123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- from scipy.fft._helper import next_fast_len, _init_nd_shape_and_axes
- from numpy.testing import assert_equal, assert_array_equal
- from pytest import raises as assert_raises
- import pytest
- import numpy as np
- import sys
- _5_smooth_numbers = [
- 2, 3, 4, 5, 6, 8, 9, 10,
- 2 * 3 * 5,
- 2**3 * 3**5,
- 2**3 * 3**3 * 5**2,
- ]
- def test_next_fast_len():
- for n in _5_smooth_numbers:
- assert_equal(next_fast_len(n), n)
- def _assert_n_smooth(x, n):
- x_orig = x
- if n < 2:
- assert False
- while True:
- q, r = divmod(x, 2)
- if r != 0:
- break
- x = q
- for d in range(3, n+1, 2):
- while True:
- q, r = divmod(x, d)
- if r != 0:
- break
- x = q
- assert x == 1, \
- 'x={} is not {}-smooth, remainder={}'.format(x_orig, n, x)
- class TestNextFastLen:
- def test_next_fast_len(self):
- np.random.seed(1234)
- def nums():
- yield from range(1, 1000)
- yield 2**5 * 3**5 * 4**5 + 1
- for n in nums():
- m = next_fast_len(n)
- _assert_n_smooth(m, 11)
- assert m == next_fast_len(n, False)
- m = next_fast_len(n, True)
- _assert_n_smooth(m, 5)
- def test_np_integers(self):
- ITYPES = [np.int16, np.int32, np.int64, np.uint16, np.uint32, np.uint64]
- for ityp in ITYPES:
- x = ityp(12345)
- testN = next_fast_len(x)
- assert_equal(testN, next_fast_len(int(x)))
- def testnext_fast_len_small(self):
- hams = {
- 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 8, 8: 8, 14: 15, 15: 15,
- 16: 16, 17: 18, 1021: 1024, 1536: 1536, 51200000: 51200000
- }
- for x, y in hams.items():
- assert_equal(next_fast_len(x, True), y)
- @pytest.mark.xfail(sys.maxsize < 2**32,
- reason="Hamming Numbers too large for 32-bit",
- raises=ValueError, strict=True)
- def testnext_fast_len_big(self):
- hams = {
- 510183360: 510183360, 510183360 + 1: 512000000,
- 511000000: 512000000,
- 854296875: 854296875, 854296875 + 1: 859963392,
- 196608000000: 196608000000, 196608000000 + 1: 196830000000,
- 8789062500000: 8789062500000, 8789062500000 + 1: 8796093022208,
- 206391214080000: 206391214080000,
- 206391214080000 + 1: 206624260800000,
- 470184984576000: 470184984576000,
- 470184984576000 + 1: 470715894135000,
- 7222041363087360: 7222041363087360,
- 7222041363087360 + 1: 7230196133913600,
- # power of 5 5**23
- 11920928955078125: 11920928955078125,
- 11920928955078125 - 1: 11920928955078125,
- # power of 3 3**34
- 16677181699666569: 16677181699666569,
- 16677181699666569 - 1: 16677181699666569,
- # power of 2 2**54
- 18014398509481984: 18014398509481984,
- 18014398509481984 - 1: 18014398509481984,
- # above this, int(ceil(n)) == int(ceil(n+1))
- 19200000000000000: 19200000000000000,
- 19200000000000000 + 1: 19221679687500000,
- 288230376151711744: 288230376151711744,
- 288230376151711744 + 1: 288325195312500000,
- 288325195312500000 - 1: 288325195312500000,
- 288325195312500000: 288325195312500000,
- 288325195312500000 + 1: 288555831593533440,
- }
- for x, y in hams.items():
- assert_equal(next_fast_len(x, True), y)
- def test_keyword_args(self):
- assert next_fast_len(11, real=True) == 12
- assert next_fast_len(target=7, real=False) == 7
- class Test_init_nd_shape_and_axes:
- def test_py_0d_defaults(self):
- x = np.array(4)
- shape = None
- axes = None
- shape_expected = np.array([])
- axes_expected = np.array([])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_0d_defaults(self):
- x = np.array(7.)
