1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360 |
- from __future__ import annotations
- from typing import TYPE_CHECKING, Callable, Dict, Tuple, Any, cast
- import functools
- import numpy as np
- import math
- import types
- import warnings
- from collections import namedtuple
- from scipy.special import roots_legendre
- from scipy.special import gammaln, logsumexp
- from scipy._lib._util import _rng_spawn
- __all__ = ['fixed_quad', 'quadrature', 'romberg', 'romb',
- 'trapezoid', 'trapz', 'simps', 'simpson',
- 'cumulative_trapezoid', 'cumtrapz', 'newton_cotes',
- 'AccuracyWarning']
- def trapezoid(y, x=None, dx=1.0, axis=-1):
- r"""
- Integrate along the given axis using the composite trapezoidal rule.
- If `x` is provided, the integration happens in sequence along its
- elements - they are not sorted.
- Integrate `y` (`x`) along each 1d slice on the given axis, compute
- :math:`\int y(x) dx`.
- When `x` is specified, this integrates along the parametric curve,
- computing :math:`\int_t y(t) dt =
- \int_t y(t) \left.\frac{dx}{dt}\right|_{x=x(t)} dt`.
- Parameters
- ----------
- y : array_like
- Input array to integrate.
- x : array_like, optional
- The sample points corresponding to the `y` values. If `x` is None,
- the sample points are assumed to be evenly spaced `dx` apart. The
- default is None.
- dx : scalar, optional
- The spacing between sample points when `x` is None. The default is 1.
- axis : int, optional
- The axis along which to integrate.
- Returns
- -------
- trapezoid : float or ndarray
- Definite integral of `y` = n-dimensional array as approximated along
- a single axis by the trapezoidal rule. If `y` is a 1-dimensional array,
- then the result is a float. If `n` is greater than 1, then the result
- is an `n`-1 dimensional array.
- See Also
- --------
- cumulative_trapezoid, simpson, romb
- Notes
- -----
- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
- will be taken from `y` array, by default x-axis distances between
- points will be 1.0, alternatively they can be provided with `x` array
- or with `dx` scalar. Return value will be equal to combined area under
- the red lines.
- References
- ----------
- .. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule
- .. [2] Illustration image:
- https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png
- Examples
- --------
- Use the trapezoidal rule on evenly spaced points:
- >>> import numpy as np
- >>> from scipy import integrate
- >>> integrate.trapezoid([1, 2, 3])
- 4.0
- The spacing between sample points can be selected by either the
- ``x`` or ``dx`` arguments:
- >>> integrate.trapezoid([1, 2, 3], x=[4, 6, 8])
- 8.0
- >>> integrate.trapezoid([1, 2, 3], dx=2)
- 8.0
- Using a decreasing ``x`` corresponds to integrating in reverse:
- >>> integrate.trapezoid([1, 2, 3], x=[8, 6, 4])
- -8.0
- More generally ``x`` is used to integrate along a parametric curve. We can
- estimate the integral :math:`\int_0^1 x^2 = 1/3` using:
- >>> x = np.linspace(0, 1, num=50)
- >>> y = x**2
- >>> integrate.trapezoid(y, x)
- 0.33340274885464394
- Or estimate the area of a circle, noting we repeat the sample which closes
- the curve:
- >>> theta = np.linspace(0, 2 * np.pi, num=1000, endpoint=True)
- >>> integrate.trapezoid(np.cos(theta), x=np.sin(theta))
- 3.141571941375841
- ``trapezoid`` can be applied along a specified axis to do multiple
- computations in one call:
- >>> a = np.arange(6).reshape(2, 3)
- >>> a
- array([[0, 1, 2],
- [3, 4, 5]])
- >>> integrate.trapezoid(a, axis=0)
- array([1.5, 2.5, 3.5])
- >>> integrate.trapezoid(a, axis=1)
- array([2., 8.])
- """
- # Future-proofing, in case NumPy moves from trapz to trapezoid for the same
- # reasons as SciPy
- if hasattr(np, 'trapezoid'):
- return np.trapezoid(y, x=x, dx=dx, axis=axis)
- else:
- return np.trapz(y, x=x, dx=dx, axis=axis)
- # Note: alias kept for backwards compatibility. Rename was done
- # because trapz is a slur in colloquial English (see gh-12924).
- def trapz(y, x=None, dx=1.0, axis=-1):
- """An alias of `trapezoid`.
- `trapz` is kept for backwards compatibility. For new code, prefer
- `trapezoid` instead.
- """
- return trapezoid(y, x=x, dx=dx, axis=axis)
- class AccuracyWarning(Warning):
- pass
- if TYPE_CHECKING:
- # workaround for mypy function attributes see:
- # https://github.com/python/mypy/issues/2087#issuecomment-462726600
- from typing import Protocol
- class CacheAttributes(Protocol):
- cache: Dict[int, Tuple[Any, Any]]
- else:
- CacheAttributes = Callable
- def cache_decorator(func: Callable) -> CacheAttributes:
- return cast(CacheAttributes, func)
- @cache_decorator
- def _cached_roots_legendre(n):
- """
- Cache roots_legendre results to speed up calls of the fixed_quad
- function.
- """
- if n in _cached_roots_legendre.cache:
- return _cached_roots_legendre.cache[n]
- _cached_roots_legendre.cache[n] = roots_legendre(n)
- return _cached_roots_legendre.cache[n]
- _cached_roots_legendre.cache = dict()
- def fixed_quad(func, a, b, args=(), n=5):
- """
- Compute a definite integral using fixed-order Gaussian quadrature.
- Integrate `func` from `a` to `b` using Gaussian quadrature of
- order `n`.
- Parameters
- ----------
- func : callable
- A Python function or method to integrate (must accept vector inputs).
- If integrating a vector-valued function, the returned array must have
- shape ``(..., len(x))``.
