given by cho_factor
- b : array
- Right-hand side
- overwrite_b : bool, optional
- Whether to overwrite data in b (may improve performance)
- check_finite : bool, optional
- Whether to check that the input matrices contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- x : array
- The solution to the system A x = b
- See Also
- --------
- cho_factor : Cholesky factorization of a matrix
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import cho_factor, cho_solve
- >>> A = np.array([[9, 3, 1, 5], [3, 7, 5, 1], [1, 5, 9, 2], [5, 1, 2, 6]])
- >>> c, low = cho_factor(A)
- >>> x = cho_solve((c, low), [1, 1, 1, 1])
- >>> np.allclose(A @ x - [1, 1, 1, 1], np.zeros(4))
- True
- """
- (c, lower) = c_and_lower
- if check_finite:
- b1 = asarray_chkfinite(b)
- c = asarray_chkfinite(c)
- else:
- b1 = asarray(b)
- c = asarray(c)
- if c.ndim != 2 or c.shape[0] != c.shape[1]:
- raise ValueError("The factored matrix c is not square.")
- if c.shape[1] != b1.shape[0]:
- raise ValueError("incompatible dimensions ({} and {})"
- .format(c.shape, b1.shape))
- overwrite_b = overwrite_b or _datacopied(b1, b)
- potrs, = get_lapack_funcs(('potrs',), (c, b1))
- x, info = potrs(c, b1, lower=lower, overwrite_b=overwrite_b)
- if info != 0:
- raise ValueError('illegal value in %dth argument of internal potrs'
- % -info)
- return x
- def cholesky_banded(ab, overwrite_ab=False, lower=False, check_finite=True):
- """
- Cholesky decompose a banded Hermitian positive-definite matrix
- The matrix a is stored in ab either in lower-diagonal or upper-
- diagonal ordered form::
- ab[u + i - j, j] == a[i,j] (if upper form; i <= j)
- ab[ i - j, j] == a[i,j] (if lower form; i >= j)
- Example of ab (shape of a is (6,6), u=2)::
- upper form:
- * * a02 a13 a24 a35
- * a01 a12 a23 a34 a45
- a00 a11 a22 a33 a44 a55
- lower form:
- a00 a11 a22 a33 a44 a55
- a10 a21 a32 a43 a54 *
- a20 a31 a42 a53 * *
- Parameters
- ----------
- ab : (u + 1, M) array_like
- Banded matrix
- overwrite_ab : bool, optional
- Discard data in ab (may enhance performance)
- lower : bool, optional
- Is the matrix in the lower form. (Default is upper form)
- check_finite : bool, optional
- Whether to check that the input matrix contains only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- c : (u + 1, M) ndarray
- Cholesky factorization of a, in the same banded format as ab
- See Also
- --------
- cho_solve_banded :
- Solve a linear set equations, given the Cholesky factorization
- of a banded Hermitian.
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import cholesky_banded
- >>> from numpy import allclose, zeros, diag
- >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
- >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
- >>> A = A + A.conj().T + np.diag(Ab[2, :])
- >>> c = cholesky_banded(Ab)
- >>> C = np.diag(c[0, 2:], k=2) + np.diag(c[1, 1:], k=1) + np.diag(c[2, :])
- >>> np.allclose(C.conj().T @ C - A, np.zeros((5, 5)))
- True
- """
- if check_finite:
- ab = asarray_chkfinite(ab)
- else:
- ab = asarray(ab)
- pbtrf, = get_lapack_funcs(('pbtrf',), (ab,))
- c, info = pbtrf(ab, lower=lower, overwrite_ab=overwrite_ab)
- if info > 0:
- raise LinAlgError("%d-th leading minor not positive definite" % info)
- if info < 0:
- raise ValueError('illegal value in %d-th argument of internal pbtrf'
- % -info)
- return c
- def cho_solve_banded(cb_and_lower, b, overwrite_b=False, check_finite=True):
- """
- Solve the linear equations ``A x = b``, given the Cholesky factorization of
- the banded Hermitian ``A``.
- Parameters
- ----------
- (cb, lower) : tuple, (ndarray, bool)
- `cb` is the Cholesky factorization of A, as given by cholesky_banded.
- `lower` must be the same value that was given to cholesky_banded.
- b : array_like
- Right-hand side
- overwrite_b : bool, optional
- If True, the function will overwrite the values in `b`.
- check_finite : bool, optional
- Whether to check that the input matrices contain only finite numbers.
- Disabling may give a performance gain, but may result in problems
- (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns
- -------
- x : array
- The solution to the system A x = b
- See Also
- --------
- cholesky_banded : Cholesky factorization of a banded matrix
- Notes
- -----
- .. versionadded:: 0.8.0
- Examples
- --------
- >>> import numpy as np
- >>> from scipy.linalg import cholesky_banded, cho_solve_banded
- >>> Ab = np.array([[0, 0, 1j, 2, 3j], [0, -1, -2, 3, 4], [9, 8, 7, 6, 9]])
- >>> A = np.diag(Ab[0,2:], k=2) + np.diag(Ab[1,1:], k=1)
- >>> A = A + A.conj().T + np.diag(Ab[2, :])
- >>> c = cholesky_banded(Ab)
- >>> x = cho_solve_banded((c, False), np.ones(5))
- >>> np.allclose(A @ x - np.ones(5), np.zeros(5))
- True
- """
- (cb, lower) = cb_and_lower
- if check_finite:
- cb = asarray_chkfinite(cb)
- b = asarray_chkfinite(b)
- else:
- cb = asarray(cb)
- b = asarray(b)
- # Validate shapes.
- if cb.shape[-1] != b.shape[0]:
- raise ValueError("shapes of cb and b are not compatible.")
- pbtrs, = get_lapack_funcs(('pbtrs',), (cb, b))
- x, info = pbtrs(cb, b, lower=lower, overwrite_b=overwrite_b)
- if info > 0:
- raise LinAlgError("%dth leading minor not positive definite" % info)
- if info < 0:
- raise ValueError('illegal value in %dth argument of internal pbtrs'
- % -info)
- return x
|