1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291 |
- # -*- coding: utf-8 -*-
- ''' Nose test generators
- Need function load / save / roundtrip tests
- '''
- import os
- from collections import OrderedDict
- from os.path import join as pjoin, dirname
- from glob import glob
- from io import BytesIO
- import re
- from tempfile import mkdtemp
- import warnings
- import shutil
- import gzip
- from numpy.testing import (assert_array_equal, assert_array_almost_equal,
- assert_equal, assert_, assert_warns)
- import pytest
- from pytest import raises as assert_raises
- import numpy as np
- from numpy import array
- import scipy.sparse as SP
- import scipy.io
- from scipy.io.matlab import MatlabOpaque, MatlabFunction, MatlabObject
- import scipy.io.matlab._byteordercodes as boc
- from scipy.io.matlab._miobase import (
- matdims, MatWriteError, MatReadError, matfile_version)
- from scipy.io.matlab._mio import mat_reader_factory, loadmat, savemat, whosmat
- from scipy.io.matlab._mio5 import (
- MatFile5Writer, MatFile5Reader, varmats_from_mat, to_writeable,
- EmptyStructMarker)
- import scipy.io.matlab._mio5_params as mio5p
- test_data_path = pjoin(dirname(__file__), 'data')
- def mlarr(*args, **kwargs):
- """Convenience function to return matlab-compatible 2-D array."""
- arr = np.array(*args, **kwargs)
- arr.shape = matdims(arr)
- return arr
- # Define cases to test
- theta = np.pi/4*np.arange(9,dtype=float).reshape(1,9)
- case_table4 = [
- {'name': 'double',
- 'classes': {'testdouble': 'double'},
- 'expected': {'testdouble': theta}
- }]
- case_table4.append(
- {'name': 'string',
- 'classes': {'teststring': 'char'},
- 'expected': {'teststring':
- array(['"Do nine men interpret?" "Nine men," I nod.'])}
- })
- case_table4.append(
- {'name': 'complex',
- 'classes': {'testcomplex': 'double'},
- 'expected': {'testcomplex': np.cos(theta) + 1j*np.sin(theta)}
- })
- A = np.zeros((3,5))
- A[0] = list(range(1,6))
- A[:,0] = list(range(1,4))
- case_table4.append(
- {'name': 'matrix',
- 'classes': {'testmatrix': 'double'},
- 'expected': {'testmatrix': A},
- })
- case_table4.append(
- {'name': 'sparse',
- 'classes': {'testsparse': 'sparse'},
- 'expected': {'testsparse': SP.coo_matrix(A)},
- })
- B = A.astype(complex)
- B[0,0] += 1j
- case_table4.append(
- {'name': 'sparsecomplex',
- 'classes': {'testsparsecomplex': 'sparse'},
- 'expected': {'testsparsecomplex': SP.coo_matrix(B)},
- })
- case_table4.append(
- {'name': 'multi',
- 'classes': {'theta': 'double', 'a': 'double'},
- 'expected': {'theta': theta, 'a': A},
- })
- case_table4.append(
- {'name': 'minus',
- 'classes': {'testminus': 'double'},
- 'expected': {'testminus': mlarr(-1)},
- })
- case_table4.append(
- {'name': 'onechar',
- 'classes': {'testonechar': 'char'},
- 'expected': {'testonechar': array(['r'])},
- })
- # Cell arrays stored as object arrays
- CA = mlarr(( # tuple for object array creation
- [],
- mlarr([1]),
- mlarr([[1,2]]),
- mlarr([[1,2,3]])), dtype=object).reshape(1,-1)
- CA[0,0] = array(
- ['This cell contains this string and 3 arrays of increasing length'])
- case_table5 = [
- {'name': 'cell',
- 'classes': {'testcell': 'cell'},
- 'expected': {'testcell': CA}}]
- CAE = mlarr(( # tuple for object array creation
- mlarr(1),
- mlarr(2),
- mlarr([]),
- mlarr([]),
- mlarr(3)), dtype=object).reshape(1,-1)
- objarr = np.empty((1,1),dtype=object)
- objarr[0,0] = mlarr(1)
- case_table5.append(
- {'name': 'scalarcell',
- 'classes': {'testscalarcell': 'cell'},
- 'expected': {'testscalarcell': objarr}
- })
- case_table5.append(
- {'name': 'emptycell',
- 'classes': {'testemptycell': 'cell'},
- 'expected': {'testemptycell': CAE}})
- case_table5.append(
- {'name': 'stringarray',
- 'classes': {'teststringarray': 'char'},
- 'expected': {'teststringarray': array(
- ['one ', 'two ', 'three'])},
- })
- case_table5.append(
- {'name': '3dmatrix',
- 'classes': {'test3dmatrix': 'double'},
- 'expected': {
- 'test3dmatrix': np.transpose(np.reshape(list(range(1,25)), (4,3,2)))}
- })
- st_sub_arr = array([np.sqrt(2),np.exp(1),np.pi]).reshape(1,3)
- dtype = [(n, object) for n in ['stringfield', 'doublefield', 'complexfield']]
- st1 = np.zeros((1,1), dtype)
- st1['stringfield'][0,0] = array(['Rats live on no evil star.'])