- a : float
- Lower limit of integration.
- b : float
- Upper limit of integration.
- args : tuple, optional
- Extra arguments to pass to function, if any.
- n : int, optional
- Order of quadrature integration. Default is 5.
- Returns
- -------
- val : float
- Gaussian quadrature approximation to the integral
- none : None
- Statically returned value of None
- See Also
- --------
- quad : adaptive quadrature using QUADPACK
- dblquad : double integrals
- tplquad : triple integrals
- romberg : adaptive Romberg quadrature
- quadrature : adaptive Gaussian quadrature
- romb : integrators for sampled data
- simpson : integrators for sampled data
- cumulative_trapezoid : cumulative integration for sampled data
- ode : ODE integrator
- odeint : ODE integrator
- Examples
- --------
- >>> from scipy import integrate
- >>> import numpy as np
- >>> f = lambda x: x**8
- >>> integrate.fixed_quad(f, 0.0, 1.0, n=4)
- (0.1110884353741496, None)
- >>> integrate.fixed_quad(f, 0.0, 1.0, n=5)
- (0.11111111111111102, None)
- >>> print(1/9.0) # analytical result
- 0.1111111111111111
- >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=4)
- (0.9999999771971152, None)
- >>> integrate.fixed_quad(np.cos, 0.0, np.pi/2, n=5)
- (1.000000000039565, None)
- >>> np.sin(np.pi/2)-np.sin(0) # analytical result
- 1.0
- """
- x, w = _cached_roots_legendre(n)
- x = np.real(x)
- if np.isinf(a) or np.isinf(b):
- raise ValueError("Gaussian quadrature is only available for "
- "finite limits.")
- y = (b-a)*(x+1)/2.0 + a
- return (b-a)/2.0 * np.sum(w*func(y, *args), axis=-1), None
- def vectorize1(func, args=(), vec_func=False):
- """Vectorize the call to a function.
- This is an internal utility function used by `romberg` and
- `quadrature` to create a vectorized version of a function.
- If `vec_func` is True, the function `func` is assumed to take vector
- arguments.
- Parameters
- ----------
- func : callable
- User defined function.
- args : tuple, optional
- Extra arguments for the function.
- vec_func : bool, optional
- True if the function func takes vector arguments.
- Returns
- -------
- vfunc : callable
- A function that will take a vector argument and return the
- result.
- """
- if vec_func:
- def vfunc(x):
- return func(x, *args)
- else:
- def vfunc(x):
- if np.isscalar(x):
- return func(x, *args)
- x = np.asarray(x)
- # call with first point to get output type
- y0 = func(x[0], *args)
- n = len(x)
- dtype = getattr(y0, 'dtype', type(y0))
- output = np.empty((n,), dtype=dtype)
- output[0] = y0
- for i in range(1, n):
- output[i] = func(x[i], *args)
- return output
- return vfunc
- def quadrature(func, a, b, args=(), tol=1.49e-8, rtol=1.49e-8, maxiter=50,
- vec_func=True, miniter=1):
- """
- Compute a definite integral using fixed-tolerance Gaussian quadrature.
- Integrate `func` from `a` to `b` using Gaussian quadrature
- with absolute tolerance `tol`.
- Parameters
- ----------
- func : function
- A Python function or method to integrate.
- a : float
- Lower limit of integration.
- b : float
- Upper limit of integration.
- args : tuple, optional
- Extra arguments to pass to function.
- tol, rtol : float, optional
- Iteration stops when error between last two iterates is less than
- `tol` OR the relative change is less than `rtol`.
- maxiter : int, optional
- Maximum order of Gaussian quadrature.
- vec_func : bool, optional
- True or False if func handles arrays as arguments (is
- a "vector" function). Default is True.
- miniter : int, optional
- Minimum order of Gaussian quadrature.
- Returns
- -------
- val : float
- Gaussian quadrature approximation (within tolerance) to integral.
- err : float
- Difference between last two estimates of the integral.
- See Also
- --------
- romberg : adaptive Romberg quadrature
- fixed_quad : fixed-order Gaussian quadrature
- quad : adaptive quadrature using QUADPACK
- dblquad : double integrals
- tplquad : triple integrals
- romb : integrator for sampled data
- simpson : integrator for sampled data
- cumulative_trapezoid : cumulative integration for sampled data
- ode : ODE integrator
- odeint : ODE integrator
- Examples
- --------
- >>> from scipy import integrate
- >>> import numpy as np
- >>> f = lambda x: x**8
- >>> integrate.quadrature(f, 0.0, 1.0)
- (0.11111111111111106, 4.163336342344337e-17)
- >>> print(1/9.0) # analytical result
- 0.1111111111111111
- >>> integrate.quadrature(np.cos, 0.0, np.pi/2)
- (0.9999999999999536, 3.9611425250996035e-11)
- >>> np.sin(np.pi/2)-np.sin(0) # analytical result
- 1.0
- """
- if not isinstance(args, tuple):
- args = (args,)
- vfunc = vectorize1(func, args, vec_func=vec_func)
- val = np.inf
- err = np.inf
- maxiter = max(miniter+1, maxiter)
- for n in range(miniter, maxiter+1):
- newval = fixed_quad(vfunc, a, b, (), n)[0]
- err = abs(newval-val)
- val = newval
- if err < tol or err < rtol*abs(val):
- break
- else:
- warnings.warn(
- "maxiter (%d) exceeded. Latest difference = %e" % (maxiter, err),
- AccuracyWarning)
- return val, err
- def tupleset(t, i, value):
- l = list(t)
- l[i] = value
- return tuple(l)
- # Note: alias kept for backwards compatibility. Rename was done
- # because cumtrapz is a slur in colloquial English (see gh-12924).