- shape = None
- axes = None
- shape_expected = np.array([])
- axes_expected = np.array([])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_py_1d_defaults(self):
- x = np.array([1, 2, 3])
- shape = None
- axes = None
- shape_expected = np.array([3])
- axes_expected = np.array([0])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_1d_defaults(self):
- x = np.arange(0, 1, .1)
- shape = None
- axes = None
- shape_expected = np.array([10])
- axes_expected = np.array([0])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_py_2d_defaults(self):
- x = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8]])
- shape = None
- axes = None
- shape_expected = np.array([2, 4])
- axes_expected = np.array([0, 1])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_2d_defaults(self):
- x = np.arange(0, 1, .1).reshape(5, 2)
- shape = None
- axes = None
- shape_expected = np.array([5, 2])
- axes_expected = np.array([0, 1])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_defaults(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = None
- axes = None
- shape_expected = np.array([6, 2, 5, 3, 4])
- axes_expected = np.array([0, 1, 2, 3, 4])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_shape(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = [10, -1, -1, 1, 4]
- axes = None
- shape_expected = np.array([10, 2, 5, 1, 4])
- axes_expected = np.array([0, 1, 2, 3, 4])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_axes(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = None
- axes = [4, 1, 2]
- shape_expected = np.array([4, 2, 5])
- axes_expected = np.array([4, 1, 2])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_np_5d_set_shape_axes(self):
- x = np.zeros([6, 2, 5, 3, 4])
- shape = [10, -1, 2]
- axes = [1, 0, 3]
- shape_expected = np.array([10, 6, 2])
- axes_expected = np.array([1, 0, 3])
- shape_res, axes_res = _init_nd_shape_and_axes(x, shape, axes)
- assert_equal(shape_res, shape_expected)
- assert_equal(axes_res, axes_expected)
- def test_shape_axes_subset(self):
- x = np.zeros((2, 3, 4, 5))
- shape, axes = _init_nd_shape_and_axes(x, shape=(5, 5, 5), axes=None)
- assert_array_equal(shape, [5, 5, 5])
- assert_array_equal(axes, [1, 2, 3])
- def test_errors(self):
- x = np.zeros(1)
- with assert_raises(ValueError, match="axes must be a scalar or "
- "iterable of integers"):
- _init_nd_shape_and_axes(x, shape=None, axes=[[1, 2], [3, 4]])
- with assert_raises(ValueError, match="axes must be a scalar or "
- "iterable of integers"):
- _init_nd_shape_and_axes(x, shape=None, axes=[1., 2., 3., 4.])
- with assert_raises(ValueError,
- match="axes exceeds dimensionality of input"):
- _init_nd_shape_and_axes(x, shape=None, axes=[1])
- with assert_raises(ValueError,
- match="axes exceeds dimensionality of input"):
- _init_nd_shape_and_axes(x, shape=None, axes=[-2])
- with assert_raises(ValueError,
- match="all axes must be unique"):
- _init_nd_shape_and_axes(x, shape=None, axes=[0, 0])
- with assert_raises(ValueError, match="shape must be a scalar or "
- "iterable of integers"):
- _init_nd_shape_and_axes(x, shape=[[1, 2], [3, 4]], axes=None)
- with assert_raises(ValueError, match="shape must be a scalar or "
- "iterable of integers"):
- _init_nd_shape_and_axes(x, shape=[1., 2., 3., 4.], axes=None)
- with assert_raises(ValueError,
- match="when given, axes and shape arguments"
- " have to be of the same length"):
- _init_nd_shape_and_axes(np.zeros([1, 1, 1, 1]),
- shape=[1, 2, 3], axes=[1])
- with assert_raises(ValueError,
- match="invalid number of data points"
- r" \(\[0\]\) specified"):
- _init_nd_shape_and_axes(x, shape=[0], axes=None)
- with assert_raises(ValueError,
- match="invalid number of data points"
- r" \(\[-2\]\) specified"):
- _init_nd_shape_and_axes(x, shape=-2, axes=None)
|