- st1['doublefield'][0,0] = st_sub_arr
- st1['complexfield'][0,0] = st_sub_arr * (1 + 1j)
- case_table5.append(
- {'name': 'struct',
- 'classes': {'teststruct': 'struct'},
- 'expected': {'teststruct': st1}
- })
- CN = np.zeros((1,2), dtype=object)
- CN[0,0] = mlarr(1)
- CN[0,1] = np.zeros((1,3), dtype=object)
- CN[0,1][0,0] = mlarr(2, dtype=np.uint8)
- CN[0,1][0,1] = mlarr([[3]], dtype=np.uint8)
- CN[0,1][0,2] = np.zeros((1,2), dtype=object)
- CN[0,1][0,2][0,0] = mlarr(4, dtype=np.uint8)
- CN[0,1][0,2][0,1] = mlarr(5, dtype=np.uint8)
- case_table5.append(
- {'name': 'cellnest',
- 'classes': {'testcellnest': 'cell'},
- 'expected': {'testcellnest': CN},
- })
- st2 = np.empty((1,1), dtype=[(n, object) for n in ['one', 'two']])
- st2[0,0]['one'] = mlarr(1)
- st2[0,0]['two'] = np.empty((1,1), dtype=[('three', object)])
- st2[0,0]['two'][0,0]['three'] = array(['number 3'])
- case_table5.append(
- {'name': 'structnest',
- 'classes': {'teststructnest': 'struct'},
- 'expected': {'teststructnest': st2}
- })
- a = np.empty((1,2), dtype=[(n, object) for n in ['one', 'two']])
- a[0,0]['one'] = mlarr(1)
- a[0,0]['two'] = mlarr(2)
- a[0,1]['one'] = array(['number 1'])
- a[0,1]['two'] = array(['number 2'])
- case_table5.append(
- {'name': 'structarr',
- 'classes': {'teststructarr': 'struct'},
- 'expected': {'teststructarr': a}
- })
- ODT = np.dtype([(n, object) for n in
- ['expr', 'inputExpr', 'args',
- 'isEmpty', 'numArgs', 'version']])
- MO = MatlabObject(np.zeros((1,1), dtype=ODT), 'inline')
- m0 = MO[0,0]
- m0['expr'] = array(['x'])
- m0['inputExpr'] = array([' x = INLINE_INPUTS_{1};'])
- m0['args'] = array(['x'])
- m0['isEmpty'] = mlarr(0)
- m0['numArgs'] = mlarr(1)
- m0['version'] = mlarr(1)
- case_table5.append(
- {'name': 'object',
- 'classes': {'testobject': 'object'},
- 'expected': {'testobject': MO}
- })
- fp_u_str = open(pjoin(test_data_path, 'japanese_utf8.txt'), 'rb')
- u_str = fp_u_str.read().decode('utf-8')
- fp_u_str.close()
- case_table5.append(
- {'name': 'unicode',
- 'classes': {'testunicode': 'char'},
- 'expected': {'testunicode': array([u_str])}
- })
- case_table5.append(
- {'name': 'sparse',
- 'classes': {'testsparse': 'sparse'},
- 'expected': {'testsparse': SP.coo_matrix(A)},
- })
- case_table5.append(
- {'name': 'sparsecomplex',
- 'classes': {'testsparsecomplex': 'sparse'},
- 'expected': {'testsparsecomplex': SP.coo_matrix(B)},
- })
- case_table5.append(
- {'name': 'bool',
- 'classes': {'testbools': 'logical'},
- 'expected': {'testbools':
- array([[True], [False]])},
- })
- case_table5_rt = case_table5[:]
- # Inline functions can't be concatenated in matlab, so RT only
- case_table5_rt.append(
- {'name': 'objectarray',
- 'classes': {'testobjectarray': 'object'},
- 'expected': {'testobjectarray': np.repeat(MO, 2).reshape(1,2)}})
- def types_compatible(var1, var2):
- """Check if types are same or compatible.
- 0-D numpy scalars are compatible with bare python scalars.
- """
- type1 = type(var1)
- type2 = type(var2)
- if type1 is type2:
- return True
- if type1 is np.ndarray and var1.shape == ():
- return type(var1.item()) is type2
- if type2 is np.ndarray and var2.shape == ():
- return type(var2.item()) is type1
- return False
- def _check_level(label, expected, actual):
- """ Check one level of a potentially nested array """
- if SP.issparse(expected): # allow different types of sparse matrices
- assert_(SP.issparse(actual))
- assert_array_almost_equal(actual.toarray(),
- expected.toarray(),
- err_msg=label,
- decimal=5)
- return
- # Check types are as expected
- assert_(types_compatible(expected, actual),
- "Expected type %s, got %s at %s" %
- (type(expected), type(actual), label))
- # A field in a record array may not be an ndarray
- # A scalar from a record array will be type np.void
- if not isinstance(expected,
- (np.void, np.ndarray, MatlabObject)):
- assert_equal(expected, actual)
- return
- # This is an ndarray-like thing
- assert_(expected.shape == actual.shape,
- msg='Expected shape %s, got %s at %s' % (expected.shape,
- actual.shape,
- label))
- ex_dtype = expected.dtype
- if ex_dtype.hasobject: # array of objects
- if isinstance(expected, MatlabObject):
- assert_equal(expected.classname, actual.classname)
- for i, ev in enumerate(expected):
- level_label = "%s, [%d], " % (label, i)
- _check_level(level_label, ev, actual[i])
- return
- if ex_dtype.fields: # probably recarray
- for fn in ex_dtype.fields:
- level_label = "%s, field %s, " % (label, fn)
- _check_level(level_label,
- expected[fn], actual[fn])
- return
- if ex_dtype.type in (str, # string or bool
- np.unicode_,
- np.bool_):
- assert_equal(actual, expected, err_msg=label)
- return
- # Something numeric
- assert_array_almost_equal(actual, expected, err_msg=label, decimal=5)
- def _load_check_case(name, files, case):
- for file_name in files:
- matdict = loadmat(file_name, struct_as_record=True)
- label = "test %s; file %s" % (name, file_name)
- for k, expected in case.items():
- k_label = "%s, variable %s" % (label, k)
- assert_(k in matdict, "Missing key at %s" % k_label)
- _check_level(k_label, expected, matdict[k])
- def _whos_check_case(name, files, case, classes):
- for file_name in files:
- label = "test %s; file %s" % (name, file_name)
- whos = whosmat(file_name)
- expected_whos = [
- (k, expected.shape, classes[k]) for k, expected in case.items()]
- whos.sort()
- expected_whos.sort()
- assert_equal(whos, expected_whos,
- "%s: %r != %r" % (label, whos, expected_whos)
- )
- # Round trip tests