- def cumtrapz(y, x=None, dx=1.0, axis=-1, initial=None):
- """An alias of `cumulative_trapezoid`.
- `cumtrapz` is kept for backwards compatibility. For new code, prefer
- `cumulative_trapezoid` instead.
- """
- return cumulative_trapezoid(y, x=x, dx=dx, axis=axis, initial=initial)
- def cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None):
- """
- Cumulatively integrate y(x) using the composite trapezoidal rule.
- Parameters
- ----------
- y : array_like
- Values to integrate.
- x : array_like, optional
- The coordinate to integrate along. If None (default), use spacing `dx`
- between consecutive elements in `y`.
- dx : float, optional
- Spacing between elements of `y`. Only used if `x` is None.
- axis : int, optional
- Specifies the axis to cumulate. Default is -1 (last axis).
- initial : scalar, optional
- If given, insert this value at the beginning of the returned result.
- Typically this value should be 0. Default is None, which means no
- value at ``x[0]`` is returned and `res` has one element less than `y`
- along the axis of integration.
- Returns
- -------
- res : ndarray
- The result of cumulative integration of `y` along `axis`.
- If `initial` is None, the shape is such that the axis of integration
- has one less value than `y`. If `initial` is given, the shape is equal
- to that of `y`.
- See Also
- --------
- numpy.cumsum, numpy.cumprod
- quad : adaptive quadrature using QUADPACK
- romberg : adaptive Romberg quadrature
- quadrature : adaptive Gaussian quadrature
- fixed_quad : fixed-order Gaussian quadrature
- dblquad : double integrals
- tplquad : triple integrals
- romb : integrators for sampled data
- ode : ODE integrators
- odeint : ODE integrators
- Examples
- --------
- >>> from scipy import integrate
- >>> import numpy as np
- >>> import matplotlib.pyplot as plt
- >>> x = np.linspace(-2, 2, num=20)
- >>> y = x
- >>> y_int = integrate.cumulative_trapezoid(y, x, initial=0)
- >>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-')
- >>> plt.show()
- """
- y = np.asarray(y)
- if x is None:
- d = dx
- else:
- x = np.asarray(x)
- if x.ndim == 1:
- d = np.diff(x)
- # reshape to correct shape
- shape = [1] * y.ndim
- shape[axis] = -1
- d = d.reshape(shape)
- elif len(x.shape) != len(y.shape):
- raise ValueError("If given, shape of x must be 1-D or the "
- "same as y.")
- else:
- d = np.diff(x, axis=axis)
- if d.shape[axis] != y.shape[axis] - 1:
- raise ValueError("If given, length of x along axis must be the "
- "same as y.")
- nd = len(y.shape)
- slice1 = tupleset((slice(None),)*nd, axis, slice(1, None))
- slice2 = tupleset((slice(None),)*nd, axis, slice(None, -1))
- res = np.cumsum(d * (y[slice1] + y[slice2]) / 2.0, axis=axis)
- if initial is not None:
- if not np.isscalar(initial):
- raise ValueError("`initial` parameter should be a scalar.")
- shape = list(res.shape)
- shape[axis] = 1
- res = np.concatenate([np.full(shape, initial, dtype=res.dtype), res],
- axis=axis)
- return res
- def _basic_simpson(y, start, stop, x, dx, axis):
- nd = len(y.shape)
- if start is None:
- start = 0
- step = 2
- slice_all = (slice(None),)*nd
- slice0 = tupleset(slice_all, axis, slice(start, stop, step))
- slice1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
- slice2 = tupleset(slice_all, axis, slice(start+2, stop+2, step))
- if x is None: # Even-spaced Simpson's rule.
- result = np.sum(y[slice0] + 4.0*y[slice1] + y[slice2], axis=axis)
- result *= dx / 3.0
- else:
- # Account for possibly different spacings.
- # Simpson's rule changes a bit.
- h = np.diff(x, axis=axis)
- sl0 = tupleset(slice_all, axis, slice(start, stop, step))
- sl1 = tupleset(slice_all, axis, slice(start+1, stop+1, step))
- h0 = np.float64(h[sl0])
- h1 = np.float64(h[sl1])
- hsum = h0 + h1
- hprod = h0 * h1
- h0divh1 = np.true_divide(h0, h1, out=np.zeros_like(h0), where=h1 != 0)
- tmp = hsum/6.0 * (y[slice0] *
- (2.0 - np.true_divide(1.0, h0divh1,
- out=np.zeros_like(h0divh1),
- where=h0divh1 != 0)) +
- y[slice1] * (hsum *
- np.true_divide(hsum, hprod,
- out=np.zeros_like(hsum),
- where=hprod != 0)) +
- y[slice2] * (2.0 - h0divh1))
- result = np.sum(tmp, axis=axis)
- return result
- # Note: alias kept for backwards compatibility. simps was renamed to simpson
- # because the former is a slur in colloquial English (see gh-12924).
- def simps(y, x=None, dx=1.0, axis=-1, even='avg'):
- """An alias of `simpson`.
- `simps` is kept for backwards compatibility. For new code, prefer
- `simpson` instead.
- """
- return simpson(y, x=x, dx=dx, axis=axis, even=even)
- def simpson(y, x=None, dx=1.0, axis=-1, even='avg'):
- """
- Integrate y(x) using samples along the given axis and the composite
- Simpson's rule. If x is None, spacing of dx is assumed.
- If there are an even number of samples, N, then there are an odd
- number of intervals (N-1), but Simpson's rule requires an even number
- of intervals. The parameter 'even' controls how this is handled.
- Parameters
- ----------
- y : array_like
- Array to be integrated.
- x : array_like, optional
- If given, the points at which `y` is sampled.
- dx : float, optional
- Spacing of integration points along axis of `x`. Only used when
- `x` is None. Default is 1.
- axis : int, optional
- Axis along which to integrate. Default is the last axis.
