123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- from numpy.testing import (assert_array_equal, assert_array_almost_equal)
- from scipy.interpolate import pade
- def test_pade_trivial():
- nump, denomp = pade([1.0], 0)
- assert_array_equal(nump.c, [1.0])
- assert_array_equal(denomp.c, [1.0])
- nump, denomp = pade([1.0], 0, 0)
- assert_array_equal(nump.c, [1.0])
- assert_array_equal(denomp.c, [1.0])
- def test_pade_4term_exp():
- # First four Taylor coefficients of exp(x).
- # Unlike poly1d, the first array element is the zero-order term.
- an = [1.0, 1.0, 0.5, 1.0/6]
- nump, denomp = pade(an, 0)
- assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0])
- assert_array_almost_equal(denomp.c, [1.0])
- nump, denomp = pade(an, 1)
- assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0])
- assert_array_almost_equal(denomp.c, [-1.0/3, 1.0])
- nump, denomp = pade(an, 2)
- assert_array_almost_equal(nump.c, [1.0/3, 1.0])
- assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0])
- nump, denomp = pade(an, 3)
- assert_array_almost_equal(nump.c, [1.0])
- assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0])
- # Testing inclusion of optional parameter
- nump, denomp = pade(an, 0, 3)
- assert_array_almost_equal(nump.c, [1.0/6, 0.5, 1.0, 1.0])
- assert_array_almost_equal(denomp.c, [1.0])
- nump, denomp = pade(an, 1, 2)
- assert_array_almost_equal(nump.c, [1.0/6, 2.0/3, 1.0])
- assert_array_almost_equal(denomp.c, [-1.0/3, 1.0])
- nump, denomp = pade(an, 2, 1)
- assert_array_almost_equal(nump.c, [1.0/3, 1.0])
- assert_array_almost_equal(denomp.c, [1.0/6, -2.0/3, 1.0])
- nump, denomp = pade(an, 3, 0)
- assert_array_almost_equal(nump.c, [1.0])
- assert_array_almost_equal(denomp.c, [-1.0/6, 0.5, -1.0, 1.0])
- # Testing reducing array.
- nump, denomp = pade(an, 0, 2)
- assert_array_almost_equal(nump.c, [0.5, 1.0, 1.0])
- assert_array_almost_equal(denomp.c, [1.0])
- nump, denomp = pade(an, 1, 1)
- assert_array_almost_equal(nump.c, [1.0/2, 1.0])
- assert_array_almost_equal(denomp.c, [-1.0/2, 1.0])
- nump, denomp = pade(an, 2, 0)
- assert_array_almost_equal(nump.c, [1.0])
- assert_array_almost_equal(denomp.c, [1.0/2, -1.0, 1.0])
- def test_pade_ints():
- # Simple test sequences (one of ints, one of floats).
- an_int = [1, 2, 3, 4]
- an_flt = [1.0, 2.0, 3.0, 4.0]
- # Make sure integer arrays give the same result as float arrays with same values.
- for i in range(0, len(an_int)):
- for j in range(0, len(an_int) - i):
- # Create float and int pade approximation for given order.
- nump_int, denomp_int = pade(an_int, i, j)
- nump_flt, denomp_flt = pade(an_flt, i, j)
- # Check that they are the same.
- assert_array_equal(nump_int.c, nump_flt.c)
- assert_array_equal(denomp_int.c, denomp_flt.c)
- def test_pade_complex():
- # Test sequence with known solutions - see page 6 of 10.1109/PESGM.2012.6344759.
- # Variable x is parameter - these tests will work with any complex number.
- x = 0.2 + 0.6j
- an = [1.0, x, -x*x.conjugate(), x.conjugate()*(x**2) + x*(x.conjugate()**2),
- -(x**3)*x.conjugate() - 3*(x*x.conjugate())**2 - x*(x.conjugate()**3)]
- nump, denomp = pade(an, 1, 1)
- assert_array_almost_equal(nump.c, [x + x.conjugate(), 1.0])
- assert_array_almost_equal(denomp.c, [x.conjugate(), 1.0])
- nump, denomp = pade(an, 1, 2)
- assert_array_almost_equal(nump.c, [x**2, 2*x + x.conjugate(), 1.0])
- assert_array_almost_equal(denomp.c, [x + x.conjugate(), 1.0])
- nump, denomp = pade(an, 2, 2)
- assert_array_almost_equal(nump.c, [x**2 + x*x.conjugate() + x.conjugate()**2, 2*(x + x.conjugate()), 1.0])
- assert_array_almost_equal(denomp.c, [x.conjugate()**2, x + 2*x.conjugate(), 1.0])
|