- def _rt_check_case(name, expected, format):
- mat_stream = BytesIO()
- savemat(mat_stream, expected, format=format)
- mat_stream.seek(0)
- _load_check_case(name, [mat_stream], expected)
- # generator for tests
- def _cases(version, filt='test%(name)s_*.mat'):
- if version == '4':
- cases = case_table4
- elif version == '5':
- cases = case_table5
- else:
- assert version == '5_rt'
- cases = case_table5_rt
- for case in cases:
- name = case['name']
- expected = case['expected']
- if filt is None:
- files = None
- else:
- use_filt = pjoin(test_data_path, filt % dict(name=name))
- files = glob(use_filt)
- assert len(files) > 0, \
- "No files for test %s using filter %s" % (name, filt)
- classes = case['classes']
- yield name, files, expected, classes
- @pytest.mark.parametrize('version', ('4', '5'))
- def test_load(version):
- for case in _cases(version):
- _load_check_case(*case[:3])
- @pytest.mark.parametrize('version', ('4', '5'))
- def test_whos(version):
- for case in _cases(version):
- _whos_check_case(*case)
- # generator for round trip tests
- @pytest.mark.parametrize('version, fmts', [
- ('4', ['4', '5']),
- ('5_rt', ['5']),
- ])
- def test_round_trip(version, fmts):
- for case in _cases(version, filt=None):
- for fmt in fmts:
- _rt_check_case(case[0], case[2], fmt)
- def test_gzip_simple():
- xdense = np.zeros((20,20))
- xdense[2,3] = 2.3
- xdense[4,5] = 4.5
- x = SP.csc_matrix(xdense)
- name = 'gzip_test'
- expected = {'x':x}
- format = '4'
- tmpdir = mkdtemp()
- try:
- fname = pjoin(tmpdir,name)
- mat_stream = gzip.open(fname, mode='wb')
- savemat(mat_stream, expected, format=format)
- mat_stream.close()
- mat_stream = gzip.open(fname, mode='rb')
- actual = loadmat(mat_stream, struct_as_record=True)
- mat_stream.close()
- finally:
- shutil.rmtree(tmpdir)
- assert_array_almost_equal(actual['x'].toarray(),
- expected['x'].toarray(),
- err_msg=repr(actual))
- def test_multiple_open():
- # Ticket #1039, on Windows: check that files are not left open
- tmpdir = mkdtemp()
- try:
- x = dict(x=np.zeros((2, 2)))
- fname = pjoin(tmpdir, "a.mat")
- # Check that file is not left open
- savemat(fname, x)
- os.unlink(fname)
- savemat(fname, x)
- loadmat(fname)
- os.unlink(fname)
- # Check that stream is left open
- f = open(fname, 'wb')
- savemat(f, x)
- f.seek(0)
- f.close()
- f = open(fname, 'rb')
- loadmat(f)
- f.seek(0)
- f.close()
- finally:
- shutil.rmtree(tmpdir)
- def test_mat73():
- # Check any hdf5 files raise an error
- filenames = glob(
- pjoin(test_data_path, 'testhdf5*.mat'))
- assert_(len(filenames) > 0)
- for filename in filenames:
- fp = open(filename, 'rb')
- assert_raises(NotImplementedError,
- loadmat,
- fp,
- struct_as_record=True)
- fp.close()
- def test_warnings():
- # This test is an echo of the previous behavior, which was to raise a
- # warning if the user triggered a search for mat files on the Python system
- # path. We can remove the test in the next version after upcoming (0.13).
- fname = pjoin(test_data_path, 'testdouble_7.1_GLNX86.mat')
- with warnings.catch_warnings():
- warnings.simplefilter('error')
- # This should not generate a warning
- loadmat(fname, struct_as_record=True)
- # This neither
- loadmat(fname, struct_as_record=False)
- def test_regression_653():
- # Saving a dictionary with only invalid keys used to raise an error. Now we
- # save this as an empty struct in matlab space.
- sio = BytesIO()
- savemat(sio, {'d':{1:2}}, format='5')
- back = loadmat(sio)['d']
- # Check we got an empty struct equivalent
- assert_equal(back.shape, (1,1))
- assert_equal(back.dtype, np.dtype(object))
- assert_(back[0,0] is None)
- def test_structname_len():
- # Test limit for length of field names in structs
- lim = 31
- fldname = 'a' * lim
- st1 = np.zeros((1,1), dtype=[(fldname, object)])
- savemat(BytesIO(), {'longstruct': st1}, format='5')
- fldname = 'a' * (lim+1)
- st1 = np.zeros((1,1), dtype=[(fldname, object)])
- assert_raises(ValueError, savemat, BytesIO(),
- {'longstruct': st1}, format='5')
- def test_4_and_long_field_names_incompatible():
- # Long field names option not supported in 4
- my_struct = np.zeros((1,1),dtype=[('my_fieldname',object)])
- assert_raises(ValueError, savemat, BytesIO(),
- {'my_struct':my_struct}, format='4', long_field_names=True)
- def test_long_field_names():
- # Test limit for length of field names in structs
- lim = 63
- fldname = 'a' * lim
- st1 = np.zeros((1,1), dtype=[(fldname, object)])
- savemat(BytesIO(), {'longstruct': st1}, format='5',long_field_names=True)
- fldname = 'a' * (lim+1)
- st1 = np.zeros((1,1), dtype=[(fldname, object)])
- assert_raises(ValueError, savemat, BytesIO(),
- {'longstruct': st1}, format='5',long_field_names=True)
- def test_long_field_names_in_struct():
- # Regression test - long_field_names was erased if you passed a struct
- # within a struct
- lim = 63
- fldname = 'a' * lim
- cell = np.ndarray((1,2),dtype=object)
- st1 = np.zeros((1,1), dtype=[(fldname, object)])
- cell[0,0] = st1
- cell[0,1] = st1
- savemat(BytesIO(), {'longstruct': cell}, format='5',long_field_names=True)
- #
- # Check to make sure it fails with long field names off
- #
- assert_raises(ValueError, savemat, BytesIO(),
- {'longstruct': cell}, format='5', long_field_names=False)
- def test_cell_with_one_thing_in_it():
- # Regression test - make a cell array that's 1 x 2 and put two
- # strings in it. It works. Make a cell array that's 1 x 1 and put
- # a string in it. It should work but, in the old days, it didn't.