- even : str {'avg', 'first', 'last'}, optional
- 'avg' : Average two results:1) use the first N-2 intervals with
- a trapezoidal rule on the last interval and 2) use the last
- N-2 intervals with a trapezoidal rule on the first interval.
- 'first' : Use Simpson's rule for the first N-2 intervals with
- a trapezoidal rule on the last interval.
- 'last' : Use Simpson's rule for the last N-2 intervals with a
- trapezoidal rule on the first interval.
- Returns
- -------
- float
- The estimated integral computed with the composite Simpson's rule.
- See Also
- --------
- quad : adaptive quadrature using QUADPACK
- romberg : adaptive Romberg quadrature
- quadrature : adaptive Gaussian quadrature
- fixed_quad : fixed-order Gaussian quadrature
- dblquad : double integrals
- tplquad : triple integrals
- romb : integrators for sampled data
- cumulative_trapezoid : cumulative integration for sampled data
- ode : ODE integrators
- odeint : ODE integrators
- Notes
- -----
- For an odd number of samples that are equally spaced the result is
- exact if the function is a polynomial of order 3 or less. If
- the samples are not equally spaced, then the result is exact only
- if the function is a polynomial of order 2 or less.
- Examples
- --------
- >>> from scipy import integrate
- >>> import numpy as np
- >>> x = np.arange(0, 10)
- >>> y = np.arange(0, 10)
- >>> integrate.simpson(y, x)
- 40.5
- >>> y = np.power(x, 3)
- >>> integrate.simpson(y, x)
- 1642.5
- >>> integrate.quad(lambda x: x**3, 0, 9)[0]
- 1640.25
- >>> integrate.simpson(y, x, even='first')
- 1644.5
- """
- y = np.asarray(y)
- nd = len(y.shape)
- N = y.shape[axis]
- last_dx = dx
- first_dx = dx
- returnshape = 0
- if x is not None:
- x = np.asarray(x)
- if len(x.shape) == 1:
- shapex = [1] * nd
- shapex[axis] = x.shape[0]
- saveshape = x.shape
- returnshape = 1
- x = x.reshape(tuple(shapex))
- elif len(x.shape) != len(y.shape):
- raise ValueError("If given, shape of x must be 1-D or the "
- "same as y.")
- if x.shape[axis] != N:
- raise ValueError("If given, length of x along axis must be the "
- "same as y.")
- if N % 2 == 0:
- val = 0.0
- result = 0.0
- slice1 = (slice(None),)*nd
- slice2 = (slice(None),)*nd
- if even not in ['avg', 'last', 'first']:
- raise ValueError("Parameter 'even' must be "
- "'avg', 'last', or 'first'.")
- # Compute using Simpson's rule on first intervals
- if even in ['avg', 'first']:
- slice1 = tupleset(slice1, axis, -1)
- slice2 = tupleset(slice2, axis, -2)
- if x is not None:
- last_dx = x[slice1] - x[slice2]
- val += 0.5*last_dx*(y[slice1]+y[slice2])
- result = _basic_simpson(y, 0, N-3, x, dx, axis)
- # Compute using Simpson's rule on last set of intervals
- if even in ['avg', 'last']:
- slice1 = tupleset(slice1, axis, 0)
- slice2 = tupleset(slice2, axis, 1)
- if x is not None:
- first_dx = x[tuple(slice2)] - x[tuple(slice1)]
- val += 0.5*first_dx*(y[slice2]+y[slice1])
- result += _basic_simpson(y, 1, N-2, x, dx, axis)
- if even == 'avg':
- val /= 2.0
- result /= 2.0
- result = result + val
- else:
- result = _basic_simpson(y, 0, N-2, x, dx, axis)
- if returnshape:
- x = x.reshape(saveshape)
- return result
- def romb(y, dx=1.0, axis=-1, show=False):
- """
- Romberg integration using samples of a function.
- Parameters
- ----------
- y : array_like
- A vector of ``2**k + 1`` equally-spaced samples of a function.
- dx : float, optional
- The sample spacing. Default is 1.
- axis : int, optional
- The axis along which to integrate. Default is -1 (last axis).
- show : bool, optional
- When `y` is a single 1-D array, then if this argument is True
- print the table showing Richardson extrapolation from the
- samples. Default is False.
- Returns
- -------
- romb : ndarray
- The integrated result for `axis`.
- See Also
- --------
- quad : adaptive quadrature using QUADPACK
- romberg : adaptive Romberg quadrature
- quadrature : adaptive Gaussian quadrature
- fixed_quad : fixed-order Gaussian quadrature
- dblquad : double integrals
- tplquad : triple integrals
- simpson : integrators for sampled data
- cumulative_trapezoid : cumulative integration for sampled data
- ode : ODE integrators
- odeint : ODE integrators
- Examples
- --------
- >>> from scipy import integrate
- >>> import numpy as np
- >>> x = np.arange(10, 14.25, 0.25)
- >>> y = np.arange(3, 12)
- >>> integrate.romb(y)
- 56.0
- >>> y = np.sin(np.power(x, 2.5))
- >>> integrate.romb(y)
- -0.742561336672229
- >>> integrate.romb(y, show=True)
- Richardson Extrapolation Table for Romberg Integration
- ======================================================
- -0.81576
- 4.63862 6.45674
- -1.10581 -3.02062 -3.65245
- -2.57379 -3.06311 -3.06595 -3.05664
- -1.34093 -0.92997 -0.78776 -0.75160 -0.74256
- ======================================================
- -0.742561336672229 # may vary
- """
- y = np.asarray(y)
- nd = len(y.shape)
- Nsamps = y.shape[axis]
- Ninterv = Nsamps-1
- n = 1
- k = 0
- while n < Ninterv:
- n <<= 1
- k += 1
- if n != Ninterv:
- raise ValueError("Number of samples must be one plus a "
- "non-negative power of 2.")
- R = {}
- slice_all = (slice(None),) * nd
- slice0 = tupleset(slice_all, axis, 0)
- slicem1 = tupleset(slice_all, axis, -1)
- h = Ninterv * np.asarray(dx, dtype=float)
- R[(0, 0)] = (y[slice0] + y[slicem1])/2.0*h
- slice_R = slice_all
- start = stop = step = Ninterv
- for i in range(1, k+1):
- start >>= 1
- slice_R = tupleset(slice_R, axis, slice(start, stop, step))
- step >>= 1
- R[(i, 0)] = 0.5*(R[(i-1, 0)] + h*y[slice_R].sum(axis=axis))
- for j in range(1, i+1):
- prev = R[(i, j-1)]
- R[(i, j)] = prev + (prev-R[(i-1, j-1)]) / ((1 << (2*j))-1)
- h /= 2.0
- if show:
- if not np.isscalar(R[(0, 0)]):
- print("*** Printing table only supported for integrals" +
- " of a single data set.")
- else:
- try:
- precis = show[0]
- except (TypeError, IndexError):
- precis = 5
- try:
- width = show[1]
- except (TypeError, IndexError):
- width = 8
- formstr = "%%%d.%df" % (width, precis)
- title = "Richardson Extrapolation Table for Romberg Integration"
- print(title, "=" * len(title), sep="\n", end="\n")
- for i in range(k+1):
- for j in range(i+1):
- print(formstr % R[(i, j)], end=" ")
- print()
- print("=" * len(title))
- return R[(k, k)]
- # Romberg quadratures for numeric integration.
- #
- # Written by Scott M. Ransom <ransom@cfa.harvard.edu>
- # last revision: 14 Nov 98
- #
- # Cosmetic changes by Konrad Hinsen <hinsen@cnrs-orleans.fr>
- # last revision: 1999-7-21
- #
- # Adapted to SciPy by Travis Oliphant <oliphant.travis@ieee.org>
- # last revision: Dec 2001
- def _difftrap(function, interval, numtraps):
- """
- Perform part of the trapezoidal rule to integrate a function.
- Assume that we had called difftrap with all lower powers-of-2
- starting with 1. Calling difftrap only returns the summation
- of the new ordinates. It does _not_ multiply by the width
- of the trapezoids. This must be performed by the caller.
- 'function' is the function to evaluate (must accept vector arguments).
- 'interval' is a sequence with lower and upper limits
- of integration.
- 'numtraps' is the number of trapezoids to use (must be a
- power-of-2).
- """
- if numtraps <= 0:
- raise ValueError("numtraps must be > 0 in difftrap().")
- elif numtraps == 1:
- return 0.5*(function(interval[0])+function(interval[1]))
- else:
- numtosum = numtraps/2
- h = float(interval[1]-interval[0])/numtosum
- lox = interval[0] + 0.5 * h
- points = lox + h * np.arange(numtosum)
- s = np.sum(function(points), axis=0)
- return s
- def _romberg_diff(b, c, k):
- """
- Compute the differences for the Romberg quadrature corrections.
- See Forman Acton's "Real Computing Made Real," p 143.
- """
- tmp = 4.0**k
- return (tmp * c - b)/(tmp - 1.0)
- def _printresmat(function, interval, resmat):
- # Print the Romberg result matrix.
- i = j = 0
- print('Romberg integration of', repr(function), end=' ')
- print('from', interval)
- print('')
- print('%6s %9s %9s' % ('Steps', 'StepSize', 'Results'))
- for i in range(len(resmat)):
- print('%6d %9f' % (2**i, (interval[1]-interval[0])/(2.**i)), end=' ')
- for j in range(i+1):
- print('%9f' % (resmat[i][j]), end=' ')
- print('')
- print('')
- print('The final result is', resmat[i][j], end=' ')
- print('after', 2**(len(resmat)-1)+1, 'function evaluations.')
- def romberg(function, a, b, args=(), tol=1.48e-8, rtol=1.48e-8, show=False,
- divmax=10, vec_func=False):
- """
- Romberg integration of a callable function or method.
- Returns the integral of `function` (a function of one variable)
- over the interval (`a`, `b`).
- If `show` is 1, the triangular array of the intermediate results
- will be printed. If `vec_func` is True (default is False), then
- `function` is assumed to support vector arguments.
- Parameters
- ----------
- function : callable
- Function to be integrated.
- a : float
- Lower limit of integration.
- b : float
- Upper limit of integration.
- Returns
- -------
- results : float
- Result of the integration.
- Other Parameters
- ----------------
- args : tuple, optional
- Extra arguments to pass to function. Each element of `args` will
- be passed as a single argument to `func`. Default is to pass no
- extra arguments.
- tol, rtol : float, optional
- The desired absolute and relative tolerances. Defaults are 1.48e-8.
- show : bool, optional
- Whether to print the results. Default is False.
- divmax : int, optional
- Maximum order of extrapolation. Default is 10.
- vec_func : bool, optional
- Whether `func` handles arrays as arguments (i.e., whether it is a
- "vector" function). Default is False.
- See Also
- --------
- fixed_quad : Fixed-order Gaussian quadrature.
- quad : Adaptive quadrature using QUADPACK.
- dblquad : Double integrals.
- tplquad : Triple integrals.
- romb : Integrators for sampled data.
- simpson : Integrators for sampled data.
- cumulative_trapezoid : Cumulative integration for sampled data.
- ode : ODE integrator.
- odeint : ODE integrator.
- References
- ----------
- .. [1] 'Romberg's method' https://en.wikipedia.org/wiki/Romberg%27s_method
- Examples
- --------
- Integrate a gaussian from 0 to 1 and compare to the error function.