- cells = np.ndarray((1,2),dtype=object)
- cells[0,0] = 'Hello'
- cells[0,1] = 'World'
- savemat(BytesIO(), {'x': cells}, format='5')
- cells = np.ndarray((1,1),dtype=object)
- cells[0,0] = 'Hello, world'
- savemat(BytesIO(), {'x': cells}, format='5')
- def test_writer_properties():
- # Tests getting, setting of properties of matrix writer
- mfw = MatFile5Writer(BytesIO())
- assert_equal(mfw.global_vars, [])
- mfw.global_vars = ['avar']
- assert_equal(mfw.global_vars, ['avar'])
- assert_equal(mfw.unicode_strings, False)
- mfw.unicode_strings = True
- assert_equal(mfw.unicode_strings, True)
- assert_equal(mfw.long_field_names, False)
- mfw.long_field_names = True
- assert_equal(mfw.long_field_names, True)
- def test_use_small_element():
- # Test whether we're using small data element or not
- sio = BytesIO()
- wtr = MatFile5Writer(sio)
- # First check size for no sde for name
- arr = np.zeros(10)
- wtr.put_variables({'aaaaa': arr})
- w_sz = len(sio.getvalue())
- # Check small name results in largish difference in size
- sio.truncate(0)
- sio.seek(0)
- wtr.put_variables({'aaaa': arr})
- assert_(w_sz - len(sio.getvalue()) > 4)
- # Whereas increasing name size makes less difference
- sio.truncate(0)
- sio.seek(0)
- wtr.put_variables({'aaaaaa': arr})
- assert_(len(sio.getvalue()) - w_sz < 4)
- def test_save_dict():
- # Test that both dict and OrderedDict can be saved (as recarray),
- # loaded as matstruct, and preserve order
- ab_exp = np.array([[(1, 2)]], dtype=[('a', object), ('b', object)])
- for dict_type in (dict, OrderedDict):
- # Initialize with tuples to keep order
- d = dict_type([('a', 1), ('b', 2)])
- stream = BytesIO()
- savemat(stream, {'dict': d})
- stream.seek(0)
- vals = loadmat(stream)['dict']
- assert_equal(vals.dtype.names, ('a', 'b'))
- assert_array_equal(vals, ab_exp)
- def test_1d_shape():
- # New 5 behavior is 1D -> row vector
- arr = np.arange(5)
- for format in ('4', '5'):
- # Column is the default
- stream = BytesIO()
- savemat(stream, {'oned': arr}, format=format)
- vals = loadmat(stream)
- assert_equal(vals['oned'].shape, (1, 5))
- # can be explicitly 'column' for oned_as
- stream = BytesIO()
- savemat(stream, {'oned':arr},
- format=format,
- oned_as='column')
- vals = loadmat(stream)
- assert_equal(vals['oned'].shape, (5,1))
- # but different from 'row'
- stream = BytesIO()
- savemat(stream, {'oned':arr},
- format=format,
- oned_as='row')
- vals = loadmat(stream)
- assert_equal(vals['oned'].shape, (1,5))
- def test_compression():
- arr = np.zeros(100).reshape((5,20))
- arr[2,10] = 1
- stream = BytesIO()
- savemat(stream, {'arr':arr})
- raw_len = len(stream.getvalue())
- vals = loadmat(stream)
- assert_array_equal(vals['arr'], arr)
- stream = BytesIO()
- savemat(stream, {'arr':arr}, do_compression=True)
- compressed_len = len(stream.getvalue())
- vals = loadmat(stream)
- assert_array_equal(vals['arr'], arr)
- assert_(raw_len > compressed_len)
- # Concatenate, test later
- arr2 = arr.copy()
- arr2[0,0] = 1
- stream = BytesIO()
- savemat(stream, {'arr':arr, 'arr2':arr2}, do_compression=False)
- vals = loadmat(stream)
- assert_array_equal(vals['arr2'], arr2)
- stream = BytesIO()
- savemat(stream, {'arr':arr, 'arr2':arr2}, do_compression=True)
- vals = loadmat(stream)
- assert_array_equal(vals['arr2'], arr2)
- def test_single_object():
- stream = BytesIO()
- savemat(stream, {'A':np.array(1, dtype=object)})
- def test_skip_variable():
- # Test skipping over the first of two variables in a MAT file
- # using mat_reader_factory and put_variables to read them in.
- #
- # This is a regression test of a problem that's caused by
- # using the compressed file reader seek instead of the raw file
- # I/O seek when skipping over a compressed chunk.
- #
- # The problem arises when the chunk is large: this file has
- # a 256x256 array of random (uncompressible) doubles.