- >>> from scipy import integrate
- >>> from scipy.special import erf
- >>> import numpy as np
- >>> gaussian = lambda x: 1/np.sqrt(np.pi) * np.exp(-x**2)
- >>> result = integrate.romberg(gaussian, 0, 1, show=True)
- Romberg integration of <function vfunc at ...> from [0, 1]
- ::
- Steps StepSize Results
- 1 1.000000 0.385872
- 2 0.500000 0.412631 0.421551
- 4 0.250000 0.419184 0.421368 0.421356
- 8 0.125000 0.420810 0.421352 0.421350 0.421350
- 16 0.062500 0.421215 0.421350 0.421350 0.421350 0.421350
- 32 0.031250 0.421317 0.421350 0.421350 0.421350 0.421350 0.421350
- The final result is 0.421350396475 after 33 function evaluations.
- >>> print("%g %g" % (2*result, erf(1)))
- 0.842701 0.842701
- """
- if np.isinf(a) or np.isinf(b):
- raise ValueError("Romberg integration only available "
- "for finite limits.")
- vfunc = vectorize1(function, args, vec_func=vec_func)
- n = 1
- interval = [a, b]
- intrange = b - a
- ordsum = _difftrap(vfunc, interval, n)
- result = intrange * ordsum
- resmat = [[result]]
- err = np.inf
- last_row = resmat[0]
- for i in range(1, divmax+1):
- n *= 2
- ordsum += _difftrap(vfunc, interval, n)
- row = [intrange * ordsum / n]
- for k in range(i):
- row.append(_romberg_diff(last_row[k], row[k], k+1))
- result = row[i]
- lastresult = last_row[i-1]
- if show:
- resmat.append(row)
- err = abs(result - lastresult)
- if err < tol or err < rtol * abs(result):
- break
- last_row = row
- else:
- warnings.warn(
- "divmax (%d) exceeded. Latest difference = %e" % (divmax, err),
- AccuracyWarning)
- if show:
- _printresmat(vfunc, interval, resmat)
- return result
- # Coefficients for Newton-Cotes quadrature
- #
- # These are the points being used
- # to construct the local interpolating polynomial
- # a are the weights for Newton-Cotes integration
- # B is the error coefficient.
- # error in these coefficients grows as N gets larger.
- # or as samples are closer and closer together
- # You can use maxima to find these rational coefficients
- # for equally spaced data using the commands
- # a(i,N) := integrate(product(r-j,j,0,i-1) * product(r-j,j,i+1,N),r,0,N) / ((N-i)! * i!) * (-1)^(N-i);
- # Be(N) := N^(N+2)/(N+2)! * (N/(N+3) - sum((i/N)^(N+2)*a(i,N),i,0,N));
- # Bo(N) := N^(N+1)/(N+1)! * (N/(N+2) - sum((i/N)^(N+1)*a(i,N),i,0,N));
- # B(N) := (if (mod(N,2)=0) then Be(N) else Bo(N));
- #
- # pre-computed for equally-spaced weights
- #
- # num_a, den_a, int_a, num_B, den_B = _builtincoeffs[N]
- #
- # a = num_a*array(int_a)/den_a
- # B = num_B*1.0 / den_B
- #
- # integrate(f(x),x,x_0,x_N) = dx*sum(a*f(x_i)) + B*(dx)^(2k+3) f^(2k+2)(x*)
- # where k = N // 2
- #
- _builtincoeffs = {
- 1: (1,2,[1,1],-1,12),
- 2: (1,3,[1,4,1],-1,90),
- 3: (3,8,[1,3,3,1],-3,80),
- 4: (2,45,[7,32,12,32,7],-8,945),
- 5: (5,288,[19,75,50,50,75,19],-275,12096),
- 6: (1,140,[41,216,27,272,27,216,41],-9,1400),
- 7: (7,17280,[751,3577,1323,2989,2989,1323,3577,751],-8183,518400),
- 8: (4,14175,[989,5888,-928,10496,-4540,10496,-928,5888,989],
- -2368,467775),
- 9: (9,89600,[2857,15741,1080,19344,5778,5778,19344,1080,
- 15741,2857], -4671, 394240),
- 10: (5,299376,[16067,106300,-48525,272400,-260550,427368,
- -260550,272400,-48525,106300,16067],
- -673175, 163459296),
- 11: (11,87091200,[2171465,13486539,-3237113, 25226685,-9595542,
- 15493566,15493566,-9595542,25226685,-3237113,
- 13486539,2171465], -2224234463, 237758976000),
- 12: (1, 5255250, [1364651,9903168,-7587864,35725120,-51491295,
- 87516288,-87797136,87516288,-51491295,35725120,
- -7587864,9903168,1364651], -3012, 875875),
- 13: (13, 402361344000,[8181904909, 56280729661, -31268252574,
- 156074417954,-151659573325,206683437987,
- -43111992612,-43111992612,206683437987,
- -151659573325,156074417954,-31268252574,
- 56280729661,8181904909], -2639651053,
- 344881152000),
- 14: (7, 2501928000, [90241897,710986864,-770720657,3501442784,
- -6625093363,12630121616,-16802270373,19534438464,
- -16802270373,12630121616,-6625093363,3501442784,
- -770720657,710986864,90241897], -3740727473,
- 1275983280000)
- }
- def newton_cotes(rn, equal=0):
- r"""
- Return weights and error coefficient for Newton-Cotes integration.
- Suppose we have (N+1) samples of f at the positions
- x_0, x_1, ..., x_N. Then an N-point Newton-Cotes formula for the
- integral between x_0 and x_N is:
- :math:`\int_{x_0}^{x_N} f(x)dx = \Delta x \sum_{i=0}^{N} a_i f(x_i)
- + B_N (\Delta x)^{N+2} f^{N+1} (\xi)`
- where :math:`\xi \in [x_0,x_N]`
- and :math:`\Delta x = \frac{x_N-x_0}{N}` is the average samples spacing.
- If the samples are equally-spaced and N is even, then the error
- term is :math:`B_N (\Delta x)^{N+3} f^{N+2}(\xi)`.
- Parameters
- ----------
- rn : int
- The integer order for equally-spaced data or the relative positions of
- the samples with the first sample at 0 and the last at N, where N+1 is
- the length of `rn`. N is the order of the Newton-Cotes integration.
- equal : int, optional
- Set to 1 to enforce equally spaced data.
- Returns
- -------
- an : ndarray
- 1-D array of weights to apply to the function at the provided sample
- positions.
- B : float
- Error coefficient.
- Notes
- -----
- Normally, the Newton-Cotes rules are used on smaller integration
- regions and a composite rule is used to return the total integral.
- Examples
- --------
- Compute the integral of sin(x) in [0, :math:`\pi`]:
- >>> from scipy.integrate import newton_cotes
- >>> import numpy as np
- >>> def f(x):
- ... return np.sin(x)
- >>> a = 0
- >>> b = np.pi
- >>> exact = 2
- >>> for N in [2, 4, 6, 8, 10]:
- ... x = np.linspace(a, b, N + 1)
- ... an, B = newton_cotes(N, 1)
- ... dx = (b - a) / N
- ... quad = dx * np.sum(an * f(x))
- ... error = abs(quad - exact)
- ... print('{:2d} {:10.9f} {:.5e}'.format(N, quad, error))
- ...
- 2 2.094395102 9.43951e-02
- 4 1.998570732 1.42927e-03
- 6 2.000017814 1.78136e-05
- 8 1.999999835 1.64725e-07
- 10 2.000000001 1.14677e-09
- """
- try:
- N = len(rn)-1
- if equal:
- rn = np.arange(N+1)
- elif np.all(np.diff(rn) == 1):
- equal = 1
- except Exception:
- N = rn
- rn = np.arange(N+1)
- equal = 1
- if equal and N in _builtincoeffs:
- na, da, vi, nb, db = _builtincoeffs[N]
- an = na * np.array(vi, dtype=float) / da
- return an, float(nb)/db
- if (rn[0] != 0) or (rn[-1] != N):
- raise ValueError("The sample positions must start at 0"
- " and end at N")
- yi = rn / float(N)
- ti = 2 * yi - 1
- nvec = np.arange(N+1)
- C = ti ** nvec[:, np.newaxis]
- Cinv = np.linalg.inv(C)
- # improve precision of result
- for i in range(2):
- Cinv = 2*Cinv - Cinv.dot(C).dot(Cinv)
- vec = 2.0 / (nvec[::2]+1)
- ai = Cinv[:, ::2].dot(vec) * (N / 2.)
- if (N % 2 == 0) and equal:
- BN = N/(N+3.)
- power = N+2
- else:
- BN = N/(N+2.)
- power = N+1
- BN = BN - np.dot(yi**power, ai)
- p1 = power+1
- fac = power*math.log(N) - gammaln(p1)
- fac = math.exp(fac)
- return ai, BN*fac
- def _qmc_quad_iv(func, a, b, n_points, n_estimates, qrng, log):
- # lazy import to avoid issues with partially-initialized submodule
- if not hasattr(_qmc_quad, 'qmc'):
- from scipy import stats
- _qmc_quad.stats = stats
- else:
- stats = _qmc_quad.stats
- if not callable(func):
- message = "`func` must be callable."
- raise TypeError(message)
- # a, b will be modified, so copy. Oh well if it's copied twice.
- a = np.atleast_1d(a).copy()
- b = np.atleast_1d(b).copy()
- a, b = np.broadcast_arrays(a, b)
- dim = a.shape[0]
- try:
- func((a + b) / 2)
- except Exception as e:
- message = ("`func` must evaluate the integrand at points within "
- "the integration range; e.g. `func( (a + b) / 2)` "
- "must return the integrand at the centroid of the "
- "integration volume.")
- raise ValueError(message) from e
- try:
- func(np.array([a, b]))
- vfunc = func
- except Exception as e:
- message = ("Exception encountered when attempting vectorized call to "
- f"`func`: {e}. `func` should accept two-dimensional array "
- "with shape `(n_points, len(a))` and return an array with "
- "the integrand value at each of the `n_points` for better "
- "performance.")
- warnings.warn(message, stacklevel=3)
- def vfunc(x):
- return np.apply_along_axis(func, axis=-1, arr=x)
- n_points_int = np.int64(n_points)
- if n_points != n_points_int:
- message = "`n_points` must be an integer."
- raise TypeError(message)
- n_estimates_int = np.int64(n_estimates)
- if n_estimates != n_estimates_int:
- message = "`n_estimates` must be an integer."
- raise TypeError(message)
- if qrng is None:
- qrng = stats.qmc.Halton(dim)
- elif not isinstance(qrng, stats.qmc.QMCEngine):
- message = "`qrng` must be an instance of scipy.stats.qmc.QMCEngine."
- raise TypeError(message)
- if qrng.d != a.shape[0]:
- message = ("`qrng` must be initialized with dimensionality equal to "
- "the number of variables in `a`, i.e., "
- "`qrng.random().shape[-1]` must equal `a.shape[0]`.")
- raise ValueError(message)
- rng_seed = getattr(qrng, 'rng_seed', None)
- rng = stats._qmc.check_random_state(rng_seed)
- if log not in {True, False}:
- message = "`log` must be boolean (`True` or `False`)."
- raise TypeError(message)
- return (vfunc, a, b, n_points_int, n_estimates_int, qrng, rng, log, stats)
- QMCQuadResult = namedtuple('QMCQuadResult', ['integral', 'standard_error'])
- def _qmc_quad(func, a, b, *, n_points=1024, n_estimates=8, qrng=None,
- log=False, args=None):
- """
- Compute an integral in N-dimensions using Quasi-Monte Carlo quadrature.