- #
- filename = pjoin(test_data_path,'test_skip_variable.mat')
- #
- # Prove that it loads with loadmat
- #
- d = loadmat(filename, struct_as_record=True)
- assert_('first' in d)
- assert_('second' in d)
- #
- # Make the factory
- #
- factory, file_opened = mat_reader_factory(filename, struct_as_record=True)
- #
- # This is where the factory breaks with an error in MatMatrixGetter.to_next
- #
- d = factory.get_variables('second')
- assert_('second' in d)
- factory.mat_stream.close()
- def test_empty_struct():
- # ticket 885
- filename = pjoin(test_data_path,'test_empty_struct.mat')
- # before ticket fix, this would crash with ValueError, empty data
- # type
- d = loadmat(filename, struct_as_record=True)
- a = d['a']
- assert_equal(a.shape, (1,1))
- assert_equal(a.dtype, np.dtype(object))
- assert_(a[0,0] is None)
- stream = BytesIO()
- arr = np.array((), dtype='U')
- # before ticket fix, this used to give data type not understood
- savemat(stream, {'arr':arr})
- d = loadmat(stream)
- a2 = d['arr']
- assert_array_equal(a2, arr)
- def test_save_empty_dict():
- # saving empty dict also gives empty struct
- stream = BytesIO()
- savemat(stream, {'arr': {}})
- d = loadmat(stream)
- a = d['arr']
- assert_equal(a.shape, (1,1))
- assert_equal(a.dtype, np.dtype(object))
- assert_(a[0,0] is None)
- def assert_any_equal(output, alternatives):
- """ Assert `output` is equal to at least one element in `alternatives`
- """
- one_equal = False
- for expected in alternatives:
- if np.all(output == expected):
- one_equal = True
- break
- assert_(one_equal)
- def test_to_writeable():
- # Test to_writeable function
- res = to_writeable(np.array([1])) # pass through ndarrays
- assert_equal(res.shape, (1,))
- assert_array_equal(res, 1)
- # Dict fields can be written in any order
- expected1 = np.array([(1, 2)], dtype=[('a', '|O8'), ('b', '|O8')])
- expected2 = np.array([(2, 1)], dtype=[('b', '|O8'), ('a', '|O8')])
- alternatives = (expected1, expected2)
- assert_any_equal(to_writeable({'a':1,'b':2}), alternatives)
- # Fields with underscores discarded
- assert_any_equal(to_writeable({'a':1,'b':2, '_c':3}), alternatives)
- # Not-string fields discarded
- assert_any_equal(to_writeable({'a':1,'b':2, 100:3}), alternatives)
- # String fields that are valid Python identifiers discarded
- assert_any_equal(to_writeable({'a':1,'b':2, '99':3}), alternatives)
- # Object with field names is equivalent
- class klass:
- pass
- c = klass
- c.a = 1
- c.b = 2
- assert_any_equal(to_writeable(c), alternatives)
- # empty list and tuple go to empty array
- res = to_writeable([])
- assert_equal(res.shape, (0,))
- assert_equal(res.dtype.type, np.float64)
- res = to_writeable(())
- assert_equal(res.shape, (0,))
- assert_equal(res.dtype.type, np.float64)
- # None -> None
- assert_(to_writeable(None) is None)
- # String to strings
- assert_equal(to_writeable('a string').dtype.type, np.str_)
- # Scalars to numpy to NumPy scalars
- res = to_writeable(1)
- assert_equal(res.shape, ())
- assert_equal(res.dtype.type, np.array(1).dtype.type)
- assert_array_equal(res, 1)
- # Empty dict returns EmptyStructMarker
- assert_(to_writeable({}) is EmptyStructMarker)
- # Object does not have (even empty) __dict__
- assert_(to_writeable(object()) is None)
- # Custom object does have empty __dict__, returns EmptyStructMarker
- class C:
- pass
- assert_(to_writeable(c()) is EmptyStructMarker)
- # dict keys with legal characters are convertible
- res = to_writeable({'a': 1})['a']
- assert_equal(res.shape, (1,))
- assert_equal(res.dtype.type, np.object_)
- # Only fields with illegal characters, falls back to EmptyStruct
- assert_(to_writeable({'1':1}) is EmptyStructMarker)
- assert_(to_writeable({'_a':1}) is EmptyStructMarker)
- # Unless there are valid fields, in which case structured array
- assert_equal(to_writeable({'1':1, 'f': 2}),
- np.array([(2,)], dtype=[('f', '|O8')]))
- def test_recarray():
- # check roundtrip of structured array
- dt = [('f1', 'f8'),
- ('f2', 'S10')]
- arr = np.zeros((2,), dtype=dt)
- arr[0]['f1'] = 0.5
- arr[0]['f2'] = 'python'
- arr[1]['f1'] = 99
- arr[1]['f2'] = 'not perl'
- stream = BytesIO()
- savemat(stream, {'arr': arr})
- d = loadmat(stream, struct_as_record=False)
- a20 = d['arr'][0,0]
- assert_equal(a20.f1, 0.5)
- assert_equal(a20.f2, 'python')
- d = loadmat(stream, struct_as_record=True)
- a20 = d['arr'][0,0]
- assert_equal(a20['f1'], 0.5)
- assert_equal(a20['f2'], 'python')
- # structs always come back as object types
- assert_equal(a20.dtype, np.dtype([('f1', 'O'),
- ('f2', 'O')]))
- a21 = d['arr'].flat[1]
- assert_equal(a21['f1'], 99)
- assert_equal(a21['f2'], 'not perl')
- def test_save_object():
- class C:
- pass
- c = C()
- c.field1 = 1
- c.field2 = 'a string'
- stream = BytesIO()
- savemat(stream, {'c': c})
- d = loadmat(stream, struct_as_record=False)
- c2 = d['c'][0,0]
- assert_equal(c2.field1, 1)
- assert_equal(c2.field2, 'a string')
- d = loadmat(stream, struct_as_record=True)
- c2 = d['c'][0,0]
- assert_equal(c2['field1'], 1)
- assert_equal(c2['field2'], 'a string')
- def test_read_opts():
- # tests if read is seeing option sets, at initialization and after
- # initialization
- arr = np.arange(6).reshape(1,6)
- stream = BytesIO()
- savemat(stream, {'a': arr})
- rdr = MatFile5Reader(stream)
- back_dict = rdr.get_variables()
- rarr = back_dict['a']
- assert_array_equal(rarr, arr)
- rdr = MatFile5Reader(stream, squeeze_me=True)
- assert_array_equal(rdr.get_variables()['a'], arr.reshape((6,)))
- rdr.squeeze_me = False
- assert_array_equal(rarr, arr)
- rdr = MatFile5Reader(stream, byte_order=boc.native_code)
- assert_array_equal(rdr.get_variables()['a'], arr)
- # inverted byte code leads to error on read because of swapped
- # header etc.
- rdr = MatFile5Reader(stream, byte_order=boc.swapped_code)
- assert_raises(Exception, rdr.get_variables)
- rdr.byte_order = boc.native_code
- assert_array_equal(rdr.get_variables()['a'], arr)
- arr = np.array(['a string'])
- stream.truncate(0)
- stream.seek(0)
- savemat(stream, {'a': arr})
- rdr = MatFile5Reader(stream)
- assert_array_equal(rdr.get_variables()['a'], arr)
- rdr = MatFile5Reader(stream, chars_as_strings=False)
- carr = np.atleast_2d(np.array(list(arr.item()), dtype='U1'))
- assert_array_equal(rdr.get_variables()['a'], carr)
- rdr.chars_as_strings = True
- assert_array_equal(rdr.get_variables()['a'], arr)
- def test_empty_string():
- # make sure reading empty string does not raise error
- estring_fname = pjoin(test_data_path, 'single_empty_string.mat')
- fp = open(estring_fname, 'rb')
- rdr = MatFile5Reader(fp)
- d = rdr.get_variables()
- fp.close()
- assert_array_equal(d['a'], np.array([], dtype='U1'))
- # Empty string round trip. Matlab cannot distinguish
- # between a string array that is empty, and a string array
- # containing a single empty string, because it stores strings as
- # arrays of char. There is no way of having an array of char that
- # is not empty, but contains an empty string.
- stream = BytesIO()
- savemat(stream, {'a': np.array([''])})
- rdr = MatFile5Reader(stream)
- d = rdr.get_variables()
- assert_array_equal(d['a'], np.array([], dtype='U1'))
- stream.truncate(0)
- stream.seek(0)
- savemat(stream, {'a': np.array([], dtype='U1')})
- rdr = MatFile5Reader(stream)
- d = rdr.get_variables()
- assert_array_equal(d['a'], np.array([], dtype='U1'))
- stream.close()
- def test_corrupted_data():
- import zlib
- for exc, fname in [(ValueError, 'corrupted_zlib_data.mat'),
- (zlib.error, 'corrupted_zlib_checksum.mat')]:
- with open(pjoin(test_data_path, fname), 'rb') as fp:
- rdr = MatFile5Reader(fp)
- assert_raises(exc, rdr.get_variables)
- def test_corrupted_data_check_can_be_disabled():
- with open(pjoin(test_data_path, 'corrupted_zlib_data.mat'), 'rb') as fp:
- rdr = MatFile5Reader(fp, verify_compressed_data_integrity=False)
- rdr.get_variables()
- def test_read_both_endian():
- # make sure big- and little- endian data is read correctly
- for fname in ('big_endian.mat', 'little_endian.mat'):
- fp = open(pjoin(test_data_path, fname), 'rb')
- rdr = MatFile5Reader(fp)
- d = rdr.get_variables()
- fp.close()
- assert_array_equal(d['strings'],
- np.array([['hello'],
- ['world']], dtype=object))
- assert_array_equal(d['floats'],
- np.array([[2., 3.],
- [3., 4.]], dtype=np.float32))
- def test_write_opposite_endian():
- # We don't support writing opposite endian .mat files, but we need to behave
- # correctly if the user supplies an other-endian NumPy array to write out.
- float_arr = np.array([[2., 3.],
- [3., 4.]])
- int_arr = np.arange(6).reshape((2, 3))
- uni_arr = np.array(['hello', 'world'], dtype='U')
- stream = BytesIO()
- savemat(stream, {'floats': float_arr.byteswap().newbyteorder(),
- 'ints': int_arr.byteswap().newbyteorder(),
- 'uni_arr': uni_arr.byteswap().newbyteorder()})
- rdr = MatFile5Reader(stream)
- d = rdr.get_variables()
- assert_array_equal(d['floats'], float_arr)
- assert_array_equal(d['ints'], int_arr)
- assert_array_equal(d['uni_arr'], uni_arr)
- stream.close()
- def test_logical_array():
- # The roundtrip test doesn't verify that we load the data up with the
- # correct (bool) dtype
- with open(pjoin(test_data_path, 'testbool_8_WIN64.mat'), 'rb') as fobj:
- rdr = MatFile5Reader(fobj, mat_dtype=True)
- d = rdr.get_variables()
- x = np.array([[True], [False]], dtype=np.bool_)
- assert_array_equal(d['testbools'], x)
- assert_equal(d['testbools'].dtype, x.dtype)
- def test_logical_out_type():
- # Confirm that bool type written as uint8, uint8 class
- # See gh-4022
- stream = BytesIO()
- barr = np.array([False, True, False])
- savemat(stream, {'barray': barr})
- stream.seek(0)
- reader = MatFile5Reader(stream)
- reader.initialize_read()
- reader.read_file_header()
- hdr, _ = reader.read_var_header()
- assert_equal(hdr.mclass, mio5p.mxUINT8_CLASS)
- assert_equal(hdr.is_logical, True)
- var = reader.read_var_array(hdr, False)
- assert_equal(var.dtype.type, np.uint8)
- def test_roundtrip_zero_dimensions():
- stream = BytesIO()
- savemat(stream, {'d':np.empty((10, 0))})
- d = loadmat(stream)
- assert d['d'].shape == (10, 0)
- def test_mat4_3d():
- # test behavior when writing 3-D arrays to matlab 4 files
- stream = BytesIO()
- arr = np.arange(24).reshape((2,3,4))
- assert_raises(ValueError, savemat, stream, {'a': arr}, True, '4')
- def test_func_read():
- func_eg = pjoin(test_data_path, 'testfunc_7.4_GLNX86.mat')
- fp = open(func_eg, 'rb')
- rdr = MatFile5Reader(fp)
- d = rdr.get_variables()
- fp.close()
- assert isinstance(d['testfunc'], MatlabFunction)
- stream = BytesIO()
- wtr = MatFile5Writer(stream)
- assert_raises(MatWriteError, wtr.put_variables, d)
- def test_mat_dtype():
- double_eg = pjoin(test_data_path, 'testmatrix_6.1_SOL2.mat')
- fp = open(double_eg, 'rb')
- rdr = MatFile5Reader(fp, mat_dtype=False)
- d = rdr.get_variables()
- fp.close()
- assert_equal(d['testmatrix'].dtype.kind, 'u')
- fp = open(double_eg, 'rb')
- rdr = MatFile5Reader(fp, mat_dtype=True)
- d = rdr.get_variables()
- fp.close()
- assert_equal(d['testmatrix'].dtype.kind, 'f')
- def test_sparse_in_struct():
- # reproduces bug found by DC where Cython code was insisting on
- # ndarray return type, but getting sparse matrix
- st = {'sparsefield': SP.coo_matrix(np.eye(4))}
- stream = BytesIO()
- savemat(stream, {'a':st})
- d = loadmat(stream, struct_as_record=True)
- assert_array_equal(d['a'][0, 0]['sparsefield'].toarray(), np.eye(4))
- def test_mat_struct_squeeze():
- stream = BytesIO()
- in_d = {'st':{'one':1, 'two':2}}
- savemat(stream, in_d)
- # no error without squeeze
- loadmat(stream, struct_as_record=False)
- # previous error was with squeeze, with mat_struct
- loadmat(stream, struct_as_record=False, squeeze_me=True)
- def test_scalar_squeeze():
- stream = BytesIO()
- in_d = {'scalar': [[0.1]], 'string': 'my name', 'st':{'one':1, 'two':2}}
- savemat(stream, in_d)
- out_d = loadmat(stream, squeeze_me=True)
- assert_(isinstance(out_d['scalar'], float))
- assert_(isinstance(out_d['string'], str))
- assert_(isinstance(out_d['st'], np.ndarray))
- def test_str_round():
- # from report by Angus McMorland on mailing list 3 May 2010
- stream = BytesIO()
- in_arr = np.array(['Hello', 'Foob'])
- out_arr = np.array(['Hello', 'Foob '])
- savemat(stream, dict(a=in_arr))
- res = loadmat(stream)
- # resulted in ['HloolFoa', 'elWrdobr']
- assert_array_equal(res['a'], out_arr)
- stream.truncate(0)
- stream.seek(0)
- # Make Fortran ordered version of string
- in_str = in_arr.tobytes(order='F')
- in_from_str = np.ndarray(shape=a.shape,
- dtype=in_arr.dtype,
- order='F',
- buffer=in_str)
- savemat(stream, dict(a=in_from_str))
- assert_array_equal(res['a'], out_arr)
- # unicode save did lead to buffer too small error
- stream.truncate(0)
- stream.seek(0)
- in_arr_u = in_arr.astype('U')
- out_arr_u = out_arr.astype('U')
- savemat(stream, {'a': in_arr_u})
- res = loadmat(stream)
- assert_array_equal(res['a'], out_arr_u)
- def test_fieldnames():
- # Check that field names are as expected
- stream = BytesIO()
- savemat(stream, {'a': {'a':1, 'b':2}})
- res = loadmat(stream)
- field_names = res['a'].dtype.names
- assert_equal(set(field_names), set(('a', 'b')))
- def test_loadmat_varnames():
- # Test that we can get just one variable from a mat file using loadmat
- mat5_sys_names = ['__globals__',
- '__header__',
- '__version__']
- for eg_file, sys_v_names in (
- (pjoin(test_data_path, 'testmulti_4.2c_SOL2.mat'), []), (pjoin(
- test_data_path, 'testmulti_7.4_GLNX86.mat'), mat5_sys_names)):
- vars = loadmat(eg_file)
- assert_equal(set(vars.keys()), set(['a', 'theta'] + sys_v_names))
- vars = loadmat(eg_file, variable_names='a')
- assert_equal(set(vars.keys()), set(['a'] + sys_v_names))
- vars = loadmat(eg_file, variable_names=['a'])
- assert_equal(set(vars.keys()), set(['a'] + sys_v_names))
- vars = loadmat(eg_file, variable_names=['theta'])
- assert_equal(set(vars.keys()), set(['theta'] + sys_v_names))
- vars = loadmat(eg_file, variable_names=('theta',))
- assert_equal(set(vars.keys()), set(['theta'] + sys_v_names))
- vars = loadmat(eg_file, variable_names=[])
- assert_equal(set(vars.keys()), set(sys_v_names))
- vnames = ['theta']
- vars = loadmat(eg_file, variable_names=vnames)
- assert_equal(vnames, ['theta'])
- def test_round_types():
- # Check that saving, loading preserves dtype in most cases
- arr = np.arange(10)
- stream = BytesIO()
- for dts in ('f8','f4','i8','i4','i2','i1',
- 'u8','u4','u2','u1','c16','c8'):
- stream.truncate(0)
- stream.seek(0) # needed for BytesIO in Python 3
- savemat(stream, {'arr': arr.astype(dts)})
- vars = loadmat(stream)
- assert_equal(np.dtype(dts), vars['arr'].dtype)
- def test_varmats_from_mat():
- # Make a mat file with several variables, write it, read it back
- names_vars = (('arr', mlarr(np.arange(10))),
- ('mystr', mlarr('a string')),
- ('mynum', mlarr(10)))
- # Dict like thing to give variables in defined order
- class C:
- def items(self):
- return names_vars
- stream = BytesIO()
- savemat(stream, C())
- varmats = varmats_from_mat(stream)
- assert_equal(len(varmats), 3)
- for i in range(3):
- name, var_stream = varmats[i]
- exp_name, exp_res = names_vars[i]
- assert_equal(name, exp_name)
- res = loadmat(var_stream)
- assert_array_equal(res[name], exp_res)
- def test_one_by_zero():
- # Test 1x0 chars get read correctly
- func_eg = pjoin(test_data_path, 'one_by_zero_char.mat')
- fp = open(func_eg, 'rb')
- rdr = MatFile5Reader(fp)
- d = rdr.get_variables()
- fp.close()
- assert_equal(d['var'].shape, (0,))
- def test_load_mat4_le():
- # We were getting byte order wrong when reading little-endian floa64 dense
- # matrices on big-endian platforms
- mat4_fname = pjoin(test_data_path, 'test_mat4_le_floats.mat')
- vars = loadmat(mat4_fname)
- assert_array_equal(vars['a'], [[0.1, 1.2]])
- def test_unicode_mat4():
- # Mat4 should save unicode as latin1
- bio = BytesIO()
- var = {'second_cat': 'Schrödinger'}
- savemat(bio, var, format='4')
- var_back = loadmat(bio)
- assert_equal(var_back['second_cat'], var['second_cat'])
- def test_logical_sparse():
- # Test we can read logical sparse stored in mat file as bytes.
- # See https://github.com/scipy/scipy/issues/3539.
- # In some files saved by MATLAB, the sparse data elements (Real Part
- # Subelement in MATLAB speak) are stored with apparent type double
- # (miDOUBLE) but are in fact single bytes.
- filename = pjoin(test_data_path,'logical_sparse.mat')
- # Before fix, this would crash with:
- # ValueError: indices and data should have the same size
- d = loadmat(filename, struct_as_record=True)
- log_sp = d['sp_log_5_4']
- assert_(isinstance(log_sp, SP.csc_matrix))
- assert_equal(log_sp.dtype.type, np.bool_)
- assert_array_equal(log_sp.toarray(),
- [[True, True, True, False],
- [False, False, True, False],
- [False, False, True, False],
- [False, False, False, False],
- [False, False, False, False]])
- def test_empty_sparse():
- # Can we read empty sparse matrices?
- sio = BytesIO()
- import scipy.sparse
- empty_sparse = scipy.sparse.csr_matrix([[0,0],[0,0]])
- savemat(sio, dict(x=empty_sparse))
- sio.seek(0)
- res = loadmat(sio)
- assert_array_equal(res['x'].shape, empty_sparse.shape)
- assert_array_equal(res['x'].toarray(), 0)
- # Do empty sparse matrices get written with max nnz 1?
- # See https://github.com/scipy/scipy/issues/4208
- sio.seek(0)
- reader = MatFile5Reader(sio)
- reader.initialize_read()
- reader.read_file_header()
- hdr, _ = reader.read_var_header()
- assert_equal(hdr.nzmax, 1)
- def test_empty_mat_error():
- # Test we get a specific warning for an empty mat file
- sio = BytesIO()
- assert_raises(MatReadError, loadmat, sio)
- def test_miuint32_compromise():
- # Reader should accept miUINT32 for miINT32, but check signs
- # mat file with miUINT32 for miINT32, but OK values
- filename = pjoin(test_data_path, 'miuint32_for_miint32.mat')
- res = loadmat(filename)
- assert_equal(res['an_array'], np.arange(10)[None, :])
- # mat file with miUINT32 for miINT32, with negative value
- filename = pjoin(test_data_path, 'bad_miuint32.mat')
- with assert_raises(ValueError):
- loadmat(filename)
- def test_miutf8_for_miint8_compromise():
- # Check reader accepts ascii as miUTF8 for array names
- filename = pjoin(test_data_path, 'miutf8_array_name.mat')
- res = loadmat(filename)
- assert_equal(res['array_name'], [[1]])
- # mat file with non-ascii utf8 name raises error
- filename = pjoin(test_data_path, 'bad_miutf8_array_name.mat')
- with assert_raises(ValueError):
- loadmat(filename)
- def test_bad_utf8():
- # Check that reader reads bad UTF with 'replace' option
- filename = pjoin(test_data_path,'broken_utf8.mat')
- res = loadmat(filename)
- assert_equal(res['bad_string'],
- b'\x80 am broken'.decode('utf8', 'replace'))
- def test_save_unicode_field(tmpdir):
- filename = os.path.join(str(tmpdir), 'test.mat')
- test_dict = {u'a':{u'b':1,u'c':'test_str'}}
- savemat(filename, test_dict)
- def test_filenotfound():
- # Check the correct error is thrown
- assert_raises(OSError, loadmat, "NotExistentFile00.mat")
- assert_raises(OSError, loadmat, "NotExistentFile00")
- def test_simplify_cells():
- # Test output when simplify_cells=True
- filename = pjoin(test_data_path, 'testsimplecell.mat')
- res1 = loadmat(filename, simplify_cells=True)
- res2 = loadmat(filename, simplify_cells=False)
- assert_(isinstance(res1["s"], dict))
- assert_(isinstance(res2["s"], np.ndarray))
- assert_array_equal(res1["s"]["mycell"], np.array(["a", "b", "c"]))
- @pytest.mark.parametrize('version, filt, regex', [
- (0, '_4*_*', None),
- (1, '_5*_*', None),
- (1, '_6*_*', None),
- (1, '_7*_*', '^((?!hdf5).)*$'), # not containing hdf5
- (2, '_7*_*', '.*hdf5.*'),
- (1, '8*_*', None),
- ])
- def test_matfile_version(version, filt, regex):
- use_filt = pjoin(test_data_path, 'test*%s.mat' % filt)
- files = glob(use_filt)
- if regex is not None:
- files = [file for file in files if re.match(regex, file) is not None]
- assert len(files) > 0, \
- "No files for version %s using filter %s" % (version, filt)
- for file in files:
- got_version = matfile_version(file)
- assert got_version[0] == version
- def test_opaque():
- """Test that we can read a MatlabOpaque object."""
- data = loadmat(pjoin(test_data_path, 'parabola.mat'))
- assert isinstance(data['parabola'], MatlabFunction)
- assert isinstance(data['parabola'].item()[3].item()[3], MatlabOpaque)
- def test_deprecation():
- """Test that access to previous attributes still works."""
- # This should be accessible immediately from scipy.io import
- with assert_warns(DeprecationWarning):
- scipy.io.matlab.mio5_params.MatlabOpaque # noqa
- # These should be importable but warn as well
- with assert_warns(DeprecationWarning):
- from scipy.io.matlab.miobase import MatReadError # noqa
|