- Parameters
- ----------
- func : callable
- The integrand. Must accept a single arguments `x`, an array which
- specifies the point at which to evaluate the integrand. For efficiency,
- the function should be vectorized to compute the integrand for each
- element an array of shape ``(n_points, n)``, where ``n`` is number of
- variables.
- a, b : array-like
- One-dimensional arrays specifying the lower and upper integration
- limits, respectively, of each of the ``n`` variables.
- n_points, n_estimates : int, optional
- One QMC sample of `n_points` (default: 256) points will be generated
- by `qrng`, and `n_estimates` (default: 8) statistically independent
- estimates of the integral will be produced. The total number of points
- at which the integrand `func` will be evaluated is
- ``n_points * n_estimates``. See Notes for details.
- qrng : `~scipy.stats.qmc.QMCEngine`, optional
- An instance of the QMCEngine from which to sample QMC points.
- The QMCEngine must be initialized to a number of dimensions
- corresponding with the number of variables ``x0, ..., xn`` passed to
- `func`.
- The provided QMCEngine is used to produce the first integral estimate.
- If `n_estimates` is greater than one, additional QMCEngines are
- spawned from the first (with scrambling enabled, if it is an option.)
- If a QMCEngine is not provided, the default `scipy.stats.qmc.Halton`
- will be initialized with the number of dimensions determine from
- `a`.
- log : boolean, default: False
- When set to True, `func` returns the log of the integrand, and
- the result object contains the log of the integral.
- Returns
- -------
- result : object
- A result object with attributes:
- integral : float
- The estimate of the integral.
- standard_error :
- The error estimate. See Notes for interpretation.
- Notes
- -----
- Values of the integrand at each of the `n_points` points of a QMC sample
- are used to produce an estimate of the integral. This estimate is drawn
- from a population of possible estimates of the integral, the value of
- which we obtain depends on the particular points at which the integral
- was evaluated. We perform this process `n_estimates` times, each time
- evaluating the integrand at different scrambled QMC points, effectively
- drawing i.i.d. random samples from the population of integral estimates.
- The sample mean :math:`m` of these integral estimates is an
- unbiased estimator of the true value of the integral, and the standard
- error of the mean :math:`s` of these estimates may be used to generate
- confidence intervals using the t distribution with ``n_estimates - 1``
- degrees of freedom. Perhaps counter-intuitively, increasing `n_points`
- while keeping the total number of function evaluation points
- ``n_points * n_estimates`` fixed tends to reduce the actual error, whereas
- increasing `n_estimates` tends to decrease the error estimate.
- Examples
- --------
- QMC quadrature is particularly useful for computing integrals in higher
- dimensions. An example integrand is the probability density function
- of a multivariate normal distribution.
- >>> import numpy as np
- >>> from scipy import stats
- >>> dim = 8
- >>> mean = np.zeros(dim)
- >>> cov = np.eye(dim)
- >>> def func(x):
- ... return stats.multivariate_normal.pdf(x, mean, cov)
- To compute the integral over the unit hypercube:
- >>> from scipy.integrate import qmc_quad
- >>> a = np.zeros(dim)
- >>> b = np.ones(dim)
- >>> rng = np.random.default_rng()
- >>> qrng = stats.qmc.Halton(d=dim, seed=rng)
- >>> n_estimates = 8
- >>> res = qmc_quad(func, a, b, n_estimates=n_estimates, qrng=qrng)
- >>> res.integral, res.standard_error
- (0.00018441088533413305, 1.1255608140911588e-07)
- A two-sided, 99% confidence interval for the integral may be estimated
- as:
- >>> t = stats.t(df=n_estimates-1, loc=res.integral,
- ... scale=res.standard_error)
- >>> t.interval(0.99)
- (0.00018401699720722663, 0.00018480477346103947)
- Indeed, the value reported by `scipy.stats.multivariate_normal` is
- within this range.
- >>> stats.multivariate_normal.cdf(b, mean, cov, lower_limit=a)
- 0.00018430867675187443
- """
- args = _qmc_quad_iv(func, a, b, n_points, n_estimates, qrng, log)
- func, a, b, n_points, n_estimates, qrng, rng, log, stats = args
- # The sign of the integral depends on the order of the limits. Fix this by
- # ensuring that lower bounds are indeed lower and setting sign of resulting
- # integral manually
- if np.any(a == b):
- message = ("A lower limit was equal to an upper limit, so the value "
- "of the integral is zero by definition.")
- warnings.warn(message, stacklevel=2)
- return QMCQuadResult(-np.inf if log else 0, 0)
- i_swap = b < a
- sign = (-1)**(i_swap.sum(axis=-1)) # odd # of swaps -> negative
- a[i_swap], b[i_swap] = b[i_swap], a[i_swap]
- A = np.prod(b - a)
- dA = A / n_points
- estimates = np.zeros(n_estimates)
- rngs = _rng_spawn(qrng.rng, n_estimates)
- for i in range(n_estimates):
- # Generate integral estimate
- sample = qrng.random(n_points)
- x = stats.qmc.scale(sample, a, b)
- integrands = func(x)
- if log:
- estimate = logsumexp(integrands) + np.log(dA)
- else:
- estimate = np.sum(integrands * dA)
- estimates[i] = estimate
- # Get a new, independently-scrambled QRNG for next time
- qrng = type(qrng)(seed=rngs[i], **qrng._init_quad)
- integral = np.mean(estimates)
- integral = integral + np.pi*1j if (log and sign < 0) else integral*sign
- standard_error = stats.sem(estimates)
- return QMCQuadResult(integral, standard_error